
Answering Software Evolution Questions:
An Empirical Evaluation

Lile Hattori, Marco D’Ambros, Michele Lanza

REVEAL @ Faculty of Informatics - University of Lugano, Switzerland

Mircea Lungu

Software Composition Group @ University of Berne, Switzerland

Abstract

Context: Developers often need to find answers to questions regarding the
evolution of a system when working on its code base. While their information
needs require data analysis pertaining to different repository types, the source
code repository has a pivotal role for program comprehension tasks. However, the
coarse-grained nature of the data stored by commit-based software configuration
management systems often makes it challenging for a developer to search for an
answer.

Objective: We present Replay, an Eclipse plug-in that allows developers to
explore the change history of a system by capturing the changes at a finer granularity
level than commits, and by replaying the past changes chronologically inside the
integrated development environment, with the source code at hand.

Method: We conducted a controlled experiment to empirically assess whether
Replay outperforms a baseline (SVN client in Eclipse) on helping developers to
answer common questions related to software evolution.

Results: The experiment shows that Replay leads to a decrease in completion
time with respect to a set of software evolution comprehension tasks.

Conclusion: We conclude that there are benefits in using Replay over the
state of the practice tools for answering questions that require fine-grained change
information and those related to recent changes.

Keywords:
Software Evolution, Empirical Evaluation, Controlled Experiment, Software
Change History, Mining Software Repositories

Preprint submitted to Information and Software Technology September 29, 2015

1. Introduction

When evolving a code base, during software development or software main-
tenance, developers keep a mental model of the system—an internal working
representation of the software under consideration [1]. This individual understand-
ing of the system is constantly being updated by the developer’s interactions with
the code and the team, and by seeking answers to various questions [2, 3, 4, 5].
These questions span multiple areas [6] such as program comprehension, software
evolution, collaborative software development, and program analysis; therefore,
they require a variety of information sources (e.g., colleagues, code bases, is-
sue trackers, documentation, communication history), and multiple tools (e.g.,
[7, 8, 9, 10]) to fulfill them.

Although there are a number of resources (data and tools) available to ease
the comprehension of a system and its evolution, the amount of resources actually
used by developers is often limited to talking to colleagues and exploring the code.

In an exploratory study [11], LaToza et al. report that most teams have a
team historian, the go-to person for questions about the code; and that most team
members subscribe to the check-in messages to keep themselves updated with
the code evolution, though many expressed dissatisfaction with the lack of detail
provided by their teammates when describing the changes in commit messages.

We argue that this lack of detail is a fundamental problem for understanding
software evolution, i.e., the changes made by other developers. The problem is
related to the coarse granularity at which changes are recorded and, consequently,
seen by others. When trying to understand the evolution of the code, the delta
between subsequent changes can be complex enough to prevent developers from
inferring the design decision behind the changes in the code. Moreover, as indicated
by previous studies [12, 13], large commits can also lead to merge conflicts,
duplicated work, and conflicting design decisions.

In our previous work [14, 15] we presented Syde, an Eclipse plug-in that
records fine-grained changes in multi-developers projects by continuously tracking
code edits performed in the Integrated Development Environment (IDE).

In recent work we presented Replay [16, 17], an Eclipse plug-in that allows
developers to explore the rich change repository created by Syde. Developers can
search for fine-grained changes made by a set of people to a set of artifacts and
watch them in the chronological order as originally performed in the IDE. This
counts for a better user experience [18] than the aggregated form of commit-based
Software Configuration Management (SCM) tools, such as CVS and Subversion.

2

In a previous version of this paper [17], we conducted a controlled experiment
to assess whether Replay is at least as effective and efficient as the state of the
practice at supporting developers with their questions related to software evolution
[17]. The design of the experiment involved the selection, from previous catalogues
[2, 3, 4, 5], of a set of common questions that developers ask. We converted them
into a set of tasks to measure both the correctness of the task solutions and their
completion time. We conducted additional runs of the controlled experiment,
involving new participants, expanding our analysis of the experiments results, and
making our experiments replicable by sharing the necessary information.

The contributions of our previous paper are:

• Replay, a toolset to replay and exploit a fine-grained change software reposi-
tory to aid developers in answering questions related to software evolution;

• a report on the design and operation of a series of controlled experiments
with 45 subjects to compare the performance of Replay with the baseline
tool (SVN client) in performing selected software evolution comprehension
tasks;

• a quantitative analysis of the results, which shows a statistically significant
advantage of Replay over the baseline in time, and indicates advantages of
Replay on correctness;

The additional contributions this article makes are:

• an extended quantitative analysis of the results obtained with a larger sam-
ple size, which shows a statistically significant advantage of Replay over
the baseline in time, and shows an improvement on the indication of the
advantages of Replay on correctness;

• a qualitative analysis of the tool’s usefulness based on the subjects’ feedback,
discussing the tool’s current flaws, and potential improvements;

• the complete experimental data to make our experiment replicable.

Structure of the article. In Section 2 we review Syde and its change model to
subsequently present Replay. In Section 3 we describe the design and operation
of our controlled experiment. In Section 4 we analyze the experiment results and
discuss the threats to validity. In Section 6 we present work related to the tool,
and to the controlled experiment. In Section 7 we present the concluding remarks.
Finally, in Appendix A we present the complete dataset that makes this experiment
replicable.

3

2. Tool Support: Syde and Replay

2.1. Syde
Syde is a client-server application that records fine-grained information about

the evolution of a system developed in a multi-developer setting [14, 15]. It
extends Robbes’ change-based software evolution (CBSE) model [19] into a multi-
developer context by modeling the evolution of a system as a set containing
sequences of changes, where each sequence is produced by one developer. A
change takes a developer’s copy of the system from one state to the next by means
of semantic operations. These operations are captured by Syde’s client, an Eclipse
plug-in, triggered at every build action. Thus, the evolution of a system comprises
the combination of the sequences of changes produced by each individual.

System Representation. Syde models and captures changes of Java systems. It
stores and analyzes constructs such as classes and methods, instead of files and lines.
To this aim, a system is modeled as an abstract syntax tree (AST) containing nodes—
which represent packages—classes, methods, and fields. In a multi-developer
project, the current state of a system is different for each developer, as it depends
on the changes each has performed after a checkout. The current state of a system
is therefore represented by keeping track of one AST per developer.

Change Operations. In CBSE, change operations represent the evolution of the
system instead of file versions. A change operation is the representation of a change
a developer performs in the workspace, i.e., it is the transition of a system from
one state to the next. Syde captures both atomic changes and composite change
operations (e.g., refactorings [20]). Atomic changes (e.g., insertion, deletion and
change of the property of a node) are the finest-grained operations on a system’s
AST, and contain all the necessary information to update the model. By applying a
list of atomic changes in their chronological order, it is possible to generate all the
states of a program’s evolution.

System Architecture. Syde is a client-server application, in which the server records
the change operations, maintains the current state of a project and publishes
information about current and past activities of the team. The client is a collection
of plug-ins that enriches the Eclipse IDE to track changes and to show awareness
information to developers.

4

2.2. Replay
Replay is one of the plug-ins that compose Syde’s client. Its goal is to allow

developers to explore the evolution of a system by chronologically replaying the
changes collected by Syde. Since atomic changes are too fine-grained to be shown
individually, Replay groups them by timestamp, author and artifact (package or
class), i.e., all the changes that were performed by a developer in a class between
two subsequent builds are grouped together based on the last build’s timestamp.
Within a group there cannot be more than one change to one artifact, thus we
maintain the granularity of the changes.

Change Groups. Each change group contains the following information:

• the set of changed artifacts, such as packages, classes, methods, or fields;

• the type of change for each artifact, which can be insertion, deletion or
change;

• the timestamp of the change, more precisely of the build in which the changes
in this group were captured;

• the author of the changes,

• the SCM revision that was the baseline for the change.

Change Filters. To help developers address different problems, Replay offers three
orthogonal categories of filters applicable to the changes of a system under analysis:

• Time-based. They filter the changes based on the time period in which they
were performed, specified as a combination of begin and end time.

• Artifact-based. They focus the replay on a subset of the system artifacts, i.e.,
classes or packages.

• Author-based. They focus the replay on the activity of a subset of the authors
in the system. Such a subset can be a team of developers, or a single person.

5

1

2

4

3

5

Figure 1: The main components of the Replay plug-in

Visualizing Changes. Figure 1 presents the main components of the Replay plug-in:

• The Replay View (Point 1) lists the changes resulting from a search. It shows
the entity from the group that is the upper-most node of the AST model of
these changes. The change description refers to the entity shown. The other
pieces of information provided are the timestamp, author and SCM revision
for that group of changes. Selecting one change in the list determines the
code to be displayed in the editor.

6

• The Replay Editor (Point 2) shows the source code of the change selected on
the Replay View. Different types of changes are shown with different colors.
In Figure 1 the orange text indicates there was a change on the signature
of MainFrame’s constructor. Alternatively, to view the changes, the user
can switch to the Compare Editor (Point 3), which shows the structural and
textual comparisons between the change selected on the Replay View and
the prior change.

• The Customized Outline View (Point 4) complements the information shown
in the Replay Editor. It gives structural information about the highlighted
changes. In the example in Figure 1, it indicates that a parameter was added
in the signature of the constructor MainFrame.

• The Toolbar (Point 5) allows one to (1) choose the way in which the changes
are displayed in the main editor (the first two icons), (2) filter changes based
on criteria like author, artifact, or time (the next three icons), and (3) improve
tool performance by caching the changes locally instead of accessing the
server for every search (last icon).

To watch the changes replayed in chronological order, the user navigates
through the change list in the Replay View and observes the information shown
on the Replay (or the Compare) Editor and in the Outline View. Watching a
development session gives the user access to which (parts of the) classes were
changed, the order in which they were changed, by whom, etc.

3. Experimental Design

We want to quantitatively evaluate the effectiveness and efficiency of Replay
on helping developers to answer questions they ask while developing software.
The developer questions we focus on are related to the evolution of the system and
can be answered by analyzing data from source code repositories.

3.1. Research Questions and Hypotheses
We raise the following research questions:

RQ1 Does the use of Replay reduce the time for answering software evolution
questions compared to SCM-based tools?

RQ2 Does the use of Replay increase the correctness of the answers to software
evolution questions compared to SCM-based tools?

7

RQ3 Does the user’s experience level affect the potential benefits of using Replay
in terms of correctness and time?

RQ4 Which type of questions can we identify that benefit most from the use of
Replay?

Research questions 1 and 2 cover the quantitative evaluation of efficiency and
effectiveness, respectively. The goal of RQ3 is to check whether the experience
co-factor influence the results on efficiency and effectiveness, where experience
is measured by assessing the subject’s number of years of experience with using
the technologies relevant for the experiment. We specifically chose this co-factor
because having a minimal experience level is a pre-requisite for being eligible to
participate in the experiment. Thus, it is guaranteed that all subjects will have
some experience. In addition, some commonly used co-factors, such as gender and
domain, are either irrelevant or non-applicable. The goal of RQ4 is to qualitatively
investigate how the benefits of Replay are related to the type of questions to guide
future improvements. The null and alternative hypotheses associated with the first
two research questions are formulated in Table 1.

Table 1: Null and alternative hypotheses

Null Hypotheses Alternative Hypotheses
H10 The tool does not impact the time re-

quired to answer software evolution
questions.

H1 The tool impacts the time required to
answer software evolution questions.

H20 The tool does not impact the correct-
ness of the answers to software evolu-
tion questions.

H2 The tool impacts the correctness of the
answers to software evolution questions.

To test the hypotheses H10 and H20 we define a series of tasks that have
to be performed by the control and the experimental group. The control group
(Eclipse+SVN) uses an Eclipse installation with default development tools and
Subclipse1 to answer the questions accessing the change history from SVN. The ex-
perimental group (Eclipse+Replay) uses the same Eclipse installation with default
development tools and Replay to access Syde’s change history.

1Subclipse provides support for SVN in Eclipse http://subclipse.tigris.org/

8

We maintain a between-subject design, meaning that each subject is part of
either the control or the experimental group. Although this choice of design has
a number of disadvantages, such as the need for greater number of subjects to
generate useful results, or the difficulty to maintain homogeneity across groups, it
suffers little contamination by extraneous factors, thus generating more reliable
results.

To answer RQ3 we analyze the data within blocks to check whether the experi-
ence level influences the participants’ performance. For the last question (RQ4)
we perform a separate qualitative analysis of correctness and completion time for
each task.

3.2. Object System
The system we chose to be the object of this experiment is called SpreadSheet.

Developed by a team of four BSc students, it is a simple spreadsheet application
with support for basic mathematic formulae. Its development lasted for six weeks,
and at the end, the project counted 13 packages, 77 classes, 286 methods, totaling
1,882 lines of Java code. The number of SVN commits was 137, while the number
of recorded Syde changes was 11,661. The choice of this specific system is
constrained by the need of having the change history, collected from both Syde
and SVN, for the entire development cycle. Thus, it was neither possible to choose
an open-source system, nor did we have a team working on a commercial system
at our disposal. This choice implies some threats to the validity of the experiment,
discussed in Section 5.

