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Abstract—Software evolution analysis provides a valuable
source of information that can be used both to understand a
system’s design and to predict its future development. While for
many program comprehension purposes it is sufficient to model
a single version of a system, there are types of information that
can only be recovered when the history of a system is taken
into account. Logical coupling, the implicit dependency between
software artifacts that have been changed together, is an example
of such information. Previous research has dealt with low-level
couplings between files, leading to an explosion of the data to be
analyzed, or has abstracted the logical couplings to the level of
modules, leading to a loss of detailed information.

In this article we present a visualization-based approach that
integrates logical coupling information at different levels of
abstraction. This facilitates an in-depth analysis of the logical
couplings, and at the same time leads to a characterization of a
system’s modules in terms of their logical coupling.

The presented approach supports the retrospective analysis of
a software system and maintenance activities such as restructur-
ing and re-documentation. We illustrate retrospective analysis on
two large open source software systems.

Index Terms—Software Evolution, Software Visualization,
Change Coupling

I. INTRODUCTION

Versioning systems, also known as software configuration
management systems, saw their advent in the 1970s, with tools
such as SCCS [26] and RCS [33]. They allow developers to
record the history of a project in a software repository. Since the
advent of open source software, CVS and recently Subversion
emerged as de facto standards. Software repositories contain
large amounts of valuable historical data, and their widespread
usage has revamped research fields like software evolution [19]
and also created new communities like the one dedicated to
mining software repositories [12].

Researchers have demonstrated that versioning information
can not only help to predict future evolutionary trends [21]
[34], but can also provide starting points for reengineering
activities [15].

The history of a software system also holds information about
the logical coupling of software artifacts. Logical couplings
are implicit and evolutionary dependencies between artifacts of
a system that evolve together, although they are not necessarily
structurally related (for example by means of inheritance,
subsystem membership, usage, etc.). They are therefore linked
to each other from a development process point of view:
logically coupled entities have changed together in the past
and are likely to change together in the future. Logical
coupling information reveals potentially “misplaced” artifacts

in a software system: To prevent a developer modifying a file
in a system from forgetting to modify logically related files
only because they are placed in other subsystems or packages,
software artifacts that evolve together should be placed close
(e.g., in the same subsystem) to each other.

In this article we present a technique to inspect logical
coupling relationships, which integrates information both at a
module-level (which subsystems are coupled with each other)
and at a file-level (which files are responsible for the logical
couplings). Our technique is based on a dedicated interactive
visualization that we named the Evolution Radar [11] [10].

We use visualization [7], [28] because it provides effective
ways to break down the complexity of information, and because
it has shown to be a successful means to study the evolution
of software systems [2], [9], [16], [17], [22], [31], [34].

With our approach we tackle the following problems:
• Presenting very large amounts of evolutionary information

in a scalable way.
• Identifying outliers among logical coupling relationships.
• Enabling developers and analysts to study and inspect

these relationships and to guide them to the files that are
responsible for the logical couplings.

The results and the examples presented in the paper have
been obtained by applying our technique on the evolution data
of ArgoUML and Azureus, two large and long-lived open
source Java systems, and CodeCity, a 3D visualization tool
implemented in Smalltalk.

Structure of the paper: In Section II we define logical
coupling in detail. In Section III we introduce our approach
based on the Evolution Radar, a visualization technique that
renders logical coupling information, and we discuss its benefits
and shortcomings. We illustrate the use of the radar for
retrospective analysis in Section IV, and show how it can
also be used for maintenance tasks in Section V. In Section VI
we discuss related work and conclude by summarizing our
contributions in Section VII.

II. LOGICAL COUPLING

Logical coupling is the implicit dependency between two or
more software artifacts that have been observed to frequently
change together during the evolution of a system [13]. This
co-change information can either be present in the versioning
system, or must be inferred by analysis. For example Subver-
sion marks co-changing files at commit time as belonging to
the same change set while in CVS the logically coupled files
must be inferred from the modification time of each file.
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The concept of co-change in versioning system was first
introduced by Ball and Eick [1]. They used this information
to visualize a graph of co-changed classes and detect clusters
of classes that often changed together during the evolution of
the system. The authors discovered that classes belonging to
the same cluster were semantically related.

Gall et al. revised the concept of co-change to detect implicit
relationships between modules [13], and named it logical
coupling. They analyzed the dependencies between modules of
a large telecommunications system and showed that the concept
helps to derive useful insights on the system architecture. Later
the same authors revisited the technique to work at a lower
abstraction level. They detected logical couplings at the class
level [14] and validated it on 28 releases of an industrial
software system. The authors showed through a case study that
architectural weaknesses, such as poorly designed interfaces
and inheritance hierarchies, could be detected based on logical
coupling information.

Other work has been performed at finer granularity levels.
Zimmermann et al. [38] used the co-change information to
predict entities (classes, methods, fields etc.) that are likely to be
modified when one is being modified. Breu and Zimmermann
[5] applied data mining techniques on co-changed entities to
identify and rank crosscutting concerns in software systems.
Bouktif et al. [4] improved precision and recall of co-chancing
files detection with respect to previous approaches. They
introduced the concept of change-patterns, in particular the
“Synchrony” pattern for co-changing files and proposed an
approach to detect such change-patterns in CVS repositories
using dynamic time warping.

The analysis of logical coupling has two major benefits:
1) It is more lightweight than structural analysis, as only

the data provided by the CVS log files is needed, i.e., it
is not necessary to parse and model the whole system.
Moreover, as it works at the text level, it can analyze
systems written in multiple languages.

2) It can reveal hidden dependencies that are not present in
the code or in the documentation.

The main problem with existing approaches is that they work
either at the architecture level or at the file (or even lower)
level. Working at the architecture level provides high-level
insights about the system’s structure, but low-level information
about finer-grained entities is lost, and it is difficult to say
which specific artifact is causing the coupling. Working at the
file level makes one lose the global view of the system and it
becomes difficult to establish which higher-level consequences
the coupling of a specific file has.

Our approach makes up for this dichotomy by integrating
both levels of information by means of a visualization technique
called Evolution Radar, presented next.

III. THE EVOLUTION RADAR

The Evolution Radar is a visualization technique to render
file-level and module-level logical coupling information in an
integrated and interactive way. It is interactive, and allows the
user to navigate and query the visualized information.

