
Distributed and Collaborative Software Evolution

Analysis with Churrasco

Marco D’Ambrosa, Michele Lanzaa

aREVEAL @ Faculty of Informatics - University of Lugano, Switzerland

Abstract

Analyzing the evolution of large and long-lived software systems is a com-
plex problem that requires extensive tool support due to the amount and
complexity of the data that needs to be processed. In this paper we present
Churrasco, a tool to support collaborative software evolution analysis through
a web interface. After describing the tool and its architecture, we provide a
usage scenario of Churrasco on a large open source software system and we
present two collaboration experiments performed with respectively 8 and 4
participants.

Key words: Software Evolution Analysis, Collaboration, Visualization

1. Introduction

Software evolution analysis is concerned with the causes and the effects
of software change. There is a large number of approaches, which all use
different types of information about the history and the (evolving) structure
of a system. The overall goal is on the one hand to perform retrospective
analysis, useful for a number of maintenance activities, and on the other hand
to predict the future evolution of a system. Such analyses are intrinsically
complex, because modeling the evolution of complex systems implies

1. the retrieval of data from software repositories, managed by software
configuration management systems such as CVS or SVN,

2. the parsing of the obtained raw data to extract relevant facts and to
minimize the noise that such large data sets exhibit, and

Email addresses: marco.dambros@lu.unisi.ch (Marco D’Ambros),
michele.lanza@unisi.ch (Michele Lanza)

Preprint submitted to Experimental Software Toolkits March 2, 2010

3. the population of models that are then the basis for any analysis. Tools
supporting software evolution analysis should hide these tasks from the
users, to let them focus on the actual analysis.

Moreover, such tools should provide means to break down information
complexity, typical for large and long-lived software systems. We argue that
any software evolution analysis tool should possess the following character-
istics:

Flexible Meta-model. Several, and largely similar, approaches have been
proposed to create and populate a model of an evolving software sys-
tem, considering a variety of information sources, such as the histories
of software artifacts (as recorded by a versioning system), the problem
reports stored by systems such as Bugzilla [1], e-mail archives, user doc-
umentation [2], etc. Even if such models are appropriate for modeling
the evolution, they are “hard-coded” in the sense that their creators
took deliberate design choices in accordance with their research goals.
We postulate that software evolution tools should be flexible with re-
spect to the underlying meta-model: If the meta-model is changed or
extended because some new type of information is at hand or because
some new analysis is required, the tool should adapt itself to the new
meta-model.

Accessibility. Researchers have developed a plethora of evolution anal-
ysis tools and environments. One commonality among many proto-
types is their limited usability, i.e., often only the developers them-
selves know how to use them, thus hindering the development and/or
cross-fertilization of novel analysis techniques. There are some notable
exceptions, such as Moose [4], which have been used by a large number
of researchers over the years. Researchers also investigated ways to
exchange information about software systems [5, 6], approaches which
however are seldom followed up because of lack of time or manpower.
We argue that software evolution tools should be easily accessible: They
should be usable from any machine running any operating system, with-
out any strings attached.

Incremental Storage of Results. Results of analyses and findings on
software systems produced by tools are often written into files and/or
manually crafted reports, and are therefore of limited use. We claim

2

that analysis results should be incrementally and consistently stored
back into the analyzed models: This allows researchers to develop novel
analyses that exploit from the results of a previous analysis (cross-
fertilization of ideas/results). It can also serve as a basis for a bench-
mark for analyses targeting the same problem, and ultimately would
also allow one to to combine techniques targeting different problems.

Support for Collaboration. The need of collaboration in software devel-
opment is getting more and more attention. Tools which support col-
laboration, such as Jazz for Eclipse [7], were only recently introduced,
but hint at a larger current trend. Just as the software development
teams are geographically distributed, consultants and analysts are too.
Specialists in different domains of expertise should be allowed to col-
laborate without the need of being phisically present together. Because
of these reasons, we argue that software evolution analysis should be
a collaborative activity. As a consequence, software evolution analysis
tools should support collaboration, by allowing different users, with dif-
ferent expertises, from different locations, to collaboratively analyze a
system.

We present Churrasco [8], a tool for collaborative software analysis, which
is available at http://churrasco.inf.unisi.ch. Churrasco has the follow-
ing characteristics:

• It hides all data retrieval and processing tasks from the users, to let
them focus on the actual analysis, and provides an easily accessible
interface over a web browser to model the data sources to be analyzed.

• It copes with modeling and populating problems by providing a flexi-
ble and extensible object-relational persistency mechanism. Any data
meta-model can be dynamically changed and extended, and all the data
is stored in a central database.

• It provides a set of collaborative visual analyses and supports collabo-
rative analysis by allowing users to annotate the analyzed data.

• It stores the findings into a central database to create an incrementally
enriched body of knowledge about a system, which can be exploited by
subsequent users.

3

Structure of the paper. In Section 2 we describe the Churrasco framework,
its architecture, and its main components. We then provide an example of a
collaborative session and describe two collaboration experiments performed
with Churrasco (Section 3). We discuss our approach in Section 4 and exam-
ine tool building issues in Section 5. We survey related work in Section 6, and
conclude in Section 7 with a summary of our contributions and directions of
future work.