3.3. Task Design
We want to evaluate whether Replay outperforms a baseline (Subclipse) for

assisting developers in answering comprehension questions related to a system’s
evolution.

We considered previous catalogues of questions [3, 4, 5, 2], selected those that
can be answered by investigating the change history of the system, and created
corresponding tasks. Table 2 provides a short description of each task together
with its goal and rationale. Each task is an adapted version of a question from a
previous catalogue [4].

In the handout distributed to the subjects, the descriptions of the tasks are
integrated in the following hypothetical scenario: The subject is joining a team to
replace a developer that left. The scenario makes the subjects feel as if they have
become part of the team and are gradually learning the system while solving the
experimental tasks.

9

Table 2: Tasks’ description, goal and rationale

Id Description Goal Rationale
1 Imagine that you are joining the project’s team

to replace a member. Find out what he was
working on, so you can start from what he
left unfinished. Identify the two classes he
changed the most in the past days.

Becoming
familiar
with some-
one else’s
work

It is not uncommon that developers leave and
join the team/company during the development
of a software system. The goal of this task is to
simulate when a newcomer has to take over the
responsibility of a developer who just left the
team [5].

2 You have just started to work on a set of
classes, and want to find out whether some-
one else has recently changed them before you
commit your changes. Identify the methods
that someone else has also changed.

Becoming
aware
of team
activity

Developers are not simply interested in know-
ing who is working on what, but they are rather
interested in knowing who is working on parts
of the system that can impact on their work (or
that their work can impact on) [11, 5, 4].

3 You have identified one of the main classes
of the system but cannot quite understand it.
Look for experts who can help you by search-
ing who has recently changed it the most.

Finding
experts at
the class
level of
abstraction

Developers often find themselves trying to un-
derstand a part of the code that was written by
someone else [11]. The goal of this task is to
simulate how a developer would find out who
to ask for help on a class.

4 You are taking over the responsibility of a class
and your first task is to refactor the code to
improve its design and readability. You want
to start with the most complicated feature, be-
cause it will need most of your effort. From the
list below, identify the feature that provoked
the largest number of changes.

Relating
a feature
to code
changes

Developers are often confronted with the task
of making a part of the source code more read-
able and maintainable [20, 21], usually through
refactorings. In order to do so, they need to un-
derstand the code, and identify the most prob-
lematic parts of it, the design flaws, etc. This
task tackles the identification of parts of the
code that need more attention.

5 You are given the description of a defect and
instructions to reproduce it. Find out the ori-
gin of this defect, when and by whom it was
introduced. Propose a fix.

Tracking
back the
introduction
of a defect

Resolving defects is part of every developer’s
job. The goal of this task is to resolve a defect
by tracking back when it was introduced and
reverting the changes.

6 Before you joined the team the system under-
went a major refactoring, which involved the
deletion of a class and restructuring of other
classes. Investigate why this refactoring took
place.

Understanding
the rationale
behind past
refactorings

Decisions taken during the development of a
system are seldom documented [22, 23]. The
goal of this task is to simulate a situation in
which one needs to understand the rationale be-
hind an undocumented refactoring.

3.4. Subjects
We conducted the experiment with 45 subjects: 18 MSc students, 25 PhD

students, one postdoc, and one professor. The participant’s average age was 27.84,
comprising 14 different nationalities. The MSc students, the postdoc, and the
professor have a software engineering background. The PhD students have also
other backgrounds, such as information retrieval, human-computer interaction,
and security. Participation was on a voluntary basis. None of the participants had
previous experience with Replay.

10

3.5. Operation
The operation is composed of several experimental runs. Each run includes

a training session of 15 minutes and one experimental session. Each training
session consists of a tutorial on the tool, followed by a hands-on session, where
the subjects perform some small tasks and can ask clarification questions. The
experimental session is composed of six tasks, with time limit as follows: 10
minutes for each of the first four tasks, 20 minutes for task five, and unlimited time
for task six. The session is conducted on the subject’s laptop, and instructions are
provided to configure it for the experiment. The control group had Eclipse and
Subclipse installed; a local SVN server was provided. For the experimental group,
the subjects were asked to install Eclipse and Replay.

There were 12 experimental runs in four locations, summarized in Table 3.

Table 3: Summary of the experimental runs

Date Location Participants
10.12.2010 University of Lugano 1 PhD
13.12.2010 University of Lugano 4 MSc, 2 PhD
17.01.2011 University of Berne 1 MSc, 5 PhD, 1 Professor
13.01.2011 University of Lugano 1 PhD
13.01.2011 University of Lugano 1 PhD, 1 Post-doc
18.01.2011 University of Lugano 2 PhD
19.01.2011 University of Lugano 2 PhD
25.01.2011 University of Lugano 2 PhD
28.01.2011 University of Zurich 6 PhD
23.08.2011 University of British Columbia 1 PhD
24.08.2011 University of British Columbia 2 PhD
21.10.2011 University of Lugano 13 MSc

3.6. Pilot Studies
To refine the experiment design and make Replay mature enough to guarantee

an operation without technical impediments, we ran 8 pilot studies involving 19
people over the course of 4 months. The participants and the data points of the
pilot studies were totally discarded from the data analysis. The summary of the
pilot runs is presented in Table 4.

The first three pilot runs were planned, while the last five were potential
experimental runs that had to be discarded. The major concern after running the

11

Table 4: Summary of the pilot runs

Date Location Participants
07.2010 University of British Columbia 1 PhD
09.2010 University of Lugano 2 PhD
09.2010 Carnegie Mellon University 1 PhD
09.2010 University of Sannio 1 PhD
10.2010 Free University of Brussels 1 MSc
10.2010 University of Antwerp 4 PhD, 1 Post-doc
10.2010 Delft University of Technology 4 PhD, 3 Post-doc
12.2010 University of Lugano 1 PhD

planned pilots was to improve Replay’s performance on retrieving the change
history to be comparable to Subclipse.

The fourth and fifth runs were executed without problems, but during the sixth
run we identified that one of the tasks to be answered by the experimental group was
unfeasible. Therefore, we had to change the task and discard the previous runs. For
the seventh run, we prepared a VirtualBox2 image with the tools to be used in the
experiment, and had the subjects installing the images in their laptops. This choice
of setting let to several problems, including slowdowns caused by the restricted
memory space of the running VirtualBox image, poor navigability caused by the
small screen size of some subjects’ laptops, and slowdowns for fetching the change
history in both groups (experimental and control). To solve these problems, we
removed the virtual image from the experiment package, included the repositories
in this package to allow for local access, and specified the requirement of using a
minimum of a 15” screen. In the last pilot run, configuration problems affected the
completion time of the tasks, so we decided for not including it in the analysis.

The pilot studies had a fundamental role in making the experimental runs as
homogeneous as possible. We discarded multiple potential runs until we reached
a point where no more modifications in the experimental setup were conducted.
With this approach, we minimized the effects of having multiple experimental runs
by ensuring a solid and homogeneous setup.

3.7. Data Collection
We collected four different types of data before, during and after the experiment:

2See http://www.virtualbox.org/

12

1. Personal information. Before the experiment, we collected, through a screen-
ing questionnaire, information about the subject (e.g., age, affiliation) and
the subject’s experience with Java, Eclipse and Subversion.

2. Timing data. To time the participants, we adopted two strategies. When the
session involved up to two subjects, the experimenter timed them manually.
When the session had more than two subjects, the experimenter used a timing
web application to time each subject, and also to show them their remaining
time. In both cases, the experimenter notified the subjects when they went
overtime, and allowed them to write down their findings before going to the
next task.

3. Correctness data. To convert the solutions into quantitative values, we
established a grading system. Each task is worth 1 point, evenly distributed
according to the number of correct answers that must be entered., e.g., if
there are 4 correct answers, each is worth 0.25, while each wrong answer
counts as −0.25. The goal of this grading rule is to discourage subjects from
marking random answers if they are unsure of the correct answer. Thus
the subjects were informed of the grading rule. The correct answers were
determined by the experimenter, and double-checked by two other persons.

4. Participant feedback. The experiment ended with a debriefing questionnaire,
where the subjects assessed the time pressure, the difficulty of the tasks and
whether the tasks were realistic. The subjects were also given the opportunity
to write down their opinions about the experiment and the tools.

4. Analysis and Interpretation

We performed a preliminary analysis on the opinions of the subjects regarding
the tasks, to check for exceptional conditions.

Difficulty. We asked the subjects to indicate how much time pressure they felt
during the experiment from 1 (no pressure) to 5 (too much pressure). The average
time pressure reported is 2.75 (stdev. 1.02) for the control group and 2.55 (stdev.
1.05) for the experimental group, who felt slightly less time pressure. We sorted
the tasks in increasing order of difficulty throughout the experiment, which is
confirmed by the subjects’ assessment in Figure 2.

Although there is a small difference on the perceived difficulty between control
and experiment groups in tasks 1, 3, 5 and 6, they do not characterize a high

13

Figure 2: Median difficulty values (1 - trivial, 2 - simple, 3 - intermediate, 4 - difficult, 5 -
impossible)

discrepancy in terms of both completion time and correctness, thus we decided to
maintain the task analysis. Since task 6 required a subjective answer in the form of
a short essay, it is not included in the statistical test.

Realism. As shown in Figure 3, the participants felt that the tasks reflect situations
that happen in real development scenario.

Figure 3: Median realism values (1 - strongly disagree, 2 - disagree, 3 - undecided, 4 - agree, 5 -
strongly agree)

Task 4 received the lowest grading from the control group. We believe this is
due to how we phrased the task description for this group rather than the task goal.

4.1. Subject Analysis
We followed the suggestions of Wohlin et al. [24] regarding the removal of

outliers caused by exceptional conditions before performing our statistical test.
We registered a number of outliers. One subject from the control group was

unable to finish the experiment in the allotted time due to lack of experience with
Eclipse. One subject from the experimental group did not follow the instructions

14

provided in the handout regarding the tools he was allowed to use, and used the
tools reserved to the control group instead. One subject from the experimental
group did not understand the concept of fine-grained changes provided by Replay.
His answers clearly showed that he did not use the tool, but rather answered
randomly, characterizing himself as an outlier both in terms of correctness (low
grading) and time (low completion time). Finally, two subjects (one from each
group) failed to register the completion time of at least one of the tasks.

We excluded these five cases from the statistical analysis, and were left with
40 subjects. We previously assigned treatments to subjects using randomization
and blocking according to their experience level. We asked the subjects to indicate
the number of years of experience they have in programming in Java, Eclipse, and
SVN. The criterion used for the blocking was: A subject is considered advanced
only if he has at least four years of experience with Java and Eclipse, and at least
one year of experience with SVN. If one of these criteria is not met, the subject is
classified as beginner. As a result of the random assignment and after the removal
of the outliers, we obtained a fair distribution of subjects (shown in Table 5).

Table 5: Subject distribution

Eclipse+SVN Eclipse+Replay Total
Beginner 12 11 23
Advanced 8 9 17
Total 20 20 40

4.2. Interpretation of the Results
The design of our experiment is a between-subjects with balanced design, and

one independent variable, i.e., the tool. The choice of the hypothesis test depends
on whether the sample distributions are normal and have equal variances. If it meets
these two requirements, we can choose the parametric Student’s t-test, otherwise,
we should use the nonparametric Mann-Whitney U test.

We performed the Shapiro-Wilk test of normality (See Table 6), which only
rejected the hypothesis that the experimental sample for correctness is normal
(p-value = 0.022 < 0.05). For completion time, we also performed the Levene test
(See Table 7) and verified that the samples have equal variances. The descriptive
statistics related to correctness and completion time are presented in Table 7.

15

Table 6: Results of the Shapiro-Wilk test of normality

Group p-value
Time Eclipse+SVN 0.213
(minutes) Eclipse+Replay 0.576
Correctness Eclipse+SVN 0.669
(points) Eclipse+Replay 0.022

Table 7: Descriptive statistics of the experiment results

Group Mean Diff. Min. Max. Stdev.
Time Eclipse+SVN 47.71 36.20 55.55 5.98
(minutes) Eclipse+Replay 42.19 -11.56% 32.00 53.92 5.24
Correctness Eclipse+SVN 3.52 1.00 5.00 1.04
(points) Eclipse+Replay 4.11 +16.76% 2.33 5.00 0.81

The results of the statistical tests are presented in Table 8. Since the completion
time is normally distributed with equal variances, we use the Student’s t-test for its
analysis. For correctness we must use the Mann-Whitney U test.

Table 8: Results of the statistical tests

Group S-W Student’s t-test MWU
p-value Levene t df p-value p-value

Time Eclipse+SVN 0.091
(minutes) Eclipse+Replay 0.855 0.144 2.762 38 0.009
Correctness Eclipse+SVN 0.065
(points) Eclipse+Replay 0.046 0.062

4.3. Results on Completion Time
We first test the null hypothesis H10, which states that the use of the tool

Replay does not impact the time required to complete the assigned tasks.
Table 7 shows that the experimental (Eclipse+Replay) group took on average

11.56% less time to complete the tasks than the control (Eclipse+SVN) group, and
that this result is statistically significant at the 99% confidence interval (p-value

16

= 0.009 < 0.01 for the t-test). With these results, we can reject the null hypothesis
H10 in favor of the alternative hypothesis H1, and positively answer RQ1.