The Evolution Radar shows the dependencies between a
module in focus and all the other modules of a system. The
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Fig. 1. Principles of the Evolution Radar.

module in focus is represented as a circle and placed in the
center of a circular surface (see Figure 1). All the other modules
are visualized as sectors, whose size is proportional to the
number of files contained in the corresponding module. The
sectors are sorted according to this size metric, and placed in
clockwise order. Within each module sector, files belonging to
that module are represented as colored circles and positioned
using polar coordinates where the angle and the distance to
the center are computed according to the following rules:

• Distance d to the center is a linear function of the logical
coupling the file has with the module in focus, i.e., the
more they are coupled, the closer the circle representing
the file is placed to the center of the circular surface. The
exact definition of the distance is:

d =
R

lcmax
× (lcmax − lc) (1)

where R is the radius of the circular surface, lcmax the
maximum value of the logical coupling and lc the value
of the logical coupling.

• Angle θ. The files of each module are alphabetically
sorted considering the entire directory path, and the circles
representing them are then uniformly distributed in the
sectors with respect to the angle coordinates. Like this,
files belonging to the same directory, or classes belonging
to the same package in Java, are close to each other.
Although this is not the only type of sorting possible,
it was particularly useful in our experiments because it
maintained the modules decomposition (in directories or
packages) in the visualization. Other types of sorting might
expose different insights into the system.

Algorithm 1 shows the pseudo code of the layout algorithm.
The Evolution Radar can map arbitrary metrics on the color
and the size of the circle figures representing files.
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Fig. 2. An example Evolution Radar applied on the core3 module of Azureus.

Algorithm 1: The Evolution Radar layout algorithm.

; // Let M be the module in focus, R the
radar’s radius and LC(M,f) the logical
coupling between a module M and a file f
S := {All files f |f /∈M}
lc-max := maxf∈S LC(M,f)
theta := 0
angle-step := 2π

|S|
forall m ∈ {All modules m̄|m̄ 6= M}, sorted by size do

draw module sector initial boundary at theta
forall f ∈ m, sorted by path do

θ(f) := theta
r(f) := R

lc-max × (lc-max− LC(M,f))
theta := theta + angle-step
draw f in polar coordinates (θ, r)

end
draw module sector final boundary at theta

end

A. Example

Figure 2 shows an example Evolution Radar visualizing the
coupling between Azureus’ core3 module (represented as the
cyan circle in the center) and all the other modules (represented
as the sectors). The size of the figures is proportional to the
number of lines changed while their colors map the number
of commits, using a heat-map from blue (lowest value) to red
(highest value). We see that the ui module (on the top-right
part of the radar) is the largest and most coupled module. The

three files marked as 1 in the figure are the ones with the
strongest coupling. They should be further analyzed to identify
the most appropriate module to contain them: core3 or ui.
Other modules do not have such a strong coupling, but we see
the presence of some outliers, i.e., files for which the coupling
measure is much higher with respect to the context. The two
files marked as 2, belonging to the plugins and pluginsimpl
modules, are such outliers and should also be analyzed and
moved in case they belong to the wrong module.

Figure 2 also shows the structure of the Evolution Radar
tool. In the center the Evolution Radar has the interactive
visualization which is set up using the panel on the right,
selecting the entities (e.g., source code files only or all files),
the module in the center and the metrics. When an entity is
selected in the visualization, it is possible to show the commit-
related information about it (author, timestamp, comments etc.)
in the left panel. The tool allows the user to either consider all
the commits or just the ones involved in the coupling. On the
bottom part it displays information about the selected entity,
such as its metric values.

B. Logical Coupling Measure

In the Evolution Radar files are placed according to the
logical coupling they have with the module in focus. To
compute the logical coupling we use the following formula:

LC(M,f) = max
fi∈M

LC(fi, f) (2)

where LC(M,f) is the logical coupling between the module
in focus M and a given file f and LC(fi, f) is the coupling
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Fig. 3. Fixed and sliding time window.

between the files fi and f . It is also possible to use other
group operators such as the average or the median. We use the
maximum because it points us to the files with the strongest
coupling, i.e., the main causes for the module dependencies.
The value of the coupling between two files is equal to the
number of transactions including both files. Since transactions
are not recorded by CVS we need to reconstruct them. To do
so, the following commit data has to be taken into account:
Username, comment and time. Given two or more commits,
a necessary (but not sufficient) condition for them to be
considered in the same transaction is that the usernames and
the comments coincide. We consider them to be in the same
transaction if also the time condition holds. For that, two
possible techniques are the “fixed time window” and the
“sliding time window” approach (depicted in Figure 3):

1) In the fixed time window approach, the beginning of the
time window is fixed to the first commit (file1, version
1.1). All other commits with a timestamp included in
the window are considered to be in the same transaction
(only file2 version 1.4).

2) In Zimmermann’s sliding window approach [37], the
beginning of the time window is moved to the most recent
commit recognized to be in the transaction. By doing this,
file3 version 1.2 is also included in the transaction. The
transactions reconstructed using this approach include
commits taking longer than the size of the time window.
We use a time window of 200 seconds as in [37].

C. Interaction

The Evolution Radar is implemented as an interactive
visualization. It is possible to inspect all the visualized entities,
i.e., files and modules, to see commit-related information such
as author, timestamp, comments, lines added and removed, etc.
Moreover, it is possible to see the source code of selected
files. Three important features to perform analyses with the
Evolution Radar are (a) moving through time, (b) tracking and
(c) spawning.

a) Moving through time: The logical coupling measure
is time-dependent. If we compute it considering the whole
history of the system we can obtain misleading results.

Figure 4 shows an example of such a situation. It depicts the
history, in terms of commits, of two files: file1 and file2. The
time is on the horizontal axis from left to right and commits
are represented as circles. If we compute the coupling measure
according to the entire history we obtain 9 shared commits
out of a total of 17, a high value because the files changed
together more than fifty percent of the time. Although this

Fig. 4. An example of misleading results when considering the entire history
of artifacts to compute the logical coupling value: file1 and file2 are not
coupled during the last year.

result is correct, it is misleading since we could conclude that
file1 and file2 are strongly coupled. Actually file1 and file2
were strongly coupled in the past but they are not coupled at
all during the last year of the system. Since we analyze logical
coupling information to detect architectural decay and design
issues in the current version of the system, recent dependencies
are more important than old ones. In other words, if two files
were strongly coupled at the beginning of a system, but are
not anymore in recent times (perhaps due to a reengineering
phase), we do not consider them as a potential problem.