2. Churrasco

Extensible Evolutionary meta-model

Target System

SVN
Repository

Bugzilla
RepositorySource Code

MOOSE
Reengineering
Environment

Bugzilla
Module

SVN Module

Meta-base
Database

Object relational
mapping module

(GLORP)
Visualization

Module

Bugzilla bugs &
activities

SVN

Annotation Module

Annotation
meta-model

EMOF description

Versioning system
meta-model

EMOF description EMOF description

EMOF description

Defect meta-model

FAMIX
meta-model

EMOF description

...

Churrasco Components External Components

1

2

3

5
6

4
System

Complexity
Evolution Radar

Correlation View

Timeline View

Web Portal
VisualizerImporter

Figure 1: The architecture of Churrasco.

Figure 1 depicts Churrasco’s architecture, consisting of:

1. The Extensible Evolutionary meta-model describes the internal repre-
sentation of software systems’ evolution, which can be extended using
the facilities provided by the Meta-base module.

2. The Meta-base supports flexible and dynamic object-relational persis-
tency. It uses the external component GLORP [9] (Generic Lightweight
Object-Relational Persistence), providing object-relational persistency,
to read from/write to the database. The meta-base also uses the Moose
reengineering environment [4] to create a representation of the source
code (C++, Java or Smalltalk) based on the FAMIX language inde-
pendent meta-model [10].

3. The Bugzilla and SVN modules retrieve and process the data from SVN
and Bugzilla repositories.

4. The Web portal represents the front-end of the framework accessible
through a web browser.

4

5. The Visualization module supports software evolution analysis by cre-
ating and exporting interactive Scalable Vector Graphics (SVG) visu-
alizations.

6. The Annotation module supports collaborative analysis by enriching
any entity in the system with annotations. It communicates with the
web visualizations to depict the annotations within the visualizations.

2.1. The Meta-base

Churrasco’s Meta-base [11] provides flexibility and persistency to any
meta-model, in particular to our evolution meta-model. It takes as input a
meta-model described in EMOF and outputs a descriptor, which defines the
mapping between the object instances of the meta-model, i.e., the model, and
tables in the database. EMOF (Essential Meta Object Facilities) is a subset
of MOF1, a meta-meta-model used to describe meta-models. The Meta-base
ensures persistency with the object-relational module GLORP. By generat-
ing descriptors of the mapping between the database and the meta-model,
the Meta-base can be adapted dynamically and automatically to any meta-
model. This allows Churrasco users to modify and extend dynamically any
meta-model. For more details, we refer the interested reader to [11].

2.2. The SVN and Bugzilla modules

These modules retrieve and process data from, respectively, Subversion
and Bugzilla repositories. They take as input the URL of the repositories and
then populate the models using the Meta-base. They are initially launched
from the web importer (discussed later) to create the models, and then they
automatically update all the models in the database every night, with the
new information (new commits or bug reports).

The SVN module populates the versioning system model, by checking
out (or updating) the project with the given repository, creating and parsing
SVN log files. The checked out system is then used to create the FAMIX
model of the system with the external component Moose.

The Bugzilla module retrieves and parses all the bug reports (in XML for-
mat) from the given repository. Subsequently it populates the corresponding
part of the defect model. It then retrieves all bug activities from the given

1MOF and EMOF are standards defined by the OMG (Object Management Group)
for Model Driven Engineering. For more details consult the specications at: http://www.
omg.org/docs/html/06-01-01/Output/06-01-01.htm

5

repository. Since Bugzilla does not provide this information in XML format,
Churrasco parses HTML pages and populates the corresponding part of the
model. Finally, it links software artifacts with bug reports. To do this it com-
bines the technique proposed by Fischer et al. [1] (matching bug report IDs
and keywords in the commit comments) with a timestamp-based approach.

2.3. The Web Portal
The web portal is the front-end of Churrasco, developed using the Seaside

framework [12]. It allows users both to create the models, and to analyze
them by means of different web-based visualizations. To create new models
and access the visualizations the user has to log in the web portal.

(a) The importer page. (b) The projects page.

Figure 2: The Churrasco Web Portal.

Figure 2(a) shows the importer web page of Churrasco, ready to import
the ArgoUML software project. All that is needed to create the model is the
URL of the SVN repository and the URLs of the bugzilla repository (one
for bug reports, one for bug activities). Since, depending on the size of the
software system to be imported, this can take a long time, the user can also
indicate an e-mail address to be notified when the importing is finished.

Figure 2(b) shows the projects web page of Churrasco, which contains a
list of projects available in the database and, for a selected project, informa-
tion such as the number of files and commits, the time period (time between

6

the first and last commit), the number of bugs, a collection of FAMIX mod-
els corresponding to different versions of the system etc. Finally, the page
also provides a set of actions to the user, i.e., links to the web visualizations
provided by Churrasco.

