
Visual Exploration of Large-Scale System Evolution

Richard Wettel and Michele Lanza
Faculty of Informatics - University of Lugano, Switzerland

Abstract

The goal of reverse engineering is to obtain a men-
tal model of software systems. However, evolution adds
another dimension to their implicit complexity, effectively
making them moving targets: The evolution of software sys-
tems still remains an intangible and complex process. Met-
rics have been extensively used to quantify various facets of
evolution, but even the usage of complex metrics often leads
to overly simplistic insights, thus failing at adequately char-
acterizing the complex evolutionary processes.

We present an approach based on real-time interac-
tive 3D visualizations, whose goal is to render the struc-
tural evolution of object-oriented software systems at both
a coarse-grained and a fine-grained level. By providing in-
sights into a system’s history, our visualizations allow us to
reason about the origins and the causalities which led to
the current state of a system. We illustrate our approach on
three large open-source systems and report on our findings,
which were confirmed by developers of the studied systems.

1 Introduction

Reverse engineering aims at obtaining a mental model
of a software system, usually performed on its most recent
version. Several researchers have proven that also the his-
tory of software hides valuable insights, which are hard to
discover outside the evolutionary context. However, taking
into account evolutionary information adds to the complex-
ity of the analysis, as the data volume literally explodes,
thus posing challenging conceptual and technical problems.

The phenomenon of software evolution has been first in-
vestigated by Lehman in the 70s, later resulting in a set
of laws of software evolution [26] which established that
as systems evolve, they become more complex, and con-
sequently more resources are needed to preserve and sim-
plify their structure. This led to the notion that change
is inevitable and should not be avoided, but actually em-
braced [3]. In the past decade, software evolution research
has been stimulated by the widespread use of versioning
systems, such as Subversion and CVS, mostly by the open-

source community. This led many researchers to focus their
activities on the massive amounts of information recorded
by the versioning systems, resulting in a number of publi-
cations on “who did what at which time and how/why?”.

While we strongly believe in the value of such research,
we argue that little attention has been dedicated to the evo-
lutionary phenomenon itself, i.e., the question “what does
an evolving system look like?” still lacks an answer that
can hardly be given by the usually provided line/bar charts
that depict the evolution of one particular aspect of a sys-
tem over time. Moreover, a number of terms that appear in
this context, such as code decay [12], design erosion [36],
architectural drift, etc. have found acceptance, but still fail
at creating a mental model of what they actually imply.

In the context of reverse engineering and software evo-
lution research, visualization has proven to be a key tech-
nique, due to the large amounts of information that need
to be processed and understood [34]. Most existing ap-
proaches are however focused on depicting only particular
aspects (such as lines of code, number of modules/classes,
developer activity, etc.) of evolving systems, and not on
rendering the structural evolutionary process as such.

We present a set of elaborate interactive 3D visualiza-
tions which illustrate the structural evolution of large soft-
ware systems at both a coarse-grained and a fine-grained
level. The visualizations make the complex and intangible
process of software evolution tangible and visible, and al-
low for insights into a system’s evolution. We use our ap-
proach on one system (ArgoUML) that we previously stud-
ied, and on two systems (JHotDraw and Jmol) that we have
looked at for the first time.

Structure of the paper. In Section 2 we briefly present
the city metaphor we use as a basis for our approach to evo-
lution analysis, followed by our case studies in Section 3. In
Section 4 we introduce three visualization techniques and
apply them on the systems. We discuss the results in Sec-
tion 5. In Section 6 we report on our tool support, and dis-
cuss related work in Section 7. We conclude in Section 8.

We make extensive use of color pictures. Please read
the article on-screen or as a color-printed version. We also
provide a set of companion movies which can be accessed
by clicking on the provided hyperlinks in the PDF version.

1



2 The Present is Not Enough

In the context of the EvoSpaces1 project, which aims at
exploiting multi-dimensional navigation spaces to visual-
ize evolving software systems, we have experimented with
several metaphors [6, 7] to provide some tangibility to the
abstract nature of evolving software. We settled on a city
metaphor [40], because it offers a clear notion of locality,
thus supporting orientation, and features a structural com-
plexity that cannot be oversimplified. This led to the adop-
tion of the metaphor in the project’s supporting tool [1].