Figure 4 shows a box plot3 of the total time (in minutes) spent by the subjects
on the first five tasks. As we can see, the 50th percentile of the experimental
group is roughly at the same level of the 25th percentile of the control group. This
means that almost 50% of the subjects from the experimental group completed the
tasks before 75% of the subjects from the control group, i.e., 50% of the subjects
completed the tasks before (roughly) 43 minutes, while 75% of the subjects from
the control group took more than (roughly) 43 minutes to complete the tasks.

Figure 4: Results on completion time.

The variability (interquartile range) of completion time is lower in the ex-
perimental group than in the control group. Despite the lower variability in the
experimental group, a series of factors benefitted the control group. For instance,
Replay was unknown to everyone, while most of the subjects had some experience
with SVN. In addition, previous experiences of the subjects of the experimental
group with using other tools (including SVN itself) and their dedication on under-
standing Replay before starting the tasks may have impacted on their completion
time. Lastly, the experimental group had to look through finer-grained and larger
amount of changes than the control group. These “drawbacks” of the Replay tool,
however, did not prevent the experimental group from outperforming the control
group in terms of completion time and variability.

4.4. Results on Correctness
Table 7 shows that the experimental group obtained, on average, a score 16.76%

higher than the control group. However, this result is not statistically significant

3The right end of the box represents the 75th percentile, the left end of the box the 25th percentile,
and the line in the middle the 50th percentile (median).

17

at the 95% confidence interval (p-value = 0.062 > 0.05 for MWU test), but it is
at the 90%. We are unable to fully reject the null hypothesis H20, and partially
answer RQ2.

Figure 5: Results on correctness.

Even though the results are not statistically significant at the 95% confidence
interval, Figure 5 shows evidence that the experimental group had a superior
performance than the control group. The 25th percentile of the experimental group
is at the same level of the 50th percentile of the control group, i.e., 75% of the
subjects from the experimental group obtained higher (or equivalent) score than
50% of the control group subjects.

Figure 5 shows that there were two outliers in the control group, who scored
1 and 1.5 out of 5. These subjects (C16 and C19) are classified as beginners, as
both have little experience with the tools used (1 to 3 years of experience with Java
and Eclipse, and less than 1 year of experience with SVN). They rated themselves
as beginners with using SVN, which is evidence that they might not be familiar
with the tool, although they could indicate they had no familiarity with it (when
a developer indicated no previous experience with SVN, he was automatically
assigned to the experimental group).

At a closer inspection we found no sign that their answers were randomly
selected, because some of the mistakes were also common to other subjects. For
instance, for task 4 both answered that the changes were most related to “handling
mouse events”, which was the number 1 mistake of both groups. In addition, when
they went overtime, they left the answer sheet blank (e.g., task 5 for C16 and task 1
for C19), which supports our analysis that they did not answer randomly, but would
rather need more time to answer some questions because of their low experience
with the tool. Therefore, these subjects were not classified as outliers and were
kept in the analysis.

18

Non-parametric tests (e.g., MWU, Wilcoxon signed rank, Kruskal-Wallis) are
more conservative than parametric tests (e.g., t-test), meaning that non-parametric
tests need more samples or greater difference in the values to yield statistically
significant results. We argue that this is the main reason for the MWU test to have
retained the null hypothesis at 0.05 significance level. Evidence of the tendency to
reach statistically significant results with more samples is that the results reported
here – with 40 samples – improved in comparison with previous results, when
there were 26 samples [17] (p-value decreased from 0.072 to 0.062).

4.5. Influence of the Experience Level
We compared the correctness and completion time across the two levels of

experience, i.e., beginner and advanced. Figure 6 shows that the experimental group
outperformed the control group in both correctness and completion time, regardless
of the experience level. Even though the number of subjects per experience level is
too low to yield statistically significant results, we can draw some observations.

(a) Time (minutes)

(b) Correctness (points)

Figure 6: Beginner versus advanced

The variability (interquartile range) of the experimental group was lower than
the one of the control group for the beginners and experts, although slightly lower

19

for beginners. Our assumption is that in the case of beginners, since both Replay
and SVN are new to them, the learning curve of SVN is steeper than the one of
Replay. For those unfamiliar with SVN, we gave a tutorial on its usage and allowed
the subjects to get used to it before starting to perform the tasks. Although some
experts felt that their performance was hindered by the fact that they were so used
to look at the changes the “SVN way” that it was not easy to adapt to Replay, the
variability difference of experts and beginners for experimental and control groups
was not significant.

One outlier appears on the beginner-experimental group for completion time.
This subject answered all questions correctly. Regardless of his low experience, he
was efficient and effective, which might characterize him as a fast learner.

In terms of correctness, both beginners and advanced from the experimental
group had lower variability than their respective from the control group. A factor
we attribute to this result is the coarse granularity of the information contained in
the SVN repository, which can be the subject of multiple interpretations.

We can answer RQ3 by stating that the users’ experience level does not affect
the potential benefits of using Replay in terms of correctness. However, the results
suggest that the users’ experience might influence their efficiency.

4.6. Individual Task Analysis
To identify which type of tasks can benefit most from the use of Replay (RQ4),

we examine the performance of the two tools per task. Table 9 shows the descriptive
statistics for the individual task analysis, while Figure 9 shows the box plots of
completion time and correctness for each task. Note that the quantitative data
of Task 6 is not included in the table and figure aforementioned, because it is a
subjective task.

Task 1 – Becoming familiar with someone else’s work. The subjects are asked to
familiarize with recent changes made by one developer, and to identify the two
classes this developer worked on the most. The experimental group achieved an
excellent performance, while the control group took more time and had lower grad-
ing, both results being statistically significant. Parnin and DeLine have observed
that when a developer resumes one of his interrupted tasks, he prefers to see past
changes chronologically than in aggregated form [18]. Our findings complement
theirs by showing a better performance of those seeing the changes made by others
chronologically.

20

Table 9: Descriptive statistics of the individual task analysis results

Group Mean Diff. Min. Max. Stdev. MWU
p-value

Time Task 1 Ecl+SVN 7.89 4.00 12.50 2.35
(seconds) Ecl+Replay 5.05 -35.99% 2.00 9.75 2.04 0.000

Task 2 Ecl+SVN 6.91 3.42 10.17 2.19
Ecl+Replay 6.66 -3.62% 3.25 9.58 1.49 0.745

Task 3 Ecl+SVN 8.56 3.00 13.75 2.83
Ecl+Replay 2.61 -69.50% 1.00 4.67 1.20 0.000

Task 4 Ecl+SVN 6.11 1.67 10.75 2.45
Ecl+Replay 7.91 +29.45% 2.75 16.42 2.85 0.038

Task 5 Ecl+SVN 17.85 11.00 23.92 3.75
Ecl+Replay 19.97 +11.88% 14.00 25.42 2.88 0.101

Correct- Task 1 Ecl+SVN 0.68 0.00 1.00 0.44
ness Ecl+Replay 1.00 +47.05% 1.00 1.00 – 0.002
(points) Task 2 Ecl+SVN 0.82 0.00 1.00 0.31

Ecl+Replay 0.90 +9.76% 0.33 1.00 0.19 0.449
Task 3 Ecl+SVN 0.80 0.00 1.00 0.37

Ecl+Replay 1.00 +25.00% 1.00 1.00 – 0.019
Task 4 Ecl+SVN 0.70 0.00 1.00 0.47

Ecl+Replay 0.70 – 0.00 1.00 0.47 1.000
Task 5 Ecl+SVN 0.53 0.00 1.00 0.44

Ecl+Replay 0.51 -3.77% 0.00 1.00 0.45 1.000

Task 2 – Becoming aware of team activity. The goal of this task is to identify
which methods were recently changed and by whom. Although we have developed
a plug-in that directly targets awareness [25], Replay can also be used for this
activity. The results show that Replay is slightly more effective and as efficient as
the baseline, though the results are not statistically significant.

Task 3 – Finding experts at the class level. In this task, the subjects are asked to
identify experts for a class based on the recent changes it underwent. The results
are very similar to the ones from task 1, and show that Replay outperforms the
baseline for this task, with the results being statistically significant.

Task 4 – Relating a feature to code changes. This task involves identifying the
different features inside a class and identifying the one that has changed the most.
The experimental group took, on average, more time than the control group to
complete the task, and had equal effectiveness. The results on completion time are
statistically significant, which validates the better performance of the control group.

21

(a) Completion time

(b) Correctness

Figure 7: Box plots of completion time and correctness per task

22

A possible explanation for this result is that number of fine-grained changes the
subjects from the experimental group had to look at was higher than the number of
SVN commits the control group had to inspect.

Task 5 – Tracking back the introduction of a defect. This task was added to the
experiment after collecting suggestions on the pilot study indicating that Replay
could be useful for identifying the change that caused a defect. The control group
performed better than the experimental in terms of completion time, and the two
groups had similar performance in relation to correctness. The results and the
feedback collected from the experimental group indicate that one of the reasons
for them to taking longer than the control groups is that there were too many
fine-grained changes to inspect for this task, being counter-productive. However,
since the results in completion time are not statistically significant, we cannot
affirm that the control group outperformed the experimental group.

Task 6 – Understanding the rationale behind past refactorings. The goal is to
understand the design decisions behind a major refactoring performed in the past.
Since this is a task that requires a descriptive answer, we do not analyze the
quantitative data for this task. Furthermore, we did not impose a time limit for this
task and, consequently, the results on completion time have a high variability.

We have given a qualitative grading to the answers, shown in Figure 8. The
essays confirm that the control group was able to better understand the reasons
behind the refactoring, with the majority of the very satisfactory answers being
from them. The answer below exemplifies such an answer given by a control
group subject: “The functionality of Sheet was moved to SpreadSheetModel.java.
It contains now the cell-grid. Before it only stored the cell contents as String
rather than the cell objects. For that all other classes that referred to Sheet before
had to be changed: e.g., from ”Sheet sheet” to ”SpreadSheetModel sheet” in
SpreadSheetWriter.java.” (C13).

It shows that the subject understood beyond the essence of the refactoring,
which was the replacement of the functionality of Sheet in SpreadSheetModel. The
subject also understood the design decision behind the refactoring, and how this
change affected the system’s related classes. Similarly, the answer below shows a
very satisfactory answer from a subject of the experimental group:

“Before refactoring, the classes Sheet and SpreadsheetModel were separated,
and one could convert a Sheet to a SpreadsheetModel by calling a function. The

23

refactoring eliminated the need for these two separated classes, by merging the
functionalities of both only in one of them (SpreadsheetModel). I guess it was done
to keep consistency of the state of these entities, which were treated separately, but
their state depended on each other.” (E14).

Figure 8: Grading of the answers to task 6

The answers classified as satisfactory and somewhat satisfactory are those
in which the subjects identified the classes directly involved in the refactoring
(Sheet and SpreadSheetModel), but did not understand why the refactoring
happened. The major differences between them are that satisfactory answers also
identified classes that are indirectly involved in the refactoring and somewhat satis-
factory answers express doubts about the refactoring. An example of a satisfactory
and a somewhat satisfactory answer are shown below:

“Sheet and SpreadSheetModel were essentially duplicates. So the former was
deleted and replaced by the later. The code from Sheet was merged into Spread-
SheetModel. MainFrame changed a lot, and as a result, the model classes had to
be modified. That’s how the duplication received attention.” (E7 - satisfactory).

“In the Sheet class, the convert to SpreadSheetModel has been changed multi-
ple times. SpreadSheetModel and SpreadSheet class have been changed. I think the
reason was because of the way sheets were kept in an array and converting them
to a SpreadSheet. I did not understand very well.” (E12 - somewhat satisfactory).

24

Finally, the unsatisfactory answers are those that fail to identify the classes
directly involved in the refactoring, as the example below:

“The refactoring seems to include the solution of more comments on the classes
(i.e., the authors). Sheet has been replaced by SpreadSheetSelectionModel.” (C15).

As previously stated, the results from Figure 8 and the content of the essays
suggest that subjects from the experimental group had more difficulty to understand
the refactoring than those of the control group. Another suggestion of the difference
in the perception of difficulty comes from the difficulty level of the task collected
on the debriefing and shown in Figure 2. It indicates that the experimental group
struggled to understand the refactoring (the average difficulty was higher than 4),
while the average difficulty indicated by the control group was 3 (intermediate).

Similar to task 5, the experimental group complained that the information
provided by Replay was too fine-grained to allow them to see the “big picture” of
the refactoring.

Summary. For tasks 1 and 3, which needed fine-grained information about recent
changes, Replay was more efficient and effective than the baseline. For task 2,
when the subjects had to relate recent changes to authors, there is a tendency for
Replay to be more effective than the baseline. For task 4, in which measuring
the amount of work done in different parts of the code was important, Replay
proved to be less efficient but just as effective as the baseline. In task 5, that
required analyzing information over a long time span, there is a tendency that the
fine-granularity of Replay prevents the subjects from being faster than the baseline.
To overcome this potential issue, as part of our future work, we plan to add a
feature in Replay that offers the possibility to aggregate fine-grained changes using
a customizable aggregation factor.