2.4. The Visualization Module

This module offers the following set of interactive visualizations that sup-
port software evolution analysis:

1. The Evolution Radar [13, 14] supports software evolution analysis by
depicting change coupling information. Change coupling is the implicit
dependency between two or more software artifacts that have been ob-
served to frequently change together during the evolution of a system.
There are several ways of computing the change coupling measure,
where the simplest one consists in counting the number of transactions
in which the considered software artifacts were changed together. Dis-
cussing other techniques to compute change coupling goes beyond the
scope of this paper, and we refer the interested reader to [14].
Figure 3(a) illustrates the principle of the Evolution Radar. It shows
the dependencies between a module, represented as a circle and placed
in the center of a pie chart, and all the other modules in the system
represented as sectors. In each sector, all files belonging to the corre-
sponding module are represented as colored circles and positioned ac-
cording to the change coupling they have with the module in the center
(the higher the coupling the closer to the center). With respect to the
angle, we sort the files alphabetically (considering the entire directory
path) and uniformly distribute them in their containing module.

2. The System Complexity [15] view supports the understanding of object-
oriented systems, by enriching a simple two-dimensional depiction of
classes and inheritance relationships with software metrics (see Fig-
ure 3(b)). By default, the size of the nodes is proportional to the
number of attributes (width) and methods (height), while the color
represents the number of lines of code. This mapping can be changed
from the web interface, by assigning any software metric from a rich
catalog to the width, height and color of the nodes. The goal of the
view is to provide clues on the complexity and structure of a software
system.

7

(a) Evolution Radar.

Class A

Class B

Width metric

Height
metric Color metric

(greyscale)

Inheritance
relation

(b) System Complexity.

x

y

Height
metric

Width
metric

Color
metric

Outlier

x metric

y
metric

(c) Correlation View.

Figure 3: Evolution Radar, System Complexity and Correlation View principles.

3. The Correlation View shows all the classes of a software system in a
two-dimensional space, using a scatterplot layout and mapping up to
five software metrics on them: On the vertical and horizontal position,
on the size and on the color (see Figure 3(c)). The default mapping
is the following: The nodes’ coordinates represent the number of at-
tributes (x) and methods (y), the color represents the number of lines
of code, while the size of the nodes is fixed. As for the System Com-
plexity view, the mapping can be changed at any time using the web
interface. The Correlation view is useful to understand the correlation
between different metrics in a software system and to detect outliers,
i.e., entities having metric values completely different with respect to
the majority of entities in the system.
In the experiments discussed later in the paper, we provide examples
of Evolution Radar and System Complexity visualizations, but not of
Correlation view. We give an example of this view here, depicted in
Figure 4. Nodes represent classes of the ArgoUML software system2,
where the x position is proportional to the number of lines of code,
the y is proportional to the number of post release bugs and the color
maps the number of methods. Such a choice of metrics mapping can be
useful to understand whether larger classes (higher number of lines of

2http://argouml.tigris.org

8

bugs

LOC

B

A

Figure 4: A Correlation view applied to the ArgoUML software system. Nodes represent
classes, nodes’ position represents number of lines of code (x) and number of post release
bugs (y), and nodes’ color maps the number of methods.

code) generate more bugs. This correlation does not hold in the case of
ArgoUML (see Figure 4). Moreover, we spot some outliers in the view:
The one marked as “A”, which has an outstanding number of bugs,
and the ones marked as “B”, with an outstanding number of lines of
code.

The visualizations are created using the Mondrian framework [16] (re-
siding in Moose) and the Episode framework [17] (residing in Churrasco’s
visualization module). To make the visualizations interactive within the web
portal, Episode attaches Ajax callbacks to the figures.

Figure 5 shows an example of a System Complexity visualization rendered
in the Churrasco web portal. The main panel is the view where all the figures
are rendered as SVG graphics. The figures are interactive: Clicking on one of
them will highlight the figure (red boundary), generate a context menu and
show the figure details (the name, type and metrics values) in the figure in-
formation panel on the left. Under the information panel Churrasco provides
three other panels useful to configure and interact with the visualization:

1. The metrics mapping configurator which allows the user to customize
the view by changing the metrics mapping.

2. The package selector which allows the user to select, and then visualize,
multiple packages or the entire system.

3. The regular expression matcher with which the user can select entities
in the visualization according to a regular expression.

9

SVG
Interactive

Visualization

Recent annotations
added

People participating
to the collaboration

Selected figure
information

Metrics mapping
configurator

Package selector

Regular expression
matcher

User

Selected figure

Context menu

Report generator

Figure 5: A screenshot of the Churrasco web portal showing a System Complexity visual-
ization of ArgoUML.

2.5. The Annotation Module

The idea behind Churrasco’s annotation module is that each model entity
can be enriched with annotations to (1) store findings and results incremen-
tally into the model and to (2) let different users collaborate in the analysis
of a system in parallel. Annotations can be attached to any visualized model
entity, and each entity can have several annotations. An annotation is com-
posed of the author who wrote it, the creation timestamp and the text. When
the user clicks on the menu action “Show annotations” an additional panel is

10

rendered at the top left corner of the web page (above the recent annotation
panel). The panel shows all the annotations for the selected entity and allows
the user to delete (only) his/her annotations. Clicking on the “Add annota-
tion” menu item will result in displaying another panel (again in the top left
corner) that allows the user to write and add new annotations to the selected
entity. Since the annotations are stored in a centralized database, any new
annotation is immediately visible to all the people using Churrasco, thus al-
lowing different users to collaborate in the analysis. Churrasco features three
other panels aimed at supporting collaboration:

1. The “Recent annotations” panel displays the most recent annotations
added, together with the name of the annotated entity, and by clicking
on it the user can highlight the corresponding figure in the visualization.