For this reason the Evolution Radar is time-dependent, i.e.,
it can be computed either considering the entire history of files
or a given time window. When creating the radar, the user can
divide the lifetime of the system into time intervals. For each
interval a different radar is created, and the logical coupling is
computed with respect to the given time interval.

In each visualization all the files are displayed, even those
inserted in the repository after the considered time interval or
removed before. Like this, the theta coordinate of a file does
not change in different radars, and the position of the figures,
with respect to the angle is stable over time. This does not alter
the semantic of the visualization, since these files are always at
the boundary of the radar, their logical coupling being always
0. The radius coordinate has the same scale in all the radars,
i.e., the same distance in different radars represents the same
value of the coupling. This makes it possible to compare radars
and to analyze the evolution of the coupling over time. In our
tool implementation the user “moves through time” by using
a slider, which causes the corresponding radar to be displayed.
However, having several radars raises the issue of tracking the
same entity across different visualizations, discussed next.

b) Tracking: allows the user to keep track of files over
time. When a file is selected for tracking in a visualization
related to a particular time interval, it is highlighted in all the
radars (with respect to all the other time intervals) in which
the file exists.

Figure 5 shows an example of tracking through four radars,
related to four consecutive time intervals, from January 2004
to December 2005. The highlighting consists in using a yellow
border for the tracked files and in showing a text label with
the name of the file (indicated with arrows in Figure 5). It is
thus possible to detect files with a strong logical coupling with
respect to the last period of time and then analyze the coupling
in the past allowing us to distinguish between persistent and
recent logical coupling.
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(a) January–June 2004 (b) June–December 2004

(c) January–June 2005 (d) June–December 2005

Fig. 5. Evolution of the logical coupling with the Model module of ArgoUML.
The Evolution Radar keeps track of selected files along time (yellow border).

c) Spawning: The spawning feature is aimed at inspecting
the logical coupling details. Outliers indicate that the corre-
sponding files have a strong coupling with certain files of the
module in focus, but we ignore which ones.

Fig. 6. Spawning an auxiliary Evolution Radar.

To uncover this dependency between files we spawn an
auxiliary Evolution Radar as shown in Figure 6: The outliers
are grouped to form a temporary module Mt represented by
a circle figure. The module in focus (M ) is expanded, i.e.,
a circle figure is created for each file composing it. A new
Evolution Radar is then created. The temporary module Mt

is placed in the center of the new radar. The files belonging
to the module previously in focus (M ) are placed around the
center. The distance from the center is a linear function of the
logical coupling they have with the module in the center Mt.
For the angle coordinate alphabetical sorting is used. Since all
the files belong to the same module there is only one sector.

D. Discussion

One of the advantages of the Evolution Radar is that it does
not visualize the coupling relationships as edges and therefore
does not suffer from overplotting: The radar always remains

intelligible, i.e., it is easy to spot the heavily coupled modules
(they are displayed as “spikes” pointing to the center). It is
also easy to spot single files responsible for the coupling (they
are placed close to the center).

The Evolution Radar is a general visualization technique, i.e.,
it is applicable to any kind of entity. The only requirement is
to define a grouping criterion and a distance metric. The radar
can also be enriched by adding more structural information.
A sector can be divided in sub-sectors, using both radius and
angle coordinates, to visualize sub-groups, e.g., sub-modules,
as proposed by Stasko and Zhang [29].

The main drawback, common to many visualizations, is that
it requires a trained eye to interpret the displayed information.

IV. USING THE EVOLUTION RADAR FOR RETROSPECTIVE
ANALYSIS

We implemented two versions of the Evolution Radar: One
is a stand alone tool to analyze systems developed using CVS
or SubVersion, while the second version is integrated in an
IDE environment to develop Smalltalk code. In this section,
we apply the stand alone Evolution Radar tool to perform
retrospective analysis on two open source software systems:
ArgoUML and Azureus. ArgoUML is a UML modeling tool
written in Java, consisting of 1,565 classes and more than
200,000 lines of code. Azureus is a BitTorrent client written in
Java, with 4,222 classes and more than 300,000 lines of code.
In the following we present a summary of the analyses of the
systems, giving several examples of our approach.

During the analyses, we use the term strong coupling (or
strong dependency) between a file f and a group of files M
when the following two conditions1 hold:

1) LC(M,f) ≥ 10 i.e., there is at least one file fM of M
having a number of shared commits with f greater or
equal than 10.

2) The number of commits shared by f and fM divided by
the total number of commits of f is greater than 0.35,
i.e., f is modified more than 35% of the times together
with fM .

A. Azureus

Since Azureus does not have any documentation about its
architecture, i.e., an explicit decomposition of the system in
modules, we used the Java package structure to decompose the
system. Throughout the analysis, we use the following metric
mappings: the size (area) of the figures representing files maps
the number of lines changed and the color heat-map represents
the number of commits. Both metrics are computed relative to
the considered time interval.

Getting an overview: The first goal of our analysis is to get
a first understanding of the history of the system packages, i.e.,
when they were introduced or removed from the system.

We apply the Evolution Radar with the package
org.gudy.azureus2.ui in the center, since it is one of the
packages existing from the first to the last version of the

1This definition is valid in the context of the analyzed software systems
and its goal is to avoid mentioning the thresholds all the times.
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(a) June 2003–August 2003 (b) August 2003–August 2004

(c) August 2004–August 2005 (d) August 2005–August 2006

Fig. 7. Evolution Radars of the org.gudy.azureus2.ui package of Azureus.

system. Figure 7 shows the result with a time interval of
one year2. Figures with cyan borders represent files that were
removed during the considered time interval. During the first
three months (Figure 7(a)) org.gudy.azureus2.ui was coupled
with org.gudy.azureus2.core (gudy.core from now on), while the
other packages did not exist. In the following year (Figure 7(b))
gudy.core was removed, since all the figures have a cyan border
and in the following radars there is no activity in this package.
The core of the system became org.gudy.azureus2.core3 cou-
pled to the ui (because of the figures close to the center) and
com.aelitis.azureus.core (aelitis.core from now on) with very
low activities (few figures). The plugins were also introduced
with a clear separation from the ui, since the coupling was
weak (no figures close to the center). From August 2004 to
August 2005 (Figure 7(c)) the architecture decayed, since most
of the packages were strongly coupled with the ui. Finally,

2The first radar refers to a time interval of only 3 months because the time
intervals are computed backward starting from the latest version of the system.

during the last year (Figure 7(d)) the couplings decreased with
all the packages, but in core3 there were still files with a strong
dependency with the ui (figures close to the center).