4.7. Subjects’ Feedback
In the debriefing questionnaire we asked the subjects from the experimental

group to leave comments and suggestions on the Replay plug-in. In this section we
summarize their feedback, which can be classified into three groups: (i) defects or
flaws on the plug-in; (ii) suggestions strongly related to the tasks; (iii) suggestions
to improve the tool.

Flaws and defects. In general, the defects or flaws detected by the subjects impaired
the user experience, but did not impede them to perform the tasks. One of the flaws

25

that disturbed the subjects was the fact that sometimes, when browsing through
the changed in the view, the tool froze. When this happened, the tool was actually
requesting data to show on the view, however the response time was too long for
the user’s perception. We should have added a progress bar to indicate to the user
that the process will take a few seconds to respond. A second flaw was that the tool
did not allow subjects to open multiple editors. This was a design decision taken
by the authors to allow the simulation of a video replay feature by showing the
sequences of changes always in the same editor. However, the usage of the plug-in
showed that opening multiple editors can be useful in situations that require the
comparison of changes that are not subsequent.

Defects detected by the subjects included: when switching between editors
(Replay and Compare), the tool failed to focus on the newly selected editor; and
some descriptions of the changes did not correspond to the actual change. The
latter is actually a defect of the tool responsible for capturing the changes, which is
only shown when we replay them. The first defect was detected during the first
experimental runs, and was fixed for the last runs.

Suggestions strongly related to the tasks. Some suggestions were strongly tied to
the tasks and if addressed they would have eased the path to the solution for the
subjects. However, they would bring little benefit to the tool. For instance, one
subject suggested saving snapshots of the view instead of having to request them
again. Instead, we could keep a history of recent requests to allow for quicker
selection of identical requests. Another example is one suggestion to make the
Replay editor editable to allow for in-place code change (and specifically bug
fixing for task 5). However, the idea of the Replay editor is to let users watch the
history of changes without changing it.

Suggestions to improve the tool. The subjects provided a rich list of suggestions to
improve the tool and make it more usable. We will comment on them separating
the suggestions per component.

In the Replay view, the most common suggestion was to provide a search
bar to facilitate the search for a specific change. To be more useful, the search
should include the content of the changes, so users can, for instance, search for
a specific method name. Another request was to add a navigation mode that lets
the user navigate through the changes of a specific developer while still showing
the changes of the other developers in the list. Two important requests point to
opposite directions. The most requested feature was the addition of a time slider
control to allow for grouping of changes, because in some instances the changes

26

were too fine-grained. The second request was to show even finer-grained changes,
to the level of method, to facilitate the identification of what changed between
subsequent versions of a class.

For the filters, the most common request was to memorize the previous dates
selected by the user and add a reset button to reset the date at the user’s will. In
addition, the subjects requested to have a search bar to search for specific classes
and users quicker. Users also suggested keeping a history of recent searches to
facilitate the loading of similar requests.

In the Replay Editor, the only suggestion was to add markers on the ruler to
indicate in which lines are the changes. This would facilitate navigation when
multiple changes are present.

5. Threats to Validity

In this section we discuss the threats to construct, internal and external validity.
Threats to construct validity concerns generalizing the result of the experiment
to the concept or theory behind the experiment [24]. Threats to internal validity
refer to influences that can affect the independent variable with respect to causality,
without the researcher’s knowledge [24]. Threats to external validity are conditions
that limit our ability to generalize the results of our experiment [24].

5.1. Construct Validity
Measurement of the dependent variables. We did not differentiate completion time
between subjects who answered correctly and those who did not. It is possible
that part of the subjects who did not find the answer to a question used all the time
available for that task before going to the next task, thus skewing the time measure-
ment to a higher value. Limiting the time per task has the goal of minimizing this
issue. However, it might have occurred that subjects who answered wrongly gave
up quickly and moved to the next task. We inspected the answer sheets seeking
for such a pattern and only encountered one clear instance in which it occurred,
eliminating this subject from the analysis.

Co-factors. We explicitly model as a controlled variable the experience level of
the subjects for the analysis of RQ3. However, we might have not considered all
the relevant co-factors that influence the results. Some of the co-factors that might
influence the results and we did not consider are the subjects’ background (whether
the subjects have experience in the industry), the laboratories settings (different
laboratory configurations per run, such as number of participants and different

27

computers), and subjects’ attitude towards learning (whether the subject looked for
help when faced with difficulties with the tool).

Power analysis. A weakness of our experimental design is that we should have
calculated the minimum sample size required to detect significant results before
running the experiment.

Subject behavior towards the experiment. Some of the subjects were curious in
understanding what the study was about. To avoid that their knowledge about the
study would influence their behavior during the experiment, we made ourselves
available to explain about the study and how we designed the experiment after a
subject’s experiment run. Some subjects demonstrated anxiety for being evaluated.
To mitigate this effect, we assured them that anonymization was used in the entire
evaluation process.

Experimenter expectancies. A couple of actions were taken to mitigate the exper-
imenter’s expectancies over the results. First, the oracle containing the answers
to the tasks was prepared before the start of the experimental runs. Then, during
the experimental runs, the experimenter refrained from looking at the handouts.
A factor that might have negatively affected the analysis of RQ4 is that only one
experimenter analyzed the subjective answers.

5.2. Internal Validity
Subjects. To reduce the threat that the subjects may not have been competent
enough, we ensured that they had sufficient skills on the tools used during the
experiment. To lessen the threat that the expertise of the subjects may not have
been fairly distributed, we used randomization and blocking to assign treatments
to subjects.

Tasks. The tasks were designed by the authors of this paper, and thus may have
been biased toward Replay. To mitigate this threat, we have based the tasks on
valid questions that developers ask, which were reported in previous catalogues [4].
The tasks might have been too difficult and the allotted time per task may have been
insufficient. To alleviate these threats, we conducted several pilot runs to fine-tune
them. Furthermore, the task that was classified as too difficult by the experimental
group (task 6) was not designed to be included on the statistical analysis.

Experimental runs. There were several runs and the differences among them may
have influenced the results. However, the several (7) pilot runs with different
number of participants allowed us to have a stable and reliable experimental setup.

28

Training. We provided a training session on Replay to all subjects of the exper-
imental group, while the subjects from the control group were assumed to have
familiarity with the baseline tools. To mitigate the fact that lack of proper training
might have influenced the results, we also provided a training session on Subclipse
when a subject from the control group was unfamiliar with the tool.

Learning effect. To neutralize the learning effect on the tasks, we should have ran-
domized the task ordering per subject. We, however, sorted the tasks in increasing
order of difficulty to allow the subjects to build confidence as they answer the tasks.
As a consequence, we might have enforced the learning effect on the last tasks.
Since the questions asked in each task are fundamentally different—they have
different goals, and require the use of different features of the tools—the strongest
learning effect refers to the usage of the tool, but not to its specific features. We
minimize this threat by: (i) giving subjects the time to explore and get familiar with
the tool before the start of the experiment; and (ii) asking the subjects to answer a
warm-up question before going to the actual task. Since a typical learning curve is
steep at the beginning, and gradually evens out as a person gets familiar with the
subject, we try to make the subjects have enough experience with the tool to start
doing the tasks when the learning curve is evening out.

5.3. External Validity
Subjects. The fact that the subjects of the experiment were from academia may have
limited our ability to generalize the results to the industrial environment. However,
it is difficult to recruit practitioners who are willing to dedicate 2 hours of their time
to do an experiment. To mitigate the lack of practitioners, we assume a relatively
high average expertise level of the 40 selected participants. This assumption is
sustained by the subjective assessment of the expertise provided by the subjects
prior to the experiment. They were asked to rank their perceived knowledge
according to the scale: 1–none, 2–beginner, 3–knowledgeable, 4–advanced, and 5–
expert. The results—Java (avg. 3.65, stdev. 1.05), Eclipse (avg. 3.45, stdev. 0.90),
SVN (avg. 2.90, stdev. 1.19)—indicate an average of knowledgeable subjects.

Tasks. Our choice of tasks may not reflect real questions related to software
evolution. This threat is neutralized by our reliance on existing catalogues [2,
3, 4, 5], which were mainly constructed through surveys and interviews with
practitioners.

29

Object system. The representativeness of our object system is an important threat,
since it is a small system that was developed by undergraduate students, and may
not reflect the complexity of large-scale industrial systems. The use of more than
one object system may have yielded different results. However, the choice of the
object system was constrained by the need of having the change history from both
Syde and SVN.

6. Related Work

Approaches Related to Replay. To our knowledge, Replay is the first tool to support
replaying development sessions in a collaborative environment. However, other
tools support programmers with their quests. Fritz and Murphy propose a prototype
that combines different information fragments (source code, work items, change
sets, teams, comments, wiki) to support 78 questions software developers ask about
a development project [4]. The tool Ferret combines four different sources of
information (static, dynamic, evolutionary, and Eclipse PDE) to build a knowledge
base for answering conceptual queries [3]. James is a knowledge base, composed
of IDE interactions and micro-blogging, to support developers [26].

Looking at our work in the broader context of software evolution, there are
various lines of research that relate to ours. In the software evolution analysis
context, several approaches make use of the changes performed to a system over
its lifetime to support its comprehension: Lanza, Gı̂rba et al., and Lungu et al.
summarize and visualize respectively the evolution of classes [27], the evolution
of class hierarchies [28], and the evolution of inter-module relationships [29]. In
these works the history is not replayed, but summarized; and the order in which
the changes are performed is lost. We specifically focus on replaying the change
events in the order in which they happened.

A few approaches focus on replaying the changes that happened in a system.
Wettel and Lanza visualize the evolution of the entire system by allowing the user
to travel in time and observe the changes of the system as they are represented in a
3D city metaphor [30]. Hindle et al. present an animation of the evolution of the
architecture of a system [31] in the Yarn tool. The animation presents the evolution
of the relationships between the modules of the system. These approaches allow
the animation of the changes, but present the changes at a high level of abstraction,
from which the code is not accessible.

One major difference between our work and the ones aforementioned is the
level of detail of the data. In most of the approaches the data is extracted from
commit-based SCM systems, implying that changes between versions can be

30

arbitrarily complex. An approach that uses fine-grained change information was
proposed by Robbes [32]. Although he collects fine-grained information from
software systems, Robbes does not use it to support the replaying of the changes,
but he exploits it for other purposes, e.g., to detect and characterize development
sessions [6]. Dig, instead, uses a change-centric approach to record sequences of
refactorings, and to replay them on other library-based applications [33].

Empirical Studies. There are relatively few empirical studies by means of con-
trolled experiments in software engineering. Further, there is no controlled ex-
periment that directly relates to ours: answering developers’ questions related to
software evolution. However, there are a number of controlled experiments related
to software evolution and program comprehension.

Quante evaluates, through a controlled experiment, the support provided by
dynamic object graphs on answering a set of program comprehension tasks [34].
Cornelissen et al. performed a controlled experiment to evaluate the use of Extravis,
an execution trace visualization tool, to answer program comprehension tasks [9].
Wettel et al. assess the use of CodeCity to perform program comprehension and
quality assessment tasks [10].

The major difference between these controlled experiments and ours is that
they evaluate tools that visualize data other than source code (dynamic graphs,
execution traces, system models) to support program comprehension. We evaluate
a tool that allows a developer to investigate the history of the system by looking
directly at its source code.

7. Conclusion

We presented Replay, a tool that allows developers to explore the evolution
history of a system by chronologically replaying the fine-grained changes collected
by Syde. We argue that Replay can be useful to help developers in finding answers
to questions they raise during development and maintenance that are related to the
evolution of a system.

We conducted a controlled experiment to evaluate whether Replay is at least as
effective and efficient as the state of the practice at supporting developers with their
questions related to software evolution. The results indicate that Replay leads to an
improvement in both correctness (16.76%) and completion time (11.56%), with
the latter being statistically significant at 99% confidence interval. As an indication
of a superior performance of the experimental group in terms of correctness, 75%
of this group performed better than or equal to 50% of the control group. In terms

31

of completion time, 50% of the experimental group was faster than (or equivalent
to) 25% of the control group. These results show that there are benefits in using
Replay over the state of the practice tools for most of the tasks included in this
empirical evaluation.

The per-task analysis of the results provided a number of insights on the type
of tasks our approach supports best. For tasks that needed fine-grained change
information, or in which the inspection of recent changes was important, Replay
outperformed the baseline. However, when the tasks required a high-level overview
of the changes, Replay did not perform better than the baseline.

As future work, we plan to incorporate the suggestions given by the subjects
to improve the usability of the tool. Some planned enhancements are: offering
the possibility to aggregate the changes when a general overview is needed; im-
plementing search bars in the Replay view and in the filters; providing a history
of recent requests; and adding a navigation mode to the Replay view that allows
restricting the navigation to changes of a single developer.

Acknowledgment

We thank Alberto Bacchelli and Richard Wettel for helping us with the design;
the subjects and the participants of the pilot study; Serge Demeyer, Harald Gall,
Oscar Nierstrasz, Arie van Deursen, Anja Guzzi, Quinten Soetens, and Michael
Würsch for helping us with local organizations. Hattori is supported by the Swiss
Science foundation through the project “GSync” (SNF Project No. 129496).