2. The “Participants” panel lists all the people who annotated the visual-
izations, i.e., people collaborating in the analysis. When one of these
names is clicked, all the figures annotated by the corresponding person
are highlighted in the view, to see which part of the system that person
is working on.

Figure 6: An excerpt of a pdf report generated by Churrasco. The entities with one or
more annotations are highlighted in red, and the corresponding annotations are provided.

3. The “Create pdf report” panel generates a pdf document containing the
visualization and all the annotations referring to the visualized entities.
Figure 6 shows a modified excerpt3 of such a report: In the visualization
part the entities with at least one annotation are highlighted in red,
and the corresponding annotations are listed together with the author
and date information.

3We modified the excerpt of the report to make it fit in the page.

11

3. Churrasco in Action

We show Churrasco’s use through one simple example scenario, presented
next, and two collaboration experiments with respectively 8 and 4 partici-
pants.

3.1. Analyzing ArgoUML

FacadeMDRImpl

FacadeUmlFactoryMDRImpl

Factory
hierarchy

AbstractModelFactory
hierarchy

Model package
(Marco's view)

Entire system
(Michele's view)

FacadeMDRImpl

Factory
hierarchy

AbstractModelFactory
hierarchy

Figure 7: The web portal of Churrasco visualizing the system complexity of the Model
package of ArgoUML on the left and the entire ArgoUML system on the right.

We use the following simple scenario to exemplify Churrasco’s usage: The
authors of this article, working on different machines in different locations,
study the evolution of ArgoUML, a UML modeling tool composed of ca. 1800
Java classes, developed over the course of ca. 7 years. The users first create
the evolutionary model by indicating the URL of the ArgoUML SVN repos-
itory in the importer page of Churrasco (bug information is not needed in
this example scenario). Once the model is created and stored in the central-
ized database, they start the analysis with a system complexity view of the
system. Each user renders the visualization in his web browser, and attaches
annotations to interesting figures in the visualizations. The annotations are
immediately visible to the other user on the left side of the browser window
(in the annotation panels).

12

While Michele is analyzing the entire system, Marco focuses on the Model
package, which contains several classes characterized by large number of
methods and many lines of code. The entities annotated by Marco in the
fine-grained view are then visible to Michele in the coarse-grained system
complexity. Marco has the advantage of a more focused view, while Michele
sees the entire context. Figure 7 shows Marco’s view on the left, while
Michele’s one is depicted on the right. Marco selected the FacadeMDRImpl
class (highlighted in red in Marco’s view), and is reading Michele’s com-
ments about that class (highlighted in blue in Michele’s view). These are
two examples of collaboration:

1. Marco, focusing on the Model namespace, annotates that the class Fa-
cadeMDRImpl shows symptoms of bad design: It has 350 methods,
3400 lines of code, only 3 attributes, and it is the only implementor of
the Facade interface. Michele adds a second annotation that Marco’s
observation holds also with respect to the entire system, and that Fa-
cadeMDRImpl is the class with the highest number of methods in the
entire system.

2. Marco sees that several classes in the Factory hierarchy implement
the Factory interface and also inherit from classes belonging to the
AbstractModelFactory hierarchy. This is not visible in Michele’s view
(where Factory and AbstractModelFactory are highlighed in blue), who
discovers that fact by highlighting the entities annotated by Marco and
then reading the annotations.

Both now want to find out whether these design problems have always
been present in the system. They analyze the system history in terms of
its change coupling using the Evolution Radar. This visualization is time-
dependent, i.e., different radar views are used to represent different time
intervals. Figure 8 shows on the left an evolution radar visualization corre-
sponding to the time interval Oct 2004 – Oct 2005, and on the right the radar
corresponding to Oct 2005 – Oct 2006. They both represent the dependencies
of the Diagram module (displayed as a cyan circle in the center) with all the
other modules of ArgoUML, by rendering individual classes. Marco is looking
at the time interval 2004/05 (left part of Figure 8). He selects the class UML-
FactoryMDRImpl (marked in red), belonging to the Model module, because
it is the closest to the center (highest coupling with the Diagram module in
the center) and because it is large (the size maps the number of changes in

13

2004-2005
(Marco's view)

2005-2006
(Michele's view)

UMLFactoryMDRImpl
UMLFactoryMDRImpl

Figure 8: Evolution Radars of ArgoUML.

the corresponding time interval). Marco attaches to the class the annota-
tion that it is potentially harmful, given the high coupling with a different
module (Diagram), with respect to the one the class belongs to (Model). In
the meantime Michele is looking at the time interval 2005/06 (right part of
Figure 8). He highlights the classes annotated by Marco and sees the UML-
FactoryMDRImpl class. In Michele’s radar the class is not coupled at all with
the Diagram module, i.e., it is at the boundary of the view (marked in red).
Therefore, Michele adds an annotation to the class saying that it is proba-
bly not harmful, since the coupling decreased over time. After reading this
comment, Marco goes back to the system complexity view, to see the struc-
tural properties of the class in the system. The UMLFactoryMDRImpl class
(marked in the left part of Figure 7) has 22 methods, 9 attributes and 600
lines of code. It implements the interfaces AbstractUmlModelFactoryMDR
and UMLFactory. After seeing the class in the system complexity, Marco
adds another annotation saying that the class is not harmful after all.