We represent classes as buildings located in districts rep-
resenting the packages where the classes are defined. The
visual properties of the city artifacts reflect metric values.
Our most used configuration is: for classes, the number of
methods (NOM) mapped on the buildings’ height and the
number of attributes (NOA) on their base size, and for pack-
ages the nesting level mapped on the districts’ color satura-
tion. To efficiently use the city real estate, we implemented
a hierarchical layout based on kd-tree space partitioning [4].

JMolConstants
(NOA 317, NOM 32)Token

(NOA 350, NOM 18)

Viewer
(NOA 57, NOM 750)

TransformerManager
(NOA 110, NOM 161)

Eval
(NOA 49, NOM 266)

ModelSet
(NOA 76, NOM 193)

Figure 1. The Jmol system (revision 8065)

The usefulness of this approach for program compre-
hension tasks is described in detail in a previous publica-
tion [39]. We limit ourselves here to briefly illustrate it on
a recent version of the Jmol system, depicted in Figure 1:
Jmol is composed of ca. 1,000 classes (i.e., the brown build-
ings) and 100 packages (i.e., the blue districts). We observe
outliers, such as the two large platforms (wide and short) in
the foreground representing the classes Token and JmolCon-
stants, which define many attributes (large base) and few
methods (reduced height), or the “skyscraper” representing
the class Viewer with an extremely high number of methods
(750) and a much lower number of attributes (57).

Although helpful in reverse-engineering a single version
of a system, this visual representation does not help in un-
derstanding the system’s evolution.

1http://www.inf.unisi.ch/projects/evospaces

3 Our Case Studies

Before presenting and discussing our approach to evolu-
tion analysis, we briefly introduce the systems we used as
case study (See Table 1).

System ArgoUML JHotDraw Jmol
Packages 144 72 105
Classes 2,542 998 1,032
Lines of Code 137,000 30,000 85,000
Sampling Start Oct 2002 Oct 2000 Jan 2000
Sampling End Feb 2007 Apr 2005 Aug 2007
Sampling Period random weekly 8 weeks
Samples 9 57 50
Revisions 13,535 267 8,065

Table 1. Systems under study

ArgoUML is a UML modeling tool, whose version
0.23.4 we reverse-engineered in a previous experiment [39].
By the end of the experiment we were left with a number of
open questions whose answers were buried in the system’s
history. For the current experiment we added all the major
releases of ArgoUML, resulting in a non-periodic sampling.

JHotDraw is a 2D graphics framework which we sam-
pled using a 1-week interval. By removing duplicate sam-
ples (no commits in between) we ended up with 57 versions.

Jmol is a 3D molecular viewer for chemical structures.
We sampled the history of Jmol using a sampling period of
8 weeks, resulting in 50 sampled versions.

4 Looking Back in Time

Each of our evolutionary visualizations is characterized
by the granularity of the representation and by the technique
applied to reveal a particular evolutionary aspect of the sys-
tem under investigation. We have experimented with two
levels of granularity for the representation. At a coarse-
grained level, classes are represented as monolithic blocks,
omitting internal details. At a fine-grained level we move
the focus on the methods, which appear as bricks that con-
stitute the body of the building corresponding to the class.
We developed three visualization techniques —applicable
at both granularity levels— for software evolution analysis:

1. Age map to depict the age distribution,

2. Time travel to step through the system’s history, and

3. Timeline to capture the entire evolution of a software
artifact in a single view.

For each technique and granularity level we provide a de-
scription, a set of comprehension goals, an exemplification
of its application on one of the systems, for the non-trivial
findings an optional “reality check” with the actual devel-
opers, and a discussion of the drawbacks.