Detailing the dependency between core3 and ui: The two
files indicated with the arrows and highlighted with the
tracking feature (yellow border) are GlobalManagerImpl.java
and DownloadManagerImpl.java. GlobalManagerImpl is a
singleton responsible of keeping track of the DownloadManager
objects that represent downloads in progress. They are the most
coupled from 2005 to 2006 and from 2003 to 2004, and they
have a strong dependency from 2004 to 2005. This strong
and long-lived coupling indicates a design problem (a code
smell), conforming to Martin’s Common Closure Principle
[20]): “classes that change together belong together”. The
coupling indicates that the classes are misplaced or there are
other design issues. We spawn two other radars having these
files as the center to see which parts of the ui package they
have dependencies with.
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Figure 8 shows the radars corresponding to August 2004–
2005 and August 2005–2006. The dependency between Global-
ManagerImpl and DownloadManagerImpl and the ui package
is mainly due to the class MyTorrentsView, a God class (defined
by Riel as a class that tends to centralize the intelligence of
the system [24]).

Such information is useful for (i) an analyst, because it points
to design shortcomings and for (ii) a developer, because when
modifying GlobalManagerImpl or DownloadManagerImpl in
core3 she knows that MyTorrentsView is likely to be modified
as well.

(a) August 2004–August 2005 (b) August 2005–August 2006

Fig. 8. Evolution Radars for GlobalManagerImpl and DownloadManagerImpl.

Understanding the roles of the modules: With this first series
of radars we obtained an overall idea of the dependencies and
evolution of the packages. We still do not have any idea of
why there are two core packages and which roles they have.
To obtain this information we select the files with the most
intense activities (big and red) and we display their commit
comments, as shown on the left of Figure 2. We find out that
core3 has more to do with managing files, download, upload
and priorities while aelitis.core is more related to the network
layer (distributed hash tables, TCP and UDP protocols). In
all the radars from Figure 7 the org.bouncycastle module has
very low activity and coupling. A closer inspection reveals that
the mentioned package was imported in the system at a given
moment and never modified later. It implements an external
cryptographic library (available at http://www.bouncycastle.org)
used by the Azureus developers.

Analyzing the core package: As a second step, we want to
understand the dependencies of aelitis.core with the rest of the
system and we want to detect which are the files responsible
for these dependencies. We create a radar for every six months
of the system’s history. We start the study from the most recent
one, since we are interested in problems in the current version
of the system. Using a relatively short time interval (six months)
ensures that the coupling is due to recent changes and is not
biased by commits far in the past.

Figure 9 shows the radar of aelitis.core from February
to August 2006. Two packages are strongly coulped with
aelitis.core: core3 and com.aelitis.azureus.plugins. Comparing
the radar with the static dependencies of aelitis.core extracted
from the source code, we see that:
• Looking at the static dependency data (e.g., invocation and

inheritance) we observe that the module with the strongest

Fig. 9. Evolution Radar for Azureus’s aelitis.core package and details of the
coupling between this package and the class DHTPlugin, Feb–Aug 2006.

static dependency is core3. In fact, the strength of the
dependency between packages, measured by the total
number of dependencies between the contained classes,
is one order of magnitude stronger for core3 than for any
other module. However, when we look at the radar we
are surprised to see that the module with the strongest
coupling is a different one: com.aelitis.azureus.plugins.

• Most of the static dependency with core3 comes from the
sub-package util, responsible for 45 % of the dependencies
between the two packages. However, the radar shows that
util is less coupled than its sibling sub-packages peer and
download. This holds also in the past: in the radars for
previous time intervals util is always less coupled than
download and peer.

These observations demonstrate that logical coupling is an
implicit dependency. It complements static analysis, but it can
only be inferred from the evolution of the system.

The two classes with the strongest dependencies are DHT-
Plugin in the plugin package and PEPeerControlImpl in the
core3 package. Using the tracking feature we found out that,
in the previous year, these two classes were outliers, i.e.,
had a coupling much stronger than the other classes in the
package. To see the details of the dependency for DHTPlugin
we spawn a new radar having the class as the center. The
situation is different from the one shown in Figure 8 for
DownloadManagerImpl and GlobalManagerImpl. For these
two classes the coupling was mainly due to one single class
(MyTorrentsView), while here it is scattered among many files.
This means that the file DHTPlugin.java was often changed
together with many files in the aelitis.core package. This is a

http://www.bouncycastle.org
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(a) August 2003–February 2004 (b) February–August 2004 (c) February–August 2006

Fig. 10. Evolution Radars for the core3 package of Azureus. They help to detect the transition from the old MainWindow.java to the new one.

symptom of a misplaced file. Looking at the source code of
the ten most coupled files, we discovered that all of them use
DHTPlugin or its subclasses, meaning that core classes use
plugin classes. Moreover, the class with the strongest coupling
is a test case using DHTPlugin. Therefore, a modification in
the plugin package can break a test in the core package. This
scenario repeats itself for the most coupled file in core3: the
file PEPeerControlImpl.java is coupled with several files in
aelitis.core. For these reasons, DHTPlugin, PEPeerControlImpl,
and their subclasses should be moved to aelitis.core.

Detecting renaming: The Evolution Radar can keep track of
files, even if they are renamed or their code is moved to another
place. This is possible because files are positioned according
not only to their names, but also to their relationship with
the center package. When a file fold is renamed to fnew, the
relationship fold used to have with the package in the center,
will hold for fnew (note that CVS records it as a removal of
fold and an addition of fnew). Looking at similar couplings
and removed files, we can detect such situations.