This information can then be used by other users in the future. Sup-
pose that Romain wants to join the analysis with Marco and Michele, or to
start from their results. He can first see on which entities the previous users
worked, by highlighting them, and then reading the corresponding annota-
tions to get the previously acquired knowledge about the system.

This simple scenario shows how (1) the knowledge about a system, gained
in software evolution analysis activities, can be incrementally built, (2) dif-

14

ferent users from different locations can collaborate, and (3) different visual-
ization techniques can be combined to improve the analysis.

3.2. First Collaboration Experiment

The previous example showed that Churrasco supports collaborative anal-
ysis. However, the example is hardly a collaborative experiment, because (1)
there were only two participants (2) who were the developers of the tool, (3)
possessing prior knowledge about the analyzed software system. Therefore,
we performed a collaboration experiment, in a more realistic setting, with
the following goals: (1) evaluate whether Churrasco is a good means to sup-
port collaboration in software evolution analysis, (2) test the usability of the
tool, and (3) test the scalability of the tool with respect to the number of
participants.

We performed the experiment in the context of a university course on
software design and evolution. The experiment lasted 3 hours: During the
first 30 minutes we explained the concept of the tool and how to use it, in
the following two hours (with a 15 minutes break in the middle) the students
performed the actual experiment and in the last 15 minutes they filled in
a questionnaire about the experiment and the tool. The participants were:
5 master students, 2 doctoral students working in the software evolution
domain and 1 professor. The Master students were lectured on reverse engi-
neering topics before the experiment.

JMolViewer

Viewer

Graphics3D

Eval

JMolSimpleViewer

JMol
PngEncoder

BondIterator

Figure 9: A System Complexity of JMol. The color denotes the amount of annotations
made by the users. The highlighted classes (green boundaries) are annotated classes.

15

The task consisted in using the System Complexity and the Correlation
View and looking at the source code to (1) discover classes on which one
would focus reengineering efforts (explaining why), and to (2) discover classes
with a big change impact and explain why. The target system chosen for the
experiment was JMol, a 3D viewer for chemical structures, consisting of ca.
900 Java classes. Among the participants only one possessed some knowledge
about the system.

Figure 9 shows a System Complexity of JMol in which nodes’ size maps
number of attributes (width) and methods (height) and nodes’ color repre-
sents the amount of annotations they received, i.e., number of annotations
weighted with their length. We see that the most annotated class is Viewer,
the one with the highest number of methods (465). However, we can also
see that not only the big classes (with respect to methods and/or attributes)
were commented, but also very small classes.

Class NOA NOM Annotation
JmolSimpleViewer 0 8 “This is a strange hierarchy. There is only one subclass per

superclass (all with many method and few attributes).”
JMolViewer 0 135 “Strange: 134 abstract methods, only 1 concrete, only 1 sub-

class.”
Viewer 54 465 “This class seems to be the “thing” in the system, at least in

terms of functionality”, “Strong dependency with Eval.”, “High
fan out (25) and many LOC (>1k).”, “High number of access
to foreign data.”

Eval 34 198 “This class should probably be broken down.”, “Very strong
dependency with Viewer.”

JMol 60 25 “This class has the largest fan out (78). Probably part of the
core of the system.”, “High coupling, low cohesion”, “13 pro-
tected methods and no child!”

PngEncoder 23 26 “17 protected attributes, completely useless since there’s no
child!”

BondIterator 5 5 “There are ca. 6 classes with Iterator logic. The implementation
is strange. I would expect them to be in some hierarchy.”

Graphics3D 101 166 “This can be probably broken down. It’s an implementation of
a 3d engine.”

Table 1: Subset of the annotations made on Jmol. NOA stands for number of attributes
and NOM for number of methods.

In Table 1 we list a subset of the annotations made by the users during
the experiment. In the assigned time the participants annotated 15 different
classes for a total of 31 annotations, distributed among the different partici-
pants, i.e., everybody actively participates in the collaboration. The average
number of annotations per author was 3.87, with a minimum of 2 and a
maximum of 13.

16

The annotations were also used to discuss about certain properties of the
analyzed classes. In most of the cases the discussion consisted in combining
different pieces of knowledge about the class (local properties as number of
methods with properties of the hierarchy with dependency etc.).

At the end of the experiment all participants but one filled in a survey
about the tool and the collaboration experience. The survey results are
shown in Table 2. In the cases where the sum of the answers is not 7, a
participant did not indicate an answer.