References

[1] A. von Mayrhauser, A. M. Vans, Program comprehension during software
maintenance and evolution, Computer 28 (1995) 44–55.

[2] J. Sillito, G. C. Murphy, K. D. Volder, Questions programmers ask during
software evolution tasks, in: Proceedings of FSE-14 (14th Intl. Symp. on
Foundations of Software Engineering), ACM Press, 2006, pp. 23–34.

[3] B. de Alwis, G. C. Murphy, Answering conceptual queries with ferret, in:
Proceedings of ICSE 2008 (30th Intl. Conf. on Software Engineering), ACM
Press, 2008, pp. 21–30.

[4] T. Fritz, G. C. Murphy, Using information fragments to answer the questions
developers ask, in: Proceedings of ICSE 2010 (32nd ACM/IEEE Intl. Conf.
on Software Engineering), IEE Computer Society, 2010, pp. 175–184.

32

[5] A. J. Ko, R. DeLine, G. Venolia, Information needs in collocated software
development teams, in: Proceedings of ICSE 2007 (29th ACM/IEEE Intl.
Conf. on Software Engineering), IEEE Computer Society, 2007, pp. 344–353.

[6] R. Robbes, M. Lanza, Characterizing and understanding development ses-
sions, in: Proceedings of ICPC 2007 (15th IEEE Intl. Conf. on Program
Comprehension), IEEE CS Press, 2007, pp. 155–164.

[7] M.-A. D. Storey, Theories, methods and tools in program comprehension:
past, present and future, in: Proceedings of IWPC 2005 (13th Intl. Workshop
on Program Comprehension), pp. 181 – 191.

[8] M. Lanza, S. Ducasse, H. Gall, M. Pinzger, Codecrawler — an information
visualization tool for program comprehension, in: Proceedings of ICSE
2005 (27th IEEE Intl. Conf. on Software Engineering), ACM Press, 2005, pp.
672–673.

[9] B. Cornelissen, A. Zaidman, A. van Deursen, A controlled experiment for
program comprehension through trace visualization, IEEE Trans. on Software
Engineering 99 (2010).

[10] R. Wettel, M. Lanza, R. Robbes, Software systems as cities: A controlled
experiment, in: Proceedings of ICSE 2011 (33rd Intl. Conf. on Software
Engineeering), p. to be published.

[11] T. D. LaToza, G. Venolia, R. DeLine, Maintaining mental models: a study of
developer work habits, in: Proceedings of ICSE 2006 (28th ACM Intl. Conf.
on Software Engineering), ACM, 2006, pp. 492–501.

[12] R. Grinter, Supporting articulation work using software configuration man-
agement systems, Computer Supported Cooperative Work 5 (1996) 447–465.

[13] C. R. B. de Souza, D. Redmiles, P. Dourish, Breaking the code, moving
between private and public work in collaborative software development, in:
Proceedings of GROUP 2003 (Intl. ACM SIGGROUP Conf. on Supporting
Group Work), ACM Press, 2003, pp. 105–114.

[14] L. Hattori, Enhancing collaboration of multi-developer projects with syn-
chronous changes, in: Proceedings of ICSE 2010 (32nd ACM/IEEE Intl.
Conf. on Software Engineering), Doctoral Symposium, IEEE CS Press, 2010,
pp. 377–380.

33

[15] L. Hattori, M. Lanza, Syde: A tool for collaborative software development,
in: Proceedings of ICSE 2010 (32nd ACM/IEEE Intl. Conf. on Software
Engineering), pp. 235–238.

[16] L. Hattori, M. Lungu, M. Lanza, Replaying past changes on multi-developer
projects, in: Proceedings of IWPSE-EVOL 2010 (Joint 11th Intl. Workshop
on Principles of Software Evolution and 5th ERCIM Workshop on Software
Evolution), pp. 13–22.

[17] L. Hattori, M. D’Ambros, M. Lanza, M. Lungu, Software evolution compre-
hension: Replay to the rescue, in: Proceedings of ICPC 2011 (19th IEEE
International Conference on Program Comprehension)), pp. 161–170.

[18] C. Parnin, R. DeLine, Evaluating cues for resuming interrupted programming
tasks, in: Proceedings of CHI 2010 (28th Intl. Conf. on Human Factors in
Computing Systems), ACM Press, 2010, pp. 93–102.

[19] R. Robbes, M. Lanza, A change-based approach to software evolution,
Electronic Notes in Theoretical Computer Science (ENTCS) 166 (2007)
93–109.

[20] M. Fowler, Refactoring - Improving the Design of Existing Code, Addison-
Wesley, 1999.

[21] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns - Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995.

[22] J. Singer, Practices of software maintenance, in: Proceedings of ICSM 1998
(the International Conference on Software Maintenance), IEEE Computer
Society, 1998, pp. 139–.

[23] C. Oezbek, L. Prechelt, Jtourbus: Simplifying program understanding by
documentation that provides tours through the source code, in: Proceedings
of ICSM 2007 (the IEEE International Conference on Software Maintenance),
pp. 64 –73.

[24] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in software engineering: an introduction, Kluwer Academic
Publishers, 2000.

34

[25] M. Lanza, L. Hattori, A. Guzzi, Supporting collaboration awareness with real-
time visualization of development activity, in: Proceedings of CSMR 2010
(14th IEEE European Conf. on Software Maintenance and Reengineering),
IEEE CS Press, 2010, pp. 207–216.

[26] A. Guzzi, M. Pinzger, A. van Deursen, Combining micro-blogging and
ide interactions to support developers in their quests, in: Proceedings of
ICSM2010 (IEEE Intl. Conf. on Software Maintenance), pp. 1 –5.

[27] M. Lanza, The evolution matrix: Recovering software evolution using soft-
ware visualization techniques, in: Proceedings of IWPSE 2001 (4th Intl.
Workshop on Principles of Software Evolution), ACM Press, 2001, pp. 37–
42.

[28] T. Gı̂rba, M. Lanza, S. Ducasse, Characterizing the evolution of class hier-
archies, in: Proceedings of CSMR 2005 (9th European Conf. on Software
Maintenance and Reengineering), IEEE CS Press, 2005, pp. 2–11.

[29] M. Lungu, M. Lanza, Exploring inter-module relationships in evolving
software systems, in: Proceedings of CSMR 2007 (11th IEEE European
Conf. on Software Maintenance and Reengineering), IEEE CS Press, 2007,
pp. 91–100.

[30] R. Wettel, M. Lanza, Visual exploration of large-scale system evolution,
in: Proceedings of WCRE 2008 (15th IEEE Working Conf. on Reverse
Engineering), IEEE CS Press, 2008, pp. 219–228.

[31] A. Hindle, Z. M. Jiang, W. Koleilat, M. W. Godfrey, R. C. Holt, Yarn:
Animating software evolution, in: Proceedings of VISSOFT 2007 (4th Intl.
Workshop on Visualizing Software for Understanding and Analysis), IEEE
CS Press, 2007, pp. 129–136.

[32] R. Robbes, Of Change and Software, Ph.D. thesis, University of Lugano,
Switzerland, 2008.

[33] D. Dig, Automated Upgrading of Component-based Applications, Ph.D.
thesis, University of Illinois at Urbana-Champaign, 2007.

[34] J. Quante, Do dynamic object process graphs support program understanding?
- a controlled experiment, in: Proceedings of ICPC 2008 (16th Intl. Conf. on
Program Comprehension), IEEE CS Press, 2008, pp. 73–82.

35

Appendix A. Experimental Data

In this appendix we present all the details about our experiment, complemen-
tary to the ones presented in Section 4, which make our experiment repeatable:
questionnaires, oracle sets, and the entire experimental data set collected from our
subjects.

Appendix A.1. Object System
The Spreadsheet project used in this experiment is an open-source project

under the GNU GPL v3 license. Its source code is available at http://code.
google.com/p/spread-ur-ca-gh-el/.

Appendix A.2. Screening Questionnaire
Using Google Docs4, we designed an online questionnaire that served both

to provide an easily accessible platform for the volunteers to enroll and to allow
capturing the personal information that we used to assign the subjects to treatments
(See Figure A.9).

Enrollment to Replay experiment

Thank you for your interest in participating on the Replay experiment.
This survey is intended to characterize our participants and will be used for statistical purposes
only.
All data collected in this experiment (including this questionnaire) will be anonymized.
* Required

Full name *

Contact e-mail address *

Age *

Gender *

 Female

 Male

Nationality *

Location *

Affiliation *

University, company, user group

Current education / job position *

e.g., developer, project manager, master student, professor, etc

Experience level *

A subjective assessment of your skills. None - You don't know this subject. Beginner - You are
familiar with this subject but still have some difficulties to use it. Knowledgeable - You are
comfortable in this subject and currently use it daily. Advanced - You currently consider yourself
highly proficient in this subject. Expert - Your colleagues look for you when they need help in this
subject, and you feel confident to help them.

None Beginner Knowledgeable Advanced Expert

Java programming

Using Eclipse IDE

Figure A.9: The screening questionnaire used to co collect personal and experience information of
the participants

4See http://docs.google.com.

36

Appendix A.3. Experimental Questionnaire
The content of the questionnaires, with the variations due to the different

treatment combinations, is presented in the following. Their actual form and
presentation is exemplified in Figure A.10 and Figure A.11, which show the
questionnaire for the treatment T2.

Together with the description of the tasks, we also provide an oracle with the
solution, specifying the grading per task.

Appendix A.3.1. Introduction
The aim of this experiment is to compare tool efficiency in supporting software

practitioners understanding the change history of a software system.
You will use Eclipse with the <toolset> to analyze Spreadsheet, a spreadsheet

application written in Java by undergraduate students at the University of Lugano.
You are going to Perform 6 tasks, with limited time to solve 5 of them. You

have 10 minutes to solve each of the first 4 tasks, and 20 minutes to solve task 5.
We kindly ask you:

• to write down your answers in a legible way;

• not to consult any other participant during the experiment;

• to perform the tasks in the specified order;

• to write down the current time before starting to work on a new task (after
reading it) and once after completing all the tasks;

• to announce to the experimenter that you are starting to work on a new task
(after reading it), in order to reset your allocated timer;

• not to return to earlier tasks because it affects the timing;

• to fill in the required information for each task. In the case of multiple choices
check the most appropriate answer and provide additional information, if
requested.

In the following, there is one warm-up task for you to get used to the tool and
the experiment.

The experiment is concluded with a short debriefing questionnaire.

Thank you for participating in this experiment!
Lile Hattori, Michele Lanza, Mircea Lungu and Marco DAmbros

37

Introduction

The aim of this experiment is to compare tool !"#$%!&$y in supporting software

practitioners understanding the change history of a software system.

You will use Eclipse with the Replay plug-in to analyze Spreadsheet, a

spreadsheet application written in Java by undergraduate students at the

University of Lugano.

You are going to Perform 6 tasks, with limited time to solve 5 of them. You have

'()*%&+,!-),.)-./0!)!1$2)."),2!)#3-,)4),1-5-6)1&7)8()*%&+,!-),.)-./0!),1-5)9:)

We kindly ask you:

; to write down your answers in a legible way;

; not to consult any other participant during the experiment;

;),.)<!3".3*),2!),1-5-)%&),2!)-<!$%#!7).rder;

; to write down the current time before starting to work on a new task (after

reading it) and once after completing all the tasks;

; to announce to the experimenter that you are starting to work on a new task

(after reading it), in order to reset your allocated timer;

; not to return to earlier tasks because it affects the timing;

; ,.)#//)%&),2!)required information for each task. In the case of multiple choices

check the most appropriate answer and provide additional information, if

requested.

In the following, there is one warm-up task for you to get used to the tool and the

experiment.

=2!)!><!3%*!&,)%-)$.&$/+7!7)?%,2)1)-2.3,)7!@3%!#&A)B+!-,%.&&1%re.

Thank you for participating in this experiment!

Lile Hattori, Michele Lanza, Mircea Lungu and Marco D’Ambros

Replay Experiment

Participant:

=8

(a) Introduction

Warm up!

On May 11th Luca implemented the code related to reading and loading a

spreadsheet (on ch.usi.inf.pf2.saveAndLoad.SpreadsheetReader). Find out the

following information:

What methods did Luca add/change?

What method was he struggling with and why?

_ _ : _ _ : _ _
 hours minutes seconds

Current time

Notify experimenter

(b) Warm-up

_ _ : _ _ : _ _
 hours minutes seconds

Current Time

(c) Time - logged after each
task

Tasks

Getting familiar with someone’s code

Imagine that you are on May 22nd and that you are joining this team to replace

Omar, who was allocated to another project. This company loosely follows a

software process, so Omar did not document what he was doing before he left.