2

http://www.inf.unisi.ch/projects/evospaces


4.1 Coarse-Grained Representation

4.1.1 Coarse-Grained Age Map

Description. We overlay the city representing a version
of a system with colors mapping the age of the artifacts.
The age is an integer value representing the number of sam-
pled versions that the artifact “survived” up to that version.
The color scheme ranges from light yellow for new-born
classes/packages to dark blue for the oldest ones.
Goals. Obtain a starting point for the evolution analysis.
Discover the old parts of the system, discover the recently
changed parts of the system. Get an overall feeling on the
system’s evolution by “looking back in time”.

CPPParser
NOA 85, NOM 204, AGE 4STDCTokenTypes

NOA 152, NOM 0, AGE 4

JavaRecognizer
NOA 79, NOM 176, AGE 9

JavaTokenTypes
NOA 175, NOM 0, AGE 9

Facade
NOA 1, NOM 339, AGE 5

FacadeMDRImpl
NOA 3, NOM 351, AGE 4

JavaTokenTypes
NOA 146, NOM 0, AGE 9

JavaRecognizer
NOA 24, NOM 91, AGE 9

...csharp
...php

org.argouml.language.cpp

org.argouml.uml.reveng.java

org.argouml.language.java

org.argouml.model

Figure 2. Coarse-grained age map of ArgoUML

Application. In Figure 2 we see an age map of ArgoUML
0.24. It is a fairly large system with some massive classes.
We see that the classes JavaTokenTypes and JavaRecog-
nizer appear twice, namely in org.argouml.language.java
and in org.argouml.uml.reveng.java. The age map indi-
cates that both pairs are as old as the system’s history
(denoted by their common dark color). This duplication
was an open question in [39] when we only looked at
one version. Now we can discard the hypothesis that it
is a migration/replacement of one pair of classes with the
other, since both pairs have been part of the system since
its inception. Another insight is that ArgoUML has sup-
ported the Java language since the beginning. The sup-
port for C++, C#, and PHP has been added at a later
stage, as shown by the light green color of the packages
org.argouml.language.cpp/php/csharp, respectively.
Drawbacks. The age map flattens the evolutionary infor-
mation with respect to the currently visualized system ver-
sion. What we need is a technique to visualize the process
of evolution itself, i.e., we need to travel through time.

4.1.2 Coarse-Grained Time Travel

Description. Time traveling is achieved by stepping back
and forth through the history of the system while the city
updates itself to reflect the currently displayed version. Lo-
cality plays a major role: We make sure that every artifact
is assigned an individual real estate in the city, maintained
throughout the entire evolution, i.e., if an artifact is removed
from the system or does not yet exist in the system at a cer-
tain point in time, this is denoted by an empty space that
cannot be occupied by other artifacts. To ease the observa-
tion process in the presence of the cities’ evolutionary dy-
namics (e.g., buildings growing, shrinking, disappearing),
we use color tracking, i.e., we can manually assign partic-
ular colors to the entities of interest, which are then consis-
tently maintained in all the visualized versions.
Goals. Observe the evolution both of the entire system and
of individual artifacts (e.g., packages, classes). At the sys-
tem level, discover which districts have been under heavy
maintenance or barely touched between two consecutive
versions or along their entire evolution. By focusing on a
particular artifact in a city, observe its “birth”, its evolution
in terms of the chosen set of metrics, and in some cases its
“death” when it was removed from the system.
Application. In Figure 3 we see the sequence of views ob-
tained during our time travel through ArgoUML’s sampled
history. To provide a better sense of time we marked on
the figure the release numbers and dates. The elements that
are object of the following discussion are color-tracked with
red for emphasis2. Another open question from the previ-
ous experiment [39] whose answer we hoped to find by an-
alyzing ArgoUML’s evolution was the intriguing case of the
Facade interface, whose over 300 declared methods are im-
plemented by one class only. Stepping through time reveals
the origin of this apparently questionable design decision:
In version 0.14 a large building (60 attributes, 180 meth-
ods) representing class ModelFacade emerges, then it grows
enormously (108 attributes, 405 methods) in version 0.16.
In version 0.18.1 ModelFacade dies, but its death coincides
with the birth of two other tall and thin buildings: the in-
terface Facade (1 attribute, 306 methods) and the concrete
class NSUMLModelFacade (2 attributes, 319 methods) im-
plementing Facade. One possible reason for this change is
that the developers realized that ModelFacade was growing
into a maintainer’s nightmare due to its size, or they needed
to define variations of it. They declared the common behav-
ior (306 methods) in an interface and moved the concrete
behavior from ModelFacade to the new class NSUMLMod-
elFacade, the first implementor of Facade. Version 0.20
gives birth to a second implementor of Facade, called Fa-
cadeMDRImpl (2 attributes, 329 methods). To observe this,