Statement Strongly
disagree

Disagree Neither Agree Strongly
Agree

Churrasco is easy to use 1 3 2
System Complexity view is useful 2 5
Correlation view is useful 1 1 5
Churrasco is a good means to collaborate 7
Collaboration is important in reverse engineering 1 5 1

Table 2: Subset of the results from the questionnaire, using a Likert Scale.

Although not a full-fledged experiment, it provided us with information
about our initial goals: The survey shows that the participants found the tool
easy to use, collaboration important in reverse engineering and Churrasco as a
good means to support collaboration (for all the participants the experiment
was the first reverse engineering collaboration experience). Another result is
that they found the provided visualizations useful to achieve the given tasks.
Churrasco scaled well with 8 people accessing the same model on the web
portal at the same time, without any performance issue.

A final comment given by the users during an informal conversation af-
ter the experiment, is that they had fun in the collaborative session: They
especially liked to wait for annotations from other people on the entity they
already commented, or to see what was going on in the system and which
classes were annotated, to also personally look at them.

3.3. Second Collaboration Experiment

The purpose of the first experiment was to perform a preliminary eval-
uation of Churrasco’s usability and whether users would find Churrasco a
good means to collaborate. In our second experiment we wanted to simulate
a more structured form of collaboration, where users do not have all equal
roles.

17

We performed the experiment in the context of a university course on
software engineering, with a set-up very similar to the one of the previous
experiment. This time the participants were 4 bachelor students with little
knowledge about reverse engineering. The experiment took place during the
last week of a project in which all students had developed a web application
in Smalltalk during 6 weeks. During the last week of the project the students
could not add new features to the system, but they could only restructure /
refactor it to improve its design and code quality.

The task that the students had in the experiment was to identify which
parts of the system should be refactored, using the System complexity and
Correlation views in Churrasco. The students had different roles in the col-
laboration: One acted as a leader, responsible to analyze the system, by
selecting classes which he thought were candidates for refactoring, while the
other students would check in detail whether the classes in question needed
to be refactored or not.

With the annotations, the leader could also ask questions that the fol-
lowers then answered. Typical questions were: “What is the responsibility
of this class?”, “Can we remove this class?”, “These hierarchies seems to
be duplicated, can we merge them?”,“Why this class is in this hierarchy?
Shouldn’t it be a subclass of that class?” etc.

The target software system was composed of 166 classes, 983 methods for
a total of ca. 5,000 lines of Smalltalk code.

Class ElementModel
What is the difference between Element Model and Element? Are both hierarchies replicated?
One is the model that manages the functionalities of the element, the other one manages the dis-
playing of the element (it is a proxy pattern).
One is for the layout behavior while the other is for the widget behavior.

Class WBLBorderLayoutModel
This layout seems to have more behavior than the others, even though it has the same number of
attributes. Maybe it is doing too much and it should be a composite layout?
It has a lot of complex operations which being detached can raise the complexity much more. As
you say it has functionalities that can be put in more than 1 class.
The layout is complex. Dividing it into several classes will require too much time and effort.

Table 3: Subset of the annotations made on the Smalltalk web application.

Table 3 shows a subset of the annotations made by the users during the
experiment, the ones written for a couple of classes. These two groups of
annotations exemplify how the collaborative session was performed: The
leader was asking questions about the design of classes and hierarchies, and

18

the other students were answering these questions.
During the experiment the participants annotated 11 different classes for

a total of 27 annotations, 9 written by the leader and 18 by the other stu-
dents. Since the participants knew the system, they were faster in writing
annotations with respect to the participants of the first collaboration exper-
iment.

Statement Strongly
disagree

Disagree Neither Agree Strongly
Agree

Churrasco is a good means to collaborate 1 3
Collaboration helped me in understanding the system 3 1
The proposed methodology (leaders) helps in structur-
ing the collaborative effort

3 1

Reading other users’ annotations eases the given tasks 2 2
1-2 3-4 5-6 7-8 9-10

Quantify (1-10) the added value of the collaborative
support provided by the tool

2 2

Table 4: Subset of the results from the questionnaire, using a Likert Scale.

As in the previous experiment, at the end of the collaborative session the
participants filled in a survey about the tool and the collaboration experi-
ence. A subset of the results are shown in Table 4. The survey shows that
the participants found that collaboration helped them in understanding the
software system and the used methodology with the leader useful to struc-
ture the collaborative effort. Moreover, the use of annotations eased the task
of selecting potential candidates for refactoring. Another result is that the
students found that the collaborative support provided by Churrasco has an
added value.

4. Discussion

The main benefits of Churrasco consist in its accessibility and flexibility.
All the features of the framework can be accessed through a web browser:
(1) The importers to create and populate evolutionary models of software
systems, (2) the system complexity and correlation views, to support the
understanding of the structure of the system and (3) the evolution radar view
to study the evolution of the system modules in terms of change coupling.
The visualizations are interactive, and they allow the user to inspect the
entities represented by the figures, to apply new visualizations on-the-fly
from the context menus and to navigate back and forth among different

19

views. The framework can be extended with respect to the meta-model and
with respect to the visualizations. Using the facilities provided by the meta-
base, the underlying evolutionary meta-model of Churrasco can be enriched
with new types of information.