Y!"#$%#&'$'(&)$*&$'!$%+,$!"'$-.('$./$-(&$-!#)*+0$!+1$&!$2!"$3(+$&'(#'$4rom what he

5/4'$"+%+*&./,6$7!!)$('$'./$3.(+0/&$89(#$.(&$,!+/$,"#*+0$'./$-//)$:;(2$<='.$'!$

><&'?$(+,$*,/+'*42$'./$two classes he changed the most. Changes should be

@"(+'*%/,$-*'.$+"9A/#$!4$3!,/$/,*'&$:!#$*'/9&$*+$'./$B/C5(2$D*/-?6

T(&)$<

E./$'-!$35(&&/&$89(#$3.(+0/,$'./$9!&'$A/'-//+$;(2$<='.$(+,$;(2$><&'$(re:

<6$35(&&$$F

>6$35(&&$$F

F$F : F$F : F$F
 hours minutes seconds

Current time

Notify experimenter

_ _ : _ _ : _ _
 hours minutes seconds

Current Time

Identify methods that Rocco (roccoghielmini@sunrise.ch) changed on May 22nd:

ch.usi.inf.pf2.Cell.getCoordinate()

ch.usi.inf.pf2.Cell.setValueType(String valueType)

ch.usi.inf.pf2.Recognizer!"#$%&'(&)%#*+,-..Value, String pattern)

ch.usi.inf.pf2.Recognizer.isFunction(String cellValue)

ch.usi.inf.pf2.spreadsheet.model.Spr-/$(0--&12$-.!3-&4-..42#&-#&3'"#/.+%#&+,22rdY5+"#/l

int coor$65+"#/.+(&)%#*+&-7&5+822.-/#+-#$9:T-7&;

ch.usi.inf.pf2.spreadsheet.model.SpreadSheetSelectionModel.getColumnCount()

ch.usi.inf.pf2.spreadsheet.model.SpreadSheetSelectionModel.selectCell(int row, int col)

ch.usi.inf.pf2.spreadsheet.model.SpreadSheetSelectionModel.moveTo(Point point, int

width, int height)

ch.usi.inf.pf2.spreadsheet.model.SpreadSheetSelectionModel.setSelectedRange

(RangeModell selectedRange)

Awareness of team activity

You are on your second day of work (May 23rd) and you have just started to work

on a set of classes. Y2<+=/#&+&2+"#$+2<&+=0-&0-)+32>-2#-+-.3-+0/3+recently

,0/#*-$+%&+8-:2re you commit your changes. Below are the list of classes and

methods you are working on. Y2<+?#2=+&0/&+8-:2r-+9>/)+.-:&+&0-+&-/>5+@2,,2+=/3+

pair programming with him, while Luca and Mattia were working on other parts of

the code. Hence, focus on Rocco, and identify the methods that he has changed on

the previous day (May 22nd).

Task 2

_ _ : _ _ : _ _
 hours minutes seconds

Current time

A2&%:B+-7C-)%>-#&-)

Finding experts of an artifact

You are still on your second day (May 23th) and starting to get familiar with the

source code. By now you know that ch.usi.inf.pf2.gui.MainFrame is one of the main

!"#$$%$&'(&)*%&$+$)%,-&./)&+'/&*#0%&12(3!/")2%$&/41%5$)#41246&*'7&2)&7'58$9&:''8&('r

people who can help you out: search who changed ch.usi.inf.pf2.gui.MainFrame

.%)7%%4&;#+&<=)*)&>>41&)'&341&)*%&two developers who changed it the most

#41&5#48&)*%,&?<&('5&35$)-)&>&('5&$%!'41@9&A4&)*2$&!#$%-&!*#46%$&#re measured as

number of code edits (or items in the Replay view).

Task 3

_ _ : _ _ : _ _
 hours minutes seconds

Current time

Notify experimenter

:/!#

Mattia

Omar

Rocco

Relating code changes to a feature

Until May 20th the implementation of GUI features in ch.usi.inf.pf2.gui.JSpreadSheet

was Mattia’s responsibility. Now, you are taking over this r!"#$%"&'&(&)*+,%-+*$./+0/")+

task is to refactor the code to improve its design and readability. You want to start

with the most complicated feature, because it will need most of your effort. Look at

the changes Mattia did on JSpreadSheet on May 20th and, from the list of feature

below, identify the one Mattia struggled with the most - the one that underwent

heaviest changes in terms of number of code edits (or items in the Replay view).

Task 4

_ _ : _ _ : _ _
 hours minutes seconds

Current time

Notify experimenter

Identify the functionality Mattia struggled with the most:

Handling range selection

Handling mouse events

Handling keyboard events

Handling focus events

Painting the spreadsheet component

Figure A.10: Handout of treatment T2 (experimental group) – Part 1 of 2

38

Tracking back the introduction of a bug

Y!"#$%&'#('')#*!+,-).#*-/$#/$'#/'%0#1!+#!)'#*'',#)!*#%)2#3!"+#)'4/#/%5,#-5#/!#64#

%#(".7#8$'#(".#$%99')5#*$')#5!0'!)'#/+-'5#/!#!9')#%)#'4-5/-).#:7;5&<#6='#!)#/$'#

spreadsheet. To repr!2";'#/$'#(".>#6)2#;=%55#;$7"5-7-)1791?7."-7@%-)ABC>#+-.$/D;=-;,#

!)#-/#%)2#+")#%5#:E%&%#F99=-;%/-!)<7#8$')>#;=-;,#!)#:G9')<>#%)2#5'=';/#:/'5/7;5&<7#You

5$!"=2#.'/#/$'#'4;'9/-!)#-=="5/+%/'2#('=!w.

H!;;!#/!=2#3!"#/$%/#/$'#(".#*%5)’/#$%99')-).#*-/$#$-0#")/-=#=%5/#/-0'#$'#;$%).'2#

/$'#;!2'#I!)#@%3#?J/$K7#L%5'2#!)#/$-5#-)1!+0%/-!)>#%)5*'+#/$'#1!==!*-).#M"'5/-!)57

Task 5

_ _ : _ _ : _ _
 hours minutes seconds

Current time

Notify experimenter

Exception stack trace:

Tracking back the introduction of a bug

Y!"#$%&'#('')#*!+,-).#*-/$#/$'#/'%0#1!+#/*!#*'',2#)!*#%)3#4!"+#)'5/#/%2,#-2#/!#6x

%#(".7#8$'#(".#$%99')2#*$')#2!0'!)'#/+-'2#/!#!9')#%)#'5-2/-).#:7;2&<#6='#!)#/$'#

spreadsheet. To repr!3";'#/$'#(".>#6)3#;=%22#;$7"2-7-)1791?7."-7@%-)ABC>#+-.$/D;=-;,#

!)#-/#%)3#+")#%2#:E%&%#F99=-;%/-!)<7#8$')>#;=-;,#!)#:G9')<>#%)3#2'=';/#:/'2/7;2&<7#You

2$!"=3#.'/#/$'#'5;'9/-!)#-=="2/+%/'3#('=!w.

H!;;!#/!=3#4!"#/$%/#/$'#(".#*%2)’/#$%99')-).#*-/$#$-0#")/-=#=%2/#/-0'#$'#;$%).'3#

/$'#;!3'#I!)#@%4#?J/$K7#L%2'3#!)#/$-2#-)1!+0%/-!)>#%)2*'+#/$'#1!==!*-).#M"'2/-!)27

Task 5

1. When was the bug intr!3";'3N##O##O#7#O##O#7##O##O##O##O##I3%/'K

?7#P$!#-)/roduced the bug? _

3. What change caused the bug?

 _

 _

4. Pr!9!2'#%#65#/!#/$'#(".Q##O##

 _

 _

 _

Understanding past refactorings

This system is now on its maintenance phase. The other developers were allocated

to new projects and you are maintaining it alone. Since you joined the team almost

at the end of the development cycle, when everything is very hectic, you didn’t have

time to deeply understand the system’s architecture. Now, investigating the code,

you’ve noticed that right before you joined the team (around May 17th to 21st) a

major refactoring took place, involving the deletion of class ch.usi.inf.pf2.Sheet. This

refactoring was mainly done by Luca with small contributions by the other

developers. Investigate why Luca removed ch.usi.inf.pf2.Sheet, and what other

classes were changed in the same refactoring.

Task 6

_ _ : _ _ : _ _
 hours minutes seconds

Current time

Notify experimenter

Describe the refactoring, giving details about what classes changed and why:

!"#$%"&'(

On a scale from 1 to 5, how did you feel about the time pressure? Please write in

the box below the answer that matches your opinion the most:

1. Too much time pressure. I could not cope with the tasks, regar!"#$$%&'%()#*+%!*',-."(/

2. Fair amount of pressure. I could certainly have done better with more time.

3. Not so much time pressure. I had to hurry a bit, but it was ok

4. Very little time pressure. I felt quite comfortable with the time given

5. No time pressure at all

Regar!"#$$%&'%()#%0*1#2%(*3#4%5"#6$#%*2!*-6(#%)&7%!*',-."(%7&."!%/&.%+6(#%()#%(6$8$9%

Please mark the appr&5+*6(#%!*',-."(/%'&+%#6-)%&'%()#%(6$8$:

impossible !"#$%&'(")(*+,*!"-(* simple (+"."-'

T-/012
classes that Omar changed the most

T-/013
methods Rocco has changed

T-/014
experts of ch.usi.inf.pf2.gui.MainFrame

T-/015
feature Mattia struggled with the most

T-/016
bug in ch.usi.inf.pf2.MainGUI

T-/017
refactoring performed by Luca

How realistic were the tasks? Please indicate how much you agree that the tasks

were realistic (you can see the situation happening in real development scenario).

/(+8)9':1-9+** -9+** &)!*%"!*! !"/-9+** /(+8)9':1!"/-9+**1

T-/012

T-/013

T-/014

T-/015

T-/016

T-/017

Enter comments and/or suggestions you may have about the experiment, which

could help us improve it.

Enter comments and/or suggestions to improve Replay.

Figure A.11: Handout of treatment T2 (experimental group) – Part 2 of 2

Appendix A.3.2. Tasks
Task 1:. Getting Familiar with someone’s code

Imagine that you are on May 22nd and that you are joining this team to replace
Omar, who was allocated to another project. This company loosely follows a
software process, so Omar did not document what he was doing before he left.
Your first task is to find out what he was working on, so you can start from what
he left unfinished. Look at the changes Omar has done during the week (May
17th to 21st) and identify the two classes he changed the most. Changes should be
quantified with number commits per class.

The two classes Omar (elabedomar) changed the most between May 17th and
May 21st are:

1. class ..

39

2. class ..

Choices:
All classes of the system.

Solution:

• ch.usi.inf.pf2.gui.JSpreadSheet

• ch.usi.inf.pf2.spreadsheet.model.SpreadSheetSelectionModel

(0.5p for each correct class)

Task 2:. Awareness of team activity

You are on your second day of work (May 23rd) and you have just started to
work on a set of classes. You want to find out whether someone else has recently
changed it before you commit your changes. Below are the list of classes and
methods you are working on. You know that before Omar left the team, Rocco was
pair programming with him, while Luca and Mattia were working on other parts of
the code. Hence, focus on Rocco, and identify the methods that he has changed on
the previous day (May 22nd).

Identify methods that Rocco (roccoghielmini@sunrise.ch) changed on May
22nd.

Choices:

• ch.usi.inf.pf2.Cell.getCoordinate()

• ch.usi.inf.pf2.Cell.setValueType(String valueType)

• ch.usi.inf.pf2.Recognizer.findit(String cellValue, String pattern)

• ch.usi.inf.pf2.Recognizer.isFunction(String cellValue)

• ch.usi.inf.pf2.spreadsheet.model.SpreadSheetModel.setCellContents(final int
coordY, final int coordX, final String text, boolean endOfText)

• ch.usi.inf.pf2.spreadsheet.model.SpreadSheetSelectionModel.getColumnCount()

40

• ch.usi.inf.pf2.spreadsheet.model.SpreadSheetSelectionModel.selectCell(int
row, int col)

• ch.usi.inf.pf2.spreadsheet.model.SpreadSheetSelectionModel.moveTo(Point
point, int width, int height)

• ch.usi.inf.pf2.spreadsheet.model.SpreadSheetSelectionModel.setSelectedRange(RangeModel
selectedRange)

Solution:

• ch.usi.inf.pf2.Recognizer.isFunction(String cellValue)

• SpreadSheetModel.setCellContents(final int coordY, final int coordX, final
String text, boolean endOfText)

• ch.usi.inf.pf2.spreadsheet.model.SpreadSheetSelectionModel.selectCell(int
row, int col)

(0.33p for each correct method)

Task 3:. Finding experts of an artifact

You are still on your second day (May 23th) and starting to get familiar with the
source code. By now you know that ch.usi.inf.pf2.gui.MainFrame is one of the main
classes of the system, but you have difficulties understanding how it works. Look
for people who can help you out: search who changed ch.usi.inf.pf2.gui.MainFrame
between May 17th and 22nd to find the two developers who changed it the most
and rank them (1 for first, and 2 for second). In this case, changes are measured as
number of lines of code changes (added/deleted).

Choices:
All developers.

Solution:

1. Luca (lucaurso)

2. Mattia (mattia.candeloro89)

(0.5p for each correct class)

41

Task 4:. Relating code changes to a feature

Until May 20th the implementation of GUI features in ch.usi.inf.pf2.gui.JSpreadSheet
was Mattia’s responsibility. Now, you are taking over this responsibility and your
first task is to refactor the code to improve its design and readability. You want to
start with the most complicated feature, because it will need most of your effort.
Look at the changes Mattia did on JSpreadSheet on May 20th and, from the list of
feature below, identify the one Mattia struggled with the most – the one that under-
went heaviest changes in terms of number of lines of code changes (added/deleted).