Figure 10 shows Evolution Radars having the core3 package
in the center. From February to August 2006 core3 had
dependencies with the plugins packages and aelitis.core, and
a strong coupling with the ui. In the ui there are three
outliers: MyTorrentsView.java (already detected and discussed),
TableView.java (the superclass of MyTorrentView, a God class
as well) and MainWindow.java. Figure 10(a) shows the radar
corresponding to August 2003–February 2004. In the ui there
are again three outliers: MyTorrentsView.java, ConfigView.java
and MainWindow.java. This MainWindow.java is a different file
from the one in Figure 10(c), and in fact it is not highlighted
by the tracking feature: the two MainWindow classes belong to
different sub-packages. However, since they have the same type
of coupling with core3, they can represent the same logical
entity. Figure 10(b) shows the transition between the old and
the new MainWindow.java. They both have a strong coupling
with core3 and the old MainWindow.java is removed, since it
has a cyan border.

B. ArgoUML

We inferred ArgoUML’s system decomposition into modules
from its web site. We omitted the modules for which the
documentation says “They are all insignificant enough not
to be mentioned when listing dependencies” and focus our
analysis on the three largest modules: Model, Explorer and
Diagram. From the documentation we know that Model is the
central module that all the others rely and depend on. Explorer
and Diagram do not depend on each other.

We use the same analysis approach as for Azureus: we create
a radar for every six months of the system’s history. As metric
we use the logical coupling for both the position and the color
of the figures. The size is proportional to the total number of
lines modified in the considered time interval.

The Explorer module: Figure 11(b) shows the Evolution
Radar for the last six months of history of the Explorer module.
This module is much more coupled with Diagram than with
Model, although the documentation states that the dependency
is with Model and not with Diagram. The most coupled files
in Diagram are FigActionState.java, FigAssociationEnd.java,
FigAssociation.java. Using the tracking feature, we discover
that the coupling with these files is recent: in the radar for
the previous six months (Figure 11(a)) they are not close to
the center. This implies that the dependency is due to recent
changes only. To inspect the logical coupling details, we spawn
an auxiliary radar: we group the three files and generate another
radar centered on them, shown in Figure 12. We now see that
the dependency is mainly due to ExplorerTree.java. The high-
level dependency between two modules is thus reduced to a
dependency between four files. These four files represent a
problem in the system, because modifying one of them may
break the others, and since they belong to different modules,
it is easy to forget this hidden dependency.

The visualization in Figure 11(b) shows that the file
GeneratorJava.java is an outlier, since its coupling is much
stronger with respect to all the other files in the same
module (CodeGeneration). By spawning a group composed of
GeneratorJava.java we obtain a visualization very similar to
Figure 12, in which the main responsible for the dependency
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(a) January–June 2005

(b) July–December 2005

Fig. 11. Evolution Radars applied to the Explorer module of ArgoUML for
the year 2005.

is again ExplorerTree.java. Reading the code reveals that
the ExplorerTree class is responsible for managing mouse
listeners and generating names for figures. This explains
the dependencies with FigActionState, FigAssociationEnd and
FigAssociation in the Diagram module, but does not explain
the dependency with GeneratorJava. The past (see Figure 11(a)
and Figure 13(a)) reveals that GeneratorJava.java is an outlier
since January 2003. This long-lasting dependency indicates
design problems. A further inspection is required for the

Fig. 12. Details of the logical coupling between ArgoUML’s Explorer module
and the classes FigActionState, FigAssociationEnd and FigAssociation.

ExplorerTree.java file in the Explorer module, since it is the
main responsible for the coupling with the modules Diagram
and CodeGeneration.

Detecting a move operation: The radars in Figure 11(b)
and Figure 11(a) show that during 2005 the file NSUML-
ModelFacade.java had the strongest coupling, in the Model
module, with Explorer (module in the center). Going six months
back in time, from June to December 2004 (see Figure 13(a)),
we see that the coupling with NSUMLModelFacade.java was
weak, while there was a strong dependency with ModelFa-
cade.java. This file was also heavily modified during that time
interval, given its dimension with respect to the other figures
(the area is proportional to the total number of lines modified).
ModelFacade.java was also strongly coupled with the Diagram
module (see Figure 13(b)). By looking at its source code we find
that it was a “God class” [24] with thousands of lines of codes,
444 public and 9 private methods, all static. The ModelFacade
class is not present in the other radars (Figure 11(b) and
Figure 11(a)) because it was removed from the system the
30th of January 2005. By reading the source code of the most
coupled file in these two radars, i.e., NSUMLModelFacade.java,
we discover that it is also a very large class with 317 public
methods. Moreover, we find out that 292 of these methods have
the same signature of methods in the ModelFacade class. The
only difference is that NSUMLModelFacade’s methods are not
static. Also, it contains only two attributes, while ModelFacade
has 114 attributes. 75% of the code is duplicated. ModelFacade
represented a problem in the system and thus was removed.
Since many methods were copied to NSUMLModelFacade, the
problem has just been relocated!

This example shows how historical information reveals
problems, that are difficult to detect looking at one version
of the system only. Knowing the evolution of ModelFacade
helped us to understand the role of NSUMLModelFacade in
the current version of the system.
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Identifying system phases: As a final scenario, we analyze
the evolution of the logical couplings of the Explorer module
with all the others.

(a) Explorer module

(b) Diagram module

Fig. 13. Evolution Radars of the Explorer and Diagram modules of ArgoUML
from June to December 2004.

From Figure 13(a), we see that from June to December 2004
the couplings were very strong. Then, from January 2005 to
June 2005 (Figure 11(a)), they heavily decreased. This suggests
that in the previous period the module was restructured and
its quality was improved, since in the next time interval the

coupling with the other modules was weak. The effort spent
for the restructuring can be seen from the size of the figures,
representing the total number of changed lines. In the radar
relative to June–December 2004 (Figure 13(a)) the figures
are bigger than in the radar relative to January–June 2005
(Figure 11(a)). At the end of the restructuring phase, the class
ModelFacade was removed. From June to December 2005 (see
Figure 11(b)) the coupling increased again. This can be related
to a new restructuring phase.

C. Discussion

We applied the Evolution Radar on two open source software
systems, showing that it helps in answering questions about the
evolution of a system that are useful to developers, analysts,
and project managers. The Evolution Radar offers a visual way
to assess the files that might change in the future based on the
prediction offered by logical coupling. Due to the fine-grained
level of the visualization, files can be inspected individually.
For example in Azureus we discovered that a change in the
class GlobalManagerImpl or DownloadManagerImpl in the
core3 package, is likely to require a change in the class
MyTorrentsView in the ui package.