5. Tool Building Issues

Developing a web-based tool that supports scalable and interactive visu-
alizations raises issues related to interacting, updating, and debugging.

Interacting. Supporting interaction through a web browser is still a
non-trivial task, and even supposedly simple features, such as context menus,
must be implemented from scratch. In our Churrasco tool we have imple-
mented the context menus as SVG composite figures, with callbacks attached,
which are rendered on top of the SVG visualization. Moreover, it is hard to
guarantee a responsive user interface, since every web application introduces
a latency due to the transport of information.

Updating. The standard way of rendering a web visualization is that
every time something changes in the page, the whole page is refreshed to show
the updated version. In the context menu example, whenever the user clicks
on a figure the page changes because a new figure appears, and therefore
the page needs to be refreshed to show the menu. This introduces latencies
which make the web application unusable when it comes to rendering very
large SVG files. For this reason, we implemented many actions that do not
require a complete re-rendering of a page using Ajax requests. Examples of
such actions are: Rendering of context menus, highlighting figures, displaying
figure information, displaying and adding annotations.

Debugging. A barrier to develop web applications is the lacking sup-
port for debugging. Even if there are some applications like Firebug providing
HTML inspection, Javascript debugging and DOM exploration, the debug-
ging support is not comparable with the one given in mainstream integrated
development environments such as Eclipse.

All in all, while building Churrasco we learned that creating a web appli-
cation that supports interactive visualizations implies a number of technolog-
ical challenges. With the current status quo of web development frameworks
it should make any intention of porting existing applications to the web forego
a careful evaluation of whether the result is worth the effort. On the other
hand, web applications introduce a number of novel ways to interact with
systems that will open up new research directions.

20

6. Related Work

A number of approaches support web-based software evolution analysis
and visualizations.

Beyer and Hassan proposed Evolution Storyboards [18], a visualization
technique that offers dynamic views. The storyboards, rendered as SVG files
(visible in a web browser), depict the history of a project using a sequence
of panels, each representing a particular time period in the life of a software
project. These visualizations are not, or only partially, interactive, i.e., they
only show the names of the entities represented by the SVG or VRML figures.
In contrast the views offered in the Churrasco web portal are fully interactive,
providing context menus for the figures and navigation capabilities.

Lungu et al. presented an web-based approach to visualize entire soft-
ware repositories [19]. Their technique, validated on Smalltalk repositories,
focuses on understanding the structure of the organization behind the repos-
itories, by studying the interaction among the developers. They also provide
views to see the evolution of the repositories over time. Both the approaches
are fully interactive and web-based, but while Lungu’s approach focuses on
the entire repository evolution with coarse-grained views, Churrasco targets
single projects with fine-grained visualizations.

In [20] Mancoridis et al. presented REportal, a web-based portal site
for the reverse engineering of software systems. REportal allows users to
upload their code (Java or C++) and then to browse, analyze and query
it. These services are implemented by reverse engineering tools developed
by the authors over the years. REportal supports software analysis through
browsing and querying, whereas Churrasco supports the analysis by means
of interactive visualizations.

In [21] Nentwich et al. introduced BOX, a portable, distributed and
interoperable approach to browse UML models. BOX translates a UML
model that is represented in XMI into VML (Vector Markup Language),
which can be directly displayed in a web browser. BOX enables software
engineers to access and review UML models without the need to purchase
licenses of tools that produced the models. While BOX is focused on design
documents, such as UML diagrams, in Churrasco we focus on the history
and structure of software systems.

A major difference between all the mentioned approaches and Churrasco
is that these techniques support single user software evolution analysis, while
Churrasco supports collaborative analysis.

21

7. Conclusions

We have presented Churrasco, a tool which supports collaborative soft-
ware evolution analysis and visualization. The main features of Churrasco
are:

• Flexible meta-model support. The meta-model used in Churrasco to
describe the evolution of a software system can be dynamically changed
and/or extended, by means of the meta-base component.

• Accessibility. The tool is fully web-based, i.e., the entire analysis of
a software system, from the initial model creation to the final study,
can be performed from a web browser, without having to install or
configure any tool.

• Modeling of results. Churrasco relies on a centralized database and sup-
ports annotations. Thus, the knowledge of the system, gained during
the analysis, can be incrementally stored on the model of the system
itself.

• Collaboration. We have shown, through a couple of collaboration exper-
iments with respectively 8 and 4 participants, how Churrasco supports
collaborative software evolution analysis.

7.1. Future Work

Our future work targets two main directions: Extending the tool and per-
forming more experiments. Concerning the tool, we plan to extend the Chur-
rasco meta-model by including information extracted from mail archives, and
we plan to create the corresponding importer which retrieves such data in
batch mode. Moreover, we want to enrich the set of views offered by Chur-
rasco with visualizations of bug information. For examples of such bug visu-
alizations, we refer the reader to [22].

With respect to the experiments, we plan to perform both a quantitative
experiment on Churrasco’s usefulness and a qualitative one (by means of
interviews) on its usability and usefulness.

Acknowledgments. We gratefully acknowledge the financial support
of the Swiss National Science foundation for the project “DiCoSA” (SNF
Project No. 118063).