Choices:

• Handling range selection

• Handling mouse events

• Handling keyboard events

• Handling focus events

• Painting the spreadsheet component

Solution:

Handling keyboard events (1p)

Task 5:. Tracking back the introduction of a bug

You have been working with the team for one week now and your next task is
to fix a bug. The bug happens when someone tries to open an existing ‘.csv’ file
on the spreadsheet. To reproduce the bug, find class ch.usi.inf.pf2.gui.MainGUI,
right-click on it and run as ‘Java Application’. Then, click on ‘Open’, and select
‘test.csv’. You should get the exception illustrated below. Rocco told you that the
bug wasn’t happening with him until last time he changed the code (on May 27th).
Based on this information, answer the following questions.

(An image with the exception is shown)

a. When was the bug introduced?

42

Choices:
Entire period of the development of the system.

Solution:
30.05.2010

b. Who introduced the bug?

Choices:
All developers of the system.

Solution:
Luca

c. What change caused the bug?

Solution:
In free form saying that what caused the bug was the change of the call
sheet.getGrid().get(i).add(Cell) to sheet.getGrid().get(i).add(int,Cell).

d. Propose a fix to the bug

Solution:
There are a couple of possibilities, but the easier one is to revert to the
old code.

(0.25p for each correct answer)

Task 6:. Understanding past refactorings

This system is now on its maintenance phase. The other developers were
allocated to new projects and you are maintaining it alone. Since you joined the
team almost at the end of the development cycle, when everything is very hectic,
you didn’t have time to deeply understand the system’s architecture. Now, inves-
tigating the code, you’ve noticed that right before you joined the team (around
May 17th to 21st) a major refactoring took place, involving the deletion of class
ch.usi.inf.pf2.Sheet. This refactoring was mainly done by Luca with small contribu-
tions by the other developers. Investigate why Luca removed ch.usi.inf.pf2.Sheet,

43

and what other classes were changed in the same refactoring. Describe the refac-
toring, giving details about what classes changed and why.

Solution:
Subjective answer: does not count for the qualitative analysis.

Appendix A.3.3. Debriefing Questionnaire
Time pressure.. On a scale from 1 to 5, how did you feel about the time pressure?
Please write in the box below the answer that matches your opinion the most:

1. Too much time pressure. I could not cope with the tasks, regardless of their
difficulty

2. Fair amount of pressure. I could certainly have done better with more time.

3. Not so much time pressure. I had to hurry a bit, but it was ok

4. Very little time pressure. I felt quite comfortable with the time given

5. No time pressure at all

Difficulty.. Regardless of the given time, please indicate how difficult would you
rate the tasks? Please mark the appropriate difficulty for each of the tasks.

Scale:
1 – trivial; 2 – simple; 3 – intermediate; 4 – difficult; 5 – impossible.

Realism.. How realistic were the tasks? Please indicate how much you agree that
the tasks were realistic (you can see the situation happening in real development
scenario).

Scale:
1 – strongly disagree; 2 – disagree; 3 – undecided; 4 – agree; 5 – strongly agree.

Comments on the experiment.. Enter comments and/or suggestions you may have
about the experiment, which could help us improve it.

Comments on the Replay tool.. Enter comments and/or suggestions to improve
Replay (applicable for the experimental group).

44

Appendix A.4. Dataset
To provide a fully transparent experimental setup, we make available the entire

data set of our experiment.
In Table A.10 we present the subjects and the personal information that we

relied on when we assigned them to the different blocks (i.e., based on experience
and background). Once the subjects were assigned to the two blocks (begin-
ner/advanced), within each block we assigned the subjects to a treatment using
randomization. The assignment of subjects to treatments and blocks is also pre-
sented in Table A.10.

The correctness level per task for each subject is presented in Table A.11. Sim-
ilarly, the completion times for each tasks and overall are presented in Table A.12.
Finally, Table A.13 and tab:realism present the data we collected from the subjects
regarding the perceived time pressure, difficulty, and realism per task, as experi-
enced by our subjects. This data allowed us to determine whether there was a task
that was highly unfair for one of the groups. Moreover, it provided us important
hints on the type of tasks in which Replay is most beneficial and for which type of
users.

45

Ta
bl

e
A

.1
0:

T
he

su
bj

ec
ts

’p
er

so
na

li
nf

or
m

at
io

n,
cl

us
te

re
d

by
tr

ea
tm

en
tc

om
bi

na
tio

n
(c

on
tr

ol
/e

xp
er

im
en

ta
l)

E
xp

er
ie

nc
e

le
ve

l
Ye

ar
so

fe
xp

er
ie

nc
e

Su
bj

ec
tI

D
Tr

ea
tm

en
t

B
lo

ck
A

ge
Jo

b
po

si
tio

n
Ja

va
E

cl
ip

se
SV

N
Ja

va
E

cl
ip

se
SV

N
E

1
E

cl
i+

R
ep

la
y

ad
va

nc
ed

27
Ph

D
st

ud
en

t
kn

ow
le

dg
ea

bl
e

kn
ow

le
dg

ea
bl

e
ad

va
nc

ed
4

–
6

4
–

6
4

–
6

E
2

E
cl

i+
R

ep
la

y
ad

va
nc

ed
24

M
as

te
rs

tu
de

nt
ex

pe
rt

ex
pe

rt
ex

pe
rt

4
–

6
4

–
6

4
–

6
E

3
E

cl
i+

R
ep

la
y

ad
va

nc
ed

23
M

as
te

rs
tu

de
nt

kn
ow

le
dg

ea
bl

e
kn

ow
le

dg
ea

bl
e

kn
ow

le
dg

ea
bl

e
4

–
6

4
–

6
4

–
6

E
4

E
cl

i+
R

ep
la

y
be

gi
nn

er
27

Ph
D

st
ud

en
t

kn
ow

le
dg

ea
bl

e
kn

ow
le

dg
ea

bl
e

be
gi

nn
er

4
–

6
1

–
3

<
1

E
5

E
cl

i+
R

ep
la

y
ad

va
nc

ed
53

Pr
of

es
so

r
ad

va
nc

ed
ad

va
nc

ed
ad

va
nc

ed
>

10
7

–
10

7
–

10
E

6
E

cl
i+

R
ep

la
y

ad
va

nc
ed

31
Ph

D
st

ud
en

t
ad

va
nc

ed
ad

va
nc

ed
ad

va
nc

ed
>

10
7

–
10

7
–

10
E

7
E

cl
i+

R
ep

la
y

be
gi

nn
er

27
Ph

D
st

ud
en

t
ex

pe
rt

kn
ow

le
dg

ea
bl

e
ad

va
nc

ed
7

–
10

1
–

3
1

–
3

E
8

E
cl

i+
R

ep
la

y
be

gi
nn

er
30

Ph
D

st
ud

en
t

ad
va

nc
ed

ad
va

nc
ed

kn
ow

le
dg

ea
bl

e
1

–
3

4
–

6
<

1
E

9
E

cl
i+

R
ep

la
y

be
gi

nn
er

29
Ph

D
st

ud
en

t
be

gi
nn

er
be

gi
nn

er
be

gi
nn

er
1

–
3

1
–

3
<

1
E

10
E

cl
i+

R
ep

la
y

ad
va

nc
ed

29
Ph

D
st

ud
en

t
ad

va
nc

ed
ad

va
nc

ed
ad

va
nc

ed
7

–
10

4
–

6
4

–
6

E
11

E
cl

i+
R

ep
la

y
be

gi
nn

er
27

Ph
D

st
ud

en
t

kn
ow

le
dg

ea
bl

e
kn

ow
le

dg
ea

bl
e

kn
ow

le
dg

ea
bl

e
1

–
3

1
–

3
1

–
3

E
12

E
cl

i+
R

ep
la

y
be

gi
nn

er
27

Ph
D

st
ud

en
t

kn
ow

le
dg

ea
bl

e
kn

ow
le

dg
ea

bl
e

no
ne

4
–

6
4

–
6

<
1

E
13

E
cl

i+
R

ep
la

y
ad

va
nc

ed
30

Ph
D

st
ud

en
t

ex
pe

rt
ex

pe
rt

ex
pe

rt
7

–
10

7
–

10
4

–
6

E
14

E
cl

i+
R

ep
la

y
ad

va
nc

ed
26

Ph
D

st
ud

en
t

ad
va

nc
ed

ad
va

nc
ed

ad
va

nc
ed

4
–

6
4

–
6

4
–

6
E

15
E

cl
i+

R
ep

la
y

be
gi

nn
er

23
M

as
te

rs
tu

de
nt

ad
va

nc
ed

ad
va

nc
ed

kn
ow

le
dg

ea
bl

e
1

–
3

1
–

3
1

–
3

E
16

E
cl

i+
R

ep
la

y
be

gi
nn

er
30

M
as

te
rs

tu
de

nt
ad

va
nc

ed
kn

ow
le

dg
ea

bl
e

kn
ow

le
dg

ea
bl

e
1

–
3

1
–

3
1

–
3

E
17

E
cl

i+
R

ep
la

y
be

gi
nn

er
27

M
as

te
rs

tu
de

nt
ad

va
nc

ed
kn

ow
le

dg
ea

bl
e

no
ne

7
–

10
4

–
6

<
1

E
18

E
cl

i+
R

ep
la

y
ad

va
nc

ed
23

M
as

te
rs

tu
de

nt
ex

pe
rt

ad
va

nc
ed

kn
ow

le
dg

ea
bl

e
4

–
6

4
–

6
1

–
3

E
19

E
cl

i+
R

ep
la

y
be

gi
nn

er
25

M
as

te
rs

tu
de

nt
ad

va
nc

ed
kn

ow
le

dg
ea

bl
e

be
gi

nn
er

4
–

6
1

–
3

1
–

3
E

20
E

cl
i+

R
ep

la
y

be
gi

nn
er

26
M

as
te

rs
tu

de
nt

kn
ow

le
dg

ea
bl

e
kn

ow
le

dg
ea

bl
e

be
gi

nn
er

1
–

3
1

–
3

1
–

3
C

1
E

cl
i+

SV
N

be
gi

nn
er

25
Ph

D
st

ud
en

t
be

gi
nn

er
be

gi
nn

er
no

ne
<

1
<

1
<

1
C

2
E

cl
i+

SV
N

ad
va

nc
ed

25
M

as
te

rs
tu

de
nt

kn
ow

le
dg

ea
bl

e
kn

ow
le

dg
ea

bl
e

be
gi

nn
er

7
–

10
7

–
10

1
–

3
C

3
E

cl
i+

SV
N

be
gi

nn
er

27
Ph

D
st

ud
en

t
ad

va
nc

ed
ad

va
nc

ed
kn

ow
le

dg
ea

bl
e

4
–

6
1

–
3

1
–

3
C

4
E

cl
i+

SV
N

ad
va

nc
ed

34
Po

st
-d

oc
ad

va
nc

ed
ad

va
nc

ed
kn

ow
le

dg
ea

bl
e

>
10

4
–

6
7

–
10

C
5

E
cl

i+
SV

N
be

gi
nn

er
26

Ph
D

st
ud

en
t

kn
ow

le
dg

ea
bl

e
be

gi
nn

er
be

gi
nn

er
<

1
<

1
<

1
C

6
E

cl
i+

SV
N

be
gi

nn
er

29
Ph

D
st

ud
en

t
kn

ow
le

dg
ea

bl
e

kn
ow

le
dg

ea
bl

e
be

gi
nn

er
4

–
6

4
–

6
<

1
C

7
E

cl
i+

SV
N

ad
va

nc
ed

26
M

as
te

rs
tu

de
nt

ad
va

nc
ed

ad
va

nc
ed

kn
ow

le
dg

ea
bl

e
7

–
10

7
–

10
4

–
6

C
8

E
cl

i+
SV

N
be

gi
nn

er
25

Ph
D

st
ud

en
t

ad
va

nc
ed

kn
ow

le
dg

ea
bl

e
no

ne
7

–
10

4
–

6
<

1
C

9
E

cl
i+

SV
N

be
gi

nn
er

30
Ph

D
st

ud
en

t
be

gi
nn

er
be

gi
nn

er
be

gi
nn

er
<

1
<

1
<

1
C

10
E

cl
i+

SV
N

ad
va

nc
ed

29
Ph

D
st

ud
en

t
ex

pe
rt

ex
pe

rt
ex

pe
rt

7
–

10
4

–
6

1
–

3
C

11
E

cl
i+

SV
N

ad
va

nc
ed

27
Ph

D
st

ud
en

t
ad

va
nc

ed
kn

ow
le

dg
ea

bl
e

kn
ow

le
dg

ea
bl

e
7

–
10

7
–

10
4

–
6

C
12

E
cl

i+
SV

N
be

gi
nn

er
33

Ph
D

st
ud

en
t

ad
va

nc
ed

kn
ow

le
dg

ea
bl

e
kn

ow
le

dg
ea

bl
e

4
–

6
1

–
3

1
–

3
C

13
E

cl
i+

SV
N

ad
va

nc
ed

30
Ph

D
st

ud
en

t
ex

pe
rt

ex
pe

rt
ex

pe
rt

7
–

10
7

–
10

4
–

6
C

14
E

cl
i+

SV
N

ad
va

nc
ed

38
Ph

D
st

ud
en

t/A
ss

is
ta

nt
Pr

of
.