The Evolution Radar can be used to (i) understand the
overall structure of the system in terms of module dependencies,
(ii) examine the structure of these dependencies at the file
granularity level, and (iii) get an insight of the impact of
changes on a module over other modules. This knowledge will
help them in the following activities:
• Locating design issues such as God classes or files

with a strong and long-lived dependency with a mod-
ule. Examples of design issues detected in ArgoUML
include the classes GeneratorJava in CodeGeneration and
ExplorerTree in Explorer. GeneratorJava has a persistent
coupling with the Explorer module, while ExplorerTree
is coupled with both the CodeGeneration and Diagram
modules. In Azureus we detected God classes (MyTor-
rentsView and its superclass TableView) having strong
dependencies with files belonging to different packages.

• Deciding whether certain files should be moved to other
modules. In Azureus’s case we discussed why the class
DHTPlugin should be moved to the aelitis.core package.

• Understanding the evolution of the logical coupling among
modules. This activity can reveal phases in the history of
the system, such as restructuring phases. In ArgoUML
different phases were identified, with respect to the module
Explorer, where two of them are likely to be restructuring
phases. The evolution of the dependencies, together with
the information about the removed files, is also helpful to
see when modules were introduced or removed from the
system. We used this information to get an overall idea
of Azureus’ structure in terms of packages.

• Detecting when artifacts have been renamed or moved.
For example, discovered that in Azureus the class Main-
Window was moved between packages. In ArgoUML we
found out that most of the code of the ModelFacade class
was moved to NSUMLModelFacade.
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Fig. 14. The Evolution Radar integrated in the System Browser IDE. It shows the logical coupling between the CodeCityGlyphs module and the rest of
CodeCity’s modules.

V. SUPPORTING MAINTENANCE WITH THE RADAR

As a second application of the Evolution Radar, we integrated
it in an IDE, to support maintenance activities. In this case,
the radar visualization is part of the code browser, to allow a
developer to directly go from the visualization to the code and
back. The IDE we enriched with the Evolution Radar is the
System Browser [25] of the Cincom Smalltalk Visualworks
distribution (http://www.cincomsmalltalk.com/).

The first thing we needed to do in order to integrate the
radar with the Smalltalk IDE was to adapt our model and
tool, since Cincom Smalltalk uses its own versioning system
called Store [30]. In Cincom Smalltalk the code is organized
in bundles: a bundle can contain packages and bundles, and
packages contain classes. As opposed to CVS and SubVersion,
Store is not file-based but “entity based”, i.e., every entity
(from bundle to method) is versioned. To render the Evolution
Radar, we consider the system decomposition in packages,
“flattening” the bundles hierarchy. We consider packages instead
of bundles because the latter cannot contain classes, but only
packages. To compute the logical coupling between two classes
versioned with Store, we consider all the versions of the classes
corresponding to the considered time interval, and we count
how many times they changed together, i.e., how often they
were committed in the same transaction. This number of co-
changes is the logical coupling between the two classes in the
considered time interval.

A. Integration in the IDE

Figure 14 depicts the enriched System Browser IDE. In
the top part there are four panels used to browse the code.
They present respectively packages, classes, protocols 3 and
methods. In the bottom part there are multiple tabbed views
that present details or allow the editing of the element that is
selected on top. They include a code editor, a code analysis
tool, a comment editor, etc. We extended the IDE with a new
tabbed view for the Evolution Radar.

The Evolution Radar view is composed of three panels (see
Figure 14): The list of available packages in the current project,
the main radar visualization and the second visualization in
which a second radar can be spawned from a selection in the
main one. The Evolution Radar panels include the information
fields that show information about the entity under the mouse
pointer and the time slider which supports the visual navigation
through time.

The integrated version of the Evolution Radar adds the
following interaction modes:

• When clicking on a figure, the browser in the top part
displays the corresponding class or package, allowing the
developer to immediately see and, in case, modify the
source code. Moreover, through the context menu (see

3Protocols are a Smalltalk-specific way of grouping methods in a class.
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Figure 14), it is possible to directly move, modify and
apply refactorings on the corresponding class.

• When selecting a figure or a group of figures, it is possible
to: (1) spawn a radar in the secondary view, (2) spawn
a second window with a code browser, (3) track the
entity over time, and (4) read the commit comments
corresponding to all the commits or just to the ones
involved in the coupling.

To assess the usefulness of the visualization against the
same coupling information presented in a list, we added
another tabbed view to the IDE, called “Coupling List View”.
In this view instead of the main and secondary evolution
radar visualizations, there is a list of the classes coupled with
the package selected in the package list (bottom left part of
Figure 14), sorted according to the logical coupling value.

This implementation of the Evolution Radar is designed
to support Smalltalk developers in three types of activity:
System restructuring, system re-documentation and change
impact estimation.

Restructuring: Having the Evolution Radar integrated into
the IDE makes it easy to inspect the classes that are coupled
and if they are at the wrong place to restructure the system, i.e.,
move the classes to the appropriate package. This operation can
be performed directly from the context menu in the Evolution
Radar visualization (see Figure 14).

Re-documentation: The developer uses the radar to analyze
the coupling of a package with the rest of the system, and
by looking at the commits comment and the source code he
can discover the reasons for the coupling. Then, the developer
can annotate this information directly on the involved classes
and/or packages by writing a comment into the “Comments”
tab (see in the list of tabs in Figure 14). These comments are
part of the system code and get versioned as every other entity.

Change impact estimation: When two classes are logically
coupled, they are likely to change together in the future [27].
This information can be useful to a developer who is about to
make a change to a class in the system because it can support
him in estimating the impact of the change.

The developer can select the class (or classes) he needs to
modify and see which are the classes that are coupled with
it. If there is no coupling (no figures close to the center),
the developer can go on with the modification. If the class is
coupled with few other classes, he can get more insight by
looking at their source code and reading the comments written
in the re-documentation phase. If the class is coupled with
many other classes in the system, the developer has to find out
whether these couplings are due to large commits or whether
the class is affected by design issues. To do so, he can exploit
the information gained in the re-documentation phase or can
look at the commit comments accessible directly in the radar.

The developer can access this functionality using the radio
button in the bottom left corner of the tool (see Figure 14).
Whenever he selects a package, a class or multiple classes
in the code browser (in the upper part), an Evolution Radar
having the selection in the center is generated and rendered
on the fly.