2We provide a movie of this time travel, located at
http://www.inf.unisi.ch/phd/wettel/download/
argouml-coarse.mov

3

http://www.inf.unisi.ch/phd/wettel/download/argouml-coarse.mov
http://www.inf.unisi.ch/phd/wettel/download/argouml-coarse.mov


0.10.1
Sept. 2002

0.12
Aug. 2003

0.14
Dec. 2003

0.16
Jul. 2004

0.18.1
Apr. 2005

0.20
Feb. 2006

0.22
Aug. 2006

0.23.4
Oct. 2006

0.24
Feb. 2007

ModelFacade

ModelFacade Facade
NSUMLModelFacade

Facade
NSUMLModelFacade

FacadeMDRImpl

Facade
FacadeMDRImpl

Figure 3. Coarse-grained time travel through the history of ArgoUML

we looked for buildings at least as tall (i.e., NOM value) as
the one representing the interface, because in Java a class
implementing an interface is enforced to implement all the
methods declared in the interface. Version 0.20 is the only
sampled version of ArgoUML in which the two implemen-
tors coexist, as in version 0.22 the class NSUMLModelFa-
cade is removed, leaving FacadeMDRImpl the only imple-
mentation of Facade.
Reality Check. A key-developer of ArgoUML confirmed
our insights gained during the time travel and provided
more details. At a higher level, the model repository switch
from NSUML to MDR required flexibility, which was in-
deed obtained by refactoring ModelFacade into a common
interface and a concrete class. The numerous attributes
of ModelFacade were tokens implemented as constants be-
cause of the lack of support for enumerations in Java 1.4.
Drawbacks. At this granularity level, the technique does
not provide information about the internal evolution of
classes, which is the level at which the changes happen. For
example, if a developer removes and adds the same num-
ber of methods between two consecutive versions, the NOM
metric value and consequently the building’s height remain
the same, despite the substantial changes. This loss of detail
is visible in the last 3 versions of ArgoUML (Aug. 2006 to
Feb. 2007), where not much seems to happen in the system.

4.2 Fine-Grained Representation

To address the need for a more fine-grained representa-
tion, we depict methods as cuboids (“bricks”) laid out on
top of each other in layers of 4 (see Figure 4), in the or-
der of their creation (i.e., older down, newer up). Removed
methods are represented as empty spaces. The height of
a building continues to be proportional to the number of
methods. The base platform provides immediate access to
the class for interaction.

m1
m2

m3

m4

m5
m6

m7

class C

Figure 4. Fine-grained representation (left)
applied to ArgoUML’s cognitive package (right).

4



library packages:
java
javax
junit
org.w3c.dom 

(classes) AllTests

CH.ifa.draw.standard

CH.ifa.draw.framework
CH.ifa.draw.figures

CH.ifa.draw.test

class DrawApplication
in CH.ifa.draw.application

class StandardDrawingView
in CH.ifa.draw.standard.

Figure 5. Fine-grained age map applied to the most recent version of JHotDraw

4.2.1 Fine-Grained Age Map and Time Travel

Description. The two techniques, described previously, are
applied on the fine-grained representation.

Goals. Obtain insights into the method-level evolution.
Discover classes created in one “bang” versus classes grown
in an incremental manner.

Application. The fine-grained age map applied to the
last version of JHotDraw (See Figure 5) reveals interest-
ing facts about its evolution. The districts colored in a dark
shade (e.g.,CH.ifa.draw.standard/framework/figures) repre-
sent the most rooted packages within the system, because
they have been there since the system’s inception. The