ad
va

nc
ed

ad
va

nc
ed

kn
ow

le
dg

ea
bl

e
4

–
6

4
–

6
4

–
6

C
15

E
cl

i+
SV

N
ad

va
nc

ed
31

Ph
D

st
ud

en
t

ex
pe

rt
ad

va
nc

ed
ad

va
nc

ed
4

–
6

4
–

6
1

–
3

C
16

E
cl

i+
SV

N
be

gi
nn

er
33

M
as

te
rs

tu
de

nt
be

gi
nn

er
be

gi
nn

er
be

gi
nn

er
1

–
3

1
–

3
<

1
C

17
E

cl
i+

SV
N

be
gi

nn
er

22
M

as
te

rs
tu

de
nt

no
ne

be
gi

nn
er

no
ne

<
1

<
1

<
1

C
18

E
cl

i+
SV

N
be

gi
nn

er
23

M
as

te
rs

tu
de

nt
ad

va
nc

ed
ad

va
nc

ed
kn

ow
le

dg
ea

bl
e

4
–

6
1

–
3

4
–

6
C

19
E

cl
i+

SV
N

be
gi

nn
er

27
M

as
te

rs
tu

de
nt

kn
ow

le
dg

ea
bl

e
ad

va
nc

ed
be

gi
nn

er
1

–
3

1
–

3
<

1
C

20
E

cl
i+

SV
N

be
gi

nn
er

22
M

as
te

rs
tu

de
nt

kn
ow

le
dg

ea
bl

e
kn

ow
le

dg
ea

bl
e

no
ne

4
–

6
1

–
3

<
1

46

Table A.11: The correctness of the subjects’ solutions to the tasks

Correctness per task
Subject ID Task 1 Task 2 Task 3 Task 4 Task 5 Total
E1 1.00 1.00 1.00 1.00 0.50 4.50
E2 1.00 1.00 1.00 0.00 1.00 4.00
E3 1.00 1.00 1.00 1.00 0.50 4.50
E4 1.00 0.67 1.00 1.00 0.00 3.67
E5 1.00 1.00 1.00 1.00 0.00 4.00
E6 1.00 1.00 1.00 1.00 1.00 5.00
E7 1.00 1.00 1.00 1.00 1.00 5.00
E8 1.00 1.00 1.00 1.00 1.00 5.00
E9 1.00 1.00 1.00 1.00 0.50 4.50
E10 1.00 1.00 1.00 1.00 1.00 5.00
E11 1.00 1.00 1.00 1.00 1.00 5.00
E12 1.00 0.67 1.00 1.00 0.00 3.67
E13 1.00 0.67 1.00 1.00 0.25 3.92
E14 1.00 1.00 1.00 0.00 1.00 4.00
E15 1.00 1.00 1.00 0.00 0.00 3.00
E16 1.00 1.00 1.00 1.00 0.00 4.00
E17 1.00 0.33 1.00 0.00 0.00 2.33
E18 1.00 1.00 1.00 1.00 1.00 5.00
E19 1.00 0.67 1.00 0.00 0.50 3.17
E20 1.00 1.00 1.00 0.00 0.00 3.00
C1 0.50 0.67 1.00 0.00 0.50 2.67
C2 1.00 1.00 1.00 1.00 0.50 4.50
C3 1.00 1.00 0.00 0.00 1.00 3.00
C4 1.00 1.00 0.00 1.00 1.00 4.00
C5 1.00 1.00 1.00 1.00 0.75 4.75
C6 1.00 0.67 1.00 1.00 0.00 3.67
C7 1.00 1.00 0.00 1.00 0.75 3.75
C8 1.00 1.00 1.00 1.00 0.00 4.00
C9 0.00 1.00 1.00 1.00 1.00 4.00
C10 1.00 0.67 1.00 0.00 1.00 3.67
C11 0.50 1.00 1.00 1.00 1.00 4.50
C12 0.00 1.00 1.00 1.00 0.75 3.75
C13 1.00 1.00 1.00 1.00 1.00 5.00
C14 1.00 1.00 1.00 1.00 0.25 4.25
C15 0.00 0.67 0.50 1.00 1.00 3.17
C16 1.00 0.00 0.50 0.00 0.00 1.50
C17 0.50 1.00 1.00 1.00 0.00 3.50
C18 1.00 0.67 1.00 1.00 0.00 3.67
C19 0.00 0.00 1.00 0.00 0.00 1.00
C20 0.00 1.00 1.00 0.00 0.00 2.00

47

Table A.12: The subjects’ completion time per tasks (in minutes)

Completion time per task
Subject ID Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Total Total (excl. T6)
E1 4.00 4.00 1.00 7.00 18.00 17.00 51.00 34.00
E2 4.83 6.33 1.83 2.75 22.42 22.33 60.50 38.17
E3 3.08 7.33 1.67 16.42 25.42 0.00 53.92 53.92
E4 5.50 5.33 2.50 10.08 23.93 11.33 58.68 47.35
E5 9.75 3.25 1.17 9.92 20.67 21.92 66.67 44.75
E6 4.67 5.50 2.25 7.42 15.00 8.08 42.92 34.83
E7 4.75 8.75 2.58 7.50 19.33 8.83 51.75 42.92
E8 7.00 7.00 4.00 11.00 14.00 20.00 63.00 43.00
E9 6.00 7.00 4.00 8.00 20.00 28.00 73.00 45.00
E10 4.00 7.00 2.00 9.00 22.00 50.00 94.00 44.00
E11 2.00 6.00 1.00 8.00 15.00 19.00 51.00 32.00
E12 5.00 7.00 4.00 8.00 20.00 13.00 57.00 44.00
E13 3.08 6.75 1.20 5.25 20.83 20.17 57.28 37.12
E14 6.00 9.00 3.00 7.00 20.00 19.00 54.00 38.00
E15 3.58 6.17 2.08 6.00 23.00 22.00 63.17 40.83
E16 2.25 9.58 2.42 6.92 19.67 24.33 65.17 40.83
E17 9.50 6.42 4.67 6.53 21.03 23.83 71.98 48.15
E18 5.33 7.00 4.25 6.92 18.75 13.33 55.58 42.25
E19 4.50 7.00 4.33 10.25 20.00 28.25 74.33 46.08
E20 6.08 6.75 2.25 4.25 20.33 26.00 65.67 39.67
C1 5.00 4.00 13.00 3.00 14.00 12.00 51.00 39.00
C2 8.33 5.75 10.33 10.75 14.33 27.00 76.50 49.50
C3 7.00 7.00 9.00 10.00 21.00 18.00 72.00 54.00
C4 7.00 10.00 9.00 8.00 16.00 28.00 78.00 50.00
C5 9.18 3.42 10.67 1.67 20.25 14.50 59.68 45.18
C6 7.33 3.77 4.25 5.92 23.92 25.42 70.60 45.18
C7 6.08 5.50 10.00 7.67 21.33 16.42 67.00 50.58
C8 8.00 9.00 10.00 5.00 19.00 15.00 66.00 51.00
C9 9.00 10.00 9.00 5.00 17.00 19.00 69.00 50.00
C10 7.92 6.10 9.83 4.25 23.00 13.50 64.60 51.10
C11 6.92 6.67 7.83 4.83 14.67 23.00 63.92 40.92
C12 7.25 8.00 11.50 6.08 11.00 21.33 65.17 43.83
C13 4.37 7.58 6.67 4.00 13.58 10.50 46.70 36.20
C14 4.00 6.00 3.00 4.00 20.00 21.00 58.00 37.00
C15 6.00 5.00 6.00 5.00 16.00 16.00 54.00 38.00
C16 11.33 9.00 13.75 9.17 12.17 13.33 68.75 55.42
C17 10.50 7.83 9.33 5.25 19.92 8.50 61.33 52.83
C18 8.42 4.33 5.83 5.33 21.58 14.57 60.07 45.50
C19 11.67 10.17 4.95 7.83 20.83 27.75 83.20 55.45
C20 12.50 9.00 7.25 9.42 17.38 17.25 72.80 55.55

48

Table A.13: The subjects’ perceived time pressure and task difficulty

Subject Time Difficulty level
ID pressure Task 1 Task 2 Task 3 Task 4 Task 5 Task 6
E1 3 simple simple simple simple intermediate difficult
E2 3 trivial intermediate simple intermediate simple difficult
E3 1 simple simple simple intermediate difficult
E4 3 trivial simple trivial intermediate difficult difficult
E5 2 trivial simple simple intermediate impossible difficult
E6 4 intermediate simple intermediate intermediate difficult difficult
E7 3 trivial simple trivial intermediate intermediate impossible
E8 difficult difficult simple impossible difficult impossible
E9 2 simple simple simple simple intermediate difficult
E10 2 trivial simple trivial simple simple difficult
E11 3 trivial simple simple simple intermediate difficult
E12 2 difficult difficult difficult difficult difficult difficult
E13 2 trivial simple simple intermediate difficult difficult
E14 4 trivial simple trivial intermediate difficult difficult
E15 4 simple simple simple simple difficult intermediate
E16 2 trivial simple trivial simple intermediate difficult
E17 2 trivial trivial simple intermediate difficult difficult
E18 4 simple trivial trivial intermediate intermediate difficult
E19 2 trivial simple simple intermediate difficult impossible
E20 3 simple simple trivial intermediate difficult difficult
C1 3 simple simple intermediate intermediate intermediate intermediate
C2 4 simple simple difficult difficult intermediate intermediate
C3 2 trivial trivial simple intermediate simple difficult
C4 3 trivial trivial trivial simple intermediate difficult
C5 3 intermediate simple difficult intermediate difficult simple
C6 3 simple trivial intermediate intermediate difficult intermediate
C7 2 simple trivial impossible difficult intermediate intermediate
C8 2 intermediate simple intermediate intermediate impossible intermediate
C9 3 simple simple intermediate intermediate difficult intermediate
C10 3 trivial trivial intermediate intermediate simple simple
C11 3 intermediate simple difficult difficult intermediate difficult
C12 5 simple simple difficult intermediate simple simple
C13 2 intermediate simple difficult intermediate simple intermediate
C14 2 trivial trivial trivial simple difficult difficult
C15 4 simple simple simple simple intermediate difficult
C16 1 intermediate difficult impossible difficult difficult impossible
C17 4 intermediate simple intermediate trivial difficult difficult
C18 3 simple simple intermediate simple intermediate difficult
C19 1 intermediate intermediate simple simple difficult difficult
C20 2 difficult difficult intermediate intermediate intermediate undecided

49

Table A.14: The subjects’ perceived realism of each task

Subject Task realism
ID Task 1 Task 2 Task 3 Task 4 Task 5 Task 6
E1 disagree disagree agree undecided agree strongly agree
E2 agree agree agree agree undecided agree
E3 agree agree agree agree agree
E4 undecided undecided undecided undecided undecided undecided
E5 agree agree agree agree agree agree
E6 undecided agree agree undecided strongly agree strongly agree
E7 disagree disagree agree strongly disagree strongly agree agree
E8 undecided undecided agree disagree agree strongly agree
E9 agree agree agree agree agree agree
E10 agree strongly agree agree strongly agree strongly agree agree
E11 undecided undecided agree agree agree agree
E12 agree agree agree agree agree agree
E13 strongly agree strongly agree strongly agree undecided agree agree
E14 agree agree strongly agree undecided agree agree
E15 agree undecided agree agree strongly agree undecided
E16 agree strongly agree strongly agree agree strongly agree strongly agree
E17 agree agree agree undecided strongly agree strongly agree
E18 agree disagree undecided agree strongly agree strongly agree
E19 disagree disagree undecided agree strongly agree strongly agree
E20 agree strongly agree strongly agree undecided strongly agree undecided
C1 agree agree agree agree agree agree
C2 undecided agree agree undecided agree agree
C3 agree undecided agree agree strongly agree disagree
C4 agree agree disagree strongly disagree agree strongly disagree
C5 disagree disagree strongly agree undecided strongly agree agree
C6 strongly agree agree disagree disagree agree strongly agree
C7 agree agree disagree undecided strongly agree agree
C8 agree agree agree agree agree agree
C9 undecided undecided agree undecided strongly agree strongly agree
C10 agree agree strongly agree undecided strongly agree strongly agree
C11 undecided undecided strongly agree disagree disagree agree
C12 agree agree disagree disagree agree undecided
C13 agree agree undecided agree agree agree
C14 agree agree agree undecided strongly agree
C15 strongly agree strongly agree strongly agree undecided agree
C16 undecided agree undecided agree disagree disagree
C17 disagree agree agree agree strongly agree agree
C18 agree agree strongly agree agree strongly agree strongly agree
C19 agree strongly agree undecided undecided strongly agree agree
C20 undecided undecided undecided undecided agree agree

50