B. Experimental Evaluation

To experiment the IDE version of the Evolution Radar, we
asked a developer to use it, and report on his experience. The
developer is Richard Wettel, a PhD student at our University.
The system to which he applied the Evolution Radar is called
CodeCity4, a software analysis tool that visualizes software
systems as interactive, navigable 3D cities. At the time of
the experiment, CodeCity was composed of 478 classes and
had about 15,000 lines of code. It has been developed since
April 2006 mostly by a single developer, and occasionally
by two other developers, in the context of pair-programming
sessions. The following, in italic, is a slightly adapted extract
of his experience report, organized according to the performed
maintenance activities.

Re-documentation phase: We started by analyzing logically
coupled modules (i.e., packages in Smalltalk), looking for
coupling to the core packages, in our case the ones dealing
with the glyphs, layouts, and mappings. Figure 14 shows the
coupling to the glyphs module, represented by the circle in
the middle of the left visualization panel, which seems to be
distributed in five levels (i.e., five concentrical layers besides the
external one which shows the uncoupled classes). Whenever
we needed to see which are the entities inside the module
in the middle logically coupled with a particular class, we
spawned a radar from the selection (the right visualization
panel in Figure 14) and observed these in isolation. Selecting
a class circle triggers its selection also in the code editor.
Integrating the information about logical coupling with the
code and with versioning logs allowed us to reason about the
system’s evolution.

Overall, we were able to determine the cause of the
unexpected logical couplings with the help of the context menu
option which allows looking at the log entries of the system
versions which produced the coupling. The causes were either
larger commits incorporating several unrelated changes to the
system or in one case the system was massively restructured.
While we did not find any coupling that needed refactoring,
all of them were accurately detected. We finally added all
information we found to the comments of each analyzed class.

Change impact estimation phase: The second task we
performed was assessing the impact of change of the Abstract-
Layout class (the root of the layout hierarchy), since we needed
to reengineer the way the layouts communicate with the glyphs
and mappings. To do so, we enabled the “Change Impact”
functionality through the radio button, and then selected the
AbstractLayout class in the code browser, which automatically
generated the corresponding radars. In Figure 15, we see
the evolution of the logical coupling to the AbstractLayout
class, which provides an accurate representation of the way
the entire system has evolved. In a first time period (top left)
classes are being changed (i.e., large circles) in many packages
being developed in parallel and logically coupled among each
other. The following period is very unfocused, but with smaller
changes (i.e., small fixes). The third period is one of coupling
with classes from almost all the packages, while the last period

4See http://www.inf.unisi.ch/phd/wettel/codecity.html
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Fig. 15. The logical coupling evolution of the class AbstractGlyph.

shows coupling only to few new classes all defined in the
CodeCityScripting package. Reading the comments written in
the re-documentation phase, we knew that these classes of
CodeCityScripting (which implement a basic scripting language
for 3D visualizations) are coupled with many core classes
(including AbstractLayout) and the coupling is justified: The
core classes changed together with the scripting classes in
order to make the system compatible with the new scripting
language. Since the coupling was justified, we knew that we
could proceed with reengineering the layouts, but being careful
to comply with the new scripting language, not to break the
dependency with the CodeCityScripting package.

Comments: We were asked to try the list view and compare it
with the radar view. In our experience, the list view was useful
to easily spot the most coupled class with a given package.
However, with the list we had difficulties in understanding the
coupling at the system level and to see how it was distributed
among packages and classes. We found it useful to be able to
navigate in time using the radar, while keeping track of certain
classes. With the list view, we did not succeed in navigating
in time, because it was difficult to keep track and compare the
values of the logical coupling for a class over different time
intervals.

C. Lessons Learned

Although we do not consider this experiment a full-fledged
user study, it points to the fact that the Evolution Radar can
be successfully used to support maintenance activities. The
visualization itself, without the interactive features (moving
through time, spawning, tracking, inspecting), is not sufficient
to perform the tasks, as the developer continuously used them
during the maintenance activities. In particular, the possibility
to read the commit comments seems crucial.

Overall, while the first implementation of the radar as a
stand alone tool is helpful to perform retrospective analysis,
only through the integration in a development environment the
radar exploits its full potential, as an IDE enhancement.

VI. RELATED WORK

A. Logical Coupling Visualization

Ball et al. were the first to visualize information about logical
coupling. In [1] they proposed a graph visualization technique
where nodes represent classes and two classes are connected
with an edge if there is a modification report (a commit) in
which both the classes changed. The nodes are positioned
according to the number of times the corresponding classes
changed together, in such a way that coupled classes are close
to each other. The color and shape of a node represents the
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module the class belongs to. The visualization is static and the
approach does not support moving through time and spawning.

The most similar approach to the Evolution Radar is the
Evolution Storyboards [3], by Beyer and Hassan. A storyboard
is a sequence of animated panels that shows the files composing
a CVS repository, with an energy based layout, where the
distance of two files is computed according to their logical
coupling, similarly to the approach of Ball et al. [1]. The
visualization allows the user to easily spot clusters of related
files and to compare this cluster with the system decomposition
in module, by rendering the module information on the color
of the files (files belonging to the same module are rendered
with the same color). Each panel is computed according to a
particular time period and the animation in the panel shows
how the files move according to how their logical coupling
changed over the considered time. The visualization is scalable
and the authors were able to apply it on large software systems.
A benefit of the Storyboards, with respect to the Evolution
Radar, is that the Storyboards shows the coupling of all the
files at the same time, while in the Radar the files belonging to
the module in focus (in the center) are not rendered. Therefore,
to get the “big picture” of the evolution of the coupling in
the system, the Evolution Storyboard is better then the Radar.
On the other hand, having all the logical coupling information
in the same view, makes it difficult to see the details about
individual files, because they are surrounded by hundreds of
other files and sometimes hidden behind, when they overlap.
Analyzing the details of certain files or modules is also difficult
because spawning is not provided. With the Storyboards it is
possible to move through time, but it is not possible to track
files over different time periods, since there is no tracking
facility. Thus, the Evolution Radar is better for analyzing the
details about the logical coupling and for analyzing them over
time. Another difference is that the Storyboard does not show
the dependencies between modules, but only among files, while
the radar provides both at the same time.