22

References

[1] M. Fischer, M. Pinzger, H. Gall, Populating a release history database from
version control and bug tracking systems, in: Proceedings of the International
Conference on Software Maintenance (ICSM 2003), IEEE CS Press, 2003, pp.
23–32.

[2] D. Cubranic, G. Murphy, Hipikat: Recommending pertinent software devel-
opment artifacts, in: Proceedings of the 25th International Conference on
Software Engineering (ICSE 2003), ACM Press, 2003, pp. 408–418.

[3] S. Ducasse, T. Gı̂rba, O. Nierstrasz, Moose: an agile reengineering environ-
ment, in: Proceedings of the 10th European software engineering conference
held jointly with 13th ACM SIGSOFT international symposium on Founda-
tions of software engineering (ESEC/FSE 2005), 2005, pp. 99–102.

[4] S. Kim, T. Zimmermann, M. Kim, A. Hassan, A. Mockus, T. Gı̂rba,
M. Pinzger, J. Whitehead, A. Zeller, TA-RE: An exchange language for min-
ing software repositories, in: Proceedings of the 3rd International Workshop
on Mining Software Repositories (MSR 2006), ACM, 2006, pp. 22–25.

[5] S. Tichelaar, S. Ducasse, S. Demeyer, FAMIX: Exchange experiences with
CDIF and XMI, in: Proceedings of the ICSE 2000 Workshop on Standard
Exchange Format (WoSEF 2000), 2000.

[6] R. Frost, Jazz and the eclipse way of collaboration, IEEE Software 24 (6)
(2007) 114–117.

[7] M. D’Ambros, M. Lanza, A flexible framework to support collaborative soft-
ware evolution analysis, in: Proceedings of the 12th IEEE European Confer-
ence on Software Maintenance and Reengineering (CSMR 2008), IEEE CS
Press, 2008, pp. 3–12.

[8] A. Knight, Glorp: generic lightweight object-relational persistence, in: Pro-
ceeding of OOPSLA 2000 (Addendum), ACM Press, 2000, pp. 173–174.

[9] S. Demeyer, S. Tichelaar, S. Ducasse, FAMIX 2.1 — The FAMOOS Informa-
tion Exchange Model, Tech. rep., University of Bern (2001).

[10] M. D’Ambros, M. Lanza, M. Pinzger, The metabase: Generating object per-
sistency using meta descriptions, in: Proceedings of the 1st Workshop on
FAMIX and Moose in Reengineering (FAMOOSR 2007), 2007.

23

[11] S. Ducasse, A. Lienhard, L. Renggli, Seaside: A flexible environment for
building dynamic web applications, IEEE Software 24 (5) (2007) 56–63.

[12] M. D’Ambros, M. Lanza, M. Lungu, The evolution radar: Visualizing inte-
grated logical coupling information, in: Proceedings of the 3rd International
Workshop on Mining Software Repositories (MSR 2006), ACM, 2006, pp.
26–32.

[13] M. D’Ambros, M. Lanza, Reverse engineering with logical coupling, in: Pro-
ceedings of the 13th Working Conference on Reverse Engineering (WCRE
2006), IEEE CS Press, 2006, pp. 189–198.

[14] M. Lanza, S. Ducasse, Polymetric views — a lightweight visual approach
to reverse engineering, Transactions on Software Engineering (TSE) 29 (9)
(2003) 782–795.

[15] M. Meyer, T. Gı̂rba, M. Lungu, Mondrian: An agile visualization framework,
in: ACM Symposium on Software Visualization (SoftVis 2006), ACM Press,
2006, pp. 135–144.

[16] M. Primi, The episode framework - exporting visualization tools to the web,
Bachelor’s thesis, University of Lugano (Jun. 2007).

[17] D. Beyer, A. E. Hassan, Animated visualization of software history using
evolution storyboards, in: Proceedings of the 13th Working Conference on
Reverse Engineering (WCRE 2006), IEEE CS Press, 2006, pp. 199–210.

[18] M. Lungu, M. Lanza, T. Gı̂rba, R. Heeck, Reverse engineering super-
repositories, in: Proceedings of the 14th IEEE Working Conference on Reverse
Engineering (WCRE 2007), IEEE CS Press, 2007, pp. 120–129.

[19] S. Mancoridis, T. S. Souder, Y.-F. Chen, E. R. Gansner, J. L. Korn, Reportal:
A web-based portal site for reverse engineering, in: Proceedings of the 8th
Working Conference on Reverse Engineering (WCRE 2001), IEEE Computer
Society, 2001, p. 221.

[20] C. Nentwich, W. Emmerich, A. Finkelstein, A. Zisman, BOX: Browsing ob-
jects in XML, Software Practice and Experience 30 (15) (2000) 1661–1676.

[21] M. D’Ambros, M. Lanza, M. Pinzger, “a bug’s life” — visualizing a bug
database, in: Proceedings of the 4th IEEE International Workshop on Visu-
alizing Software For Understanding and Analysis (VISSOFT 2007), IEEE CS
Press, 2007, pp. 113–120.

24