Ratzinger et al. in [23] proposed a visualization technique
to render the logical coupling between java classes, visualizing
also module (package) information. Classes are rendered as
small ellipse and grouped in larger ellipses representing the
packages they belong to. The visualization shows the logical
coupling among classes through edges connecting the ellipses
whereas the thickness of the edges describes the “strength”
of the visualized couplings. Similarly to the Evolution Radar,
Ratzinger et al. visualization shows file level and module level
coupling information at the same time, since the coupling
among modules can be inferred from the ones among the
included classes. However, the technique does not scale on
large system, since visualizing coupling as edges suffers from
overplotting. Moreover, the visualization is static, i.e., it does
not allow the user to navigate through time.

Another approach similar to ours has been presented by
Pinzger et al. [22] with Kiviat Diagrams. They do not visualize
file-level information but use surfaces to depict complete
releases, while in our visualization we depict all evolving
files in one diagram. Another difference is that they represent
the coupling as edges between the visible modules. Their
work is not the first to represent the coupling as graphs. In

fact, the nodes and edges representation was used since the
first publications related to logical coupling [13], [14]. The
drawback of this representation is that it either represents
only modules, thus being very coarse-grained, or it represents
modules and files, but then incurs scalability and overplotting
problems. Our approach scales well to large systems and also
can present detailed, file-level information.

B. Software Evolution Visualization

We already introduced related work on logical coupling in
Section II and presented the most similar approaches to ours
in the previous Section. Here we complete the related work
by presenting approaches for software evolution visualization.

One of the first approaches to visualize historical information
in software was proposed by Ball and Eick [2]. They used a
very simple line-based visualization where each line in a file
was color-coded to present information about the frequency
of changes on it. However, no explicit coupling information
could be inferred by using their tool.

Jazayeri et al. [17] visualize software release histories using
colors and 3D. They do no visualize any coupling relationships
between modules. A visual data-mining tool to represent both
binary association rules and n-ary association rules is EPOsee
[6]. The tool adapts standard visualization techniques for
association rules to also display hierarchical information.

Chuah and Eick present a way to visualize project infor-
mation through glyphs called infobugs [8], graphical objects
representing data through visual parameters. Their infobug
glyph’s parts represent data about software. The main difference
between their and our work is the type of data that is visualized:
they use glyphs to view project management data, while our
work focuses on describing how a module is logically coupled
to the others. Lanza’s Evolution Matrix [18] visualizes the
system’s history in a matrix in which each row is the history
of a class, and each column is a version of the system. A cell
in the Evolution Matrix represents a version of a class and the
dimensions of the cell are given by evolutionary measurements
computed on subsequent versions. The evolution matrix does
not represent any relationship between the evolving entities.

Taylor and Munro [31] used a technique called revision
towers to map various properties, such as size of a file, or
the developers who work on it, and their evolution in time.
Their technique works at file level but not at module level.
Van Rysselberghe and Demeyer used a simple visualization
based on information in version control systems to provide
an overview of the evolution of a system [34]. Wu et al.
described an Evolution Spectrograph [36] that visualizes
historical sequences of software releases. Girba et al. used the
notion of history to analyze how changes appear in software
systems [15] and succeeded in visualizing the histories of
evolving class hierarchies [16]. The difference between the
mentioned approaches and ours is that the range of analysis is
wider for our tool, as we can integrate both module-level and
file-level information in our analysis.

Voinea and Telea [35] proposed CVSgrab, a tool to support
querying, analysis and visualization of CVS based software
repositories. Among others, the tool supports a visualization of
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files’ evolution, where time is mapped on the horizontal axes
and the evolution of each file is rendered as a line from left to
right. Several coloring scheme can be used in the visualization
to render author information, file size, file type and file contents.
In the visualization lines can be sorted and clustered according
to the logical coupling of the corresponding files. The authors
proved that such clustering can reveal pattern in the evolution
of the system. The CVSgrab tool is quite different from our
tool, as the former is a general visualization tool for CVS
repositories where logical coupling can be used for sorting files
and revealing patterns, whereas the Evolution Radar address
specifically the problem of understanding logical coupling at
the file and module levels and track them over time. Telea et
al. in [32] introduced a visualization of source code evolution
called Code Flows. The technique renders several versions
of a given file, showing the evolution of the source code. It
highlights unchanged code as well as important events such as
code drift, splits, merges, insertions and deletions. Telea et al.
approach does not provide logical coupling information.

VII. CONCLUSION

In this paper we have presented the Evolution Radar, a novel
approach to integrate and visualize module-level and file-level
logical coupling information. The Evolution Radar is useful to
answer questions about the evolution of the system, the impact
of changes at different levels of abstraction and the need for
system restructuring. The main benefits of the technique are:

1) Integration. The Evolution Radar shows logical coupling
information at different levels of abstraction, i.e., files
and modules, in a single visualization. This makes it
possible to understand the dependency between modules
and, using the spawning feature of our tool, to reduce it
to a small set of strongly coupled files responsible for
the dependency.

2) Control of time. Considering the history of logical cou-
pling is helpful to uncover hidden dependencies between
software artifacts. However, summarizing the information
about the entire history in a single visualization may lead
to imprecise results. Two artifacts that were strongly
coupled in the past but not recently may appear as
coupled. The Evolution Radar solves this problem by
dividing the system lifetime in settable time intervals and
by rendering one radar per each interval. A slider is used
to “move through time”. A tracking feature is provided
to keep track of the same files in different visualizations.

We have illustrated our approach on two large and long-
lived open source software systems: ArgoUML and Azureus.
We have provided example scenarios of how to use the
Evolution Radar to understand module dependencies and impact
of changes at both file and module levels. We have found
design issues such as God classes, misplaced files and module
dependencies not mentioned in the documentation. We have
also reduced these dependencies to coupling between small sets
of files. These files should be considered for reengineering in
order to decrease the coupling at the module level. The control
of time has allowed us to understand the overall evolution of
the systems (when modules were introduced/removed) and to
identify phases in their histories.

We have shown how the tight integration of the Evolution
Radar with an Integrated Development Environment can support
maintenance activities like restructuring, re-documentation and
change impact estimation. We have described how this support
works by presenting an experience report of a real developer
using the Evolution Radar inside an IDE, the Smalltalk System
Browser.

Our future work is concerned with integrating other types
of evolutionary information, such as bug-related information.
The long-term goal is to find the missing link between logical
coupling and the negative consequences it has on a system.
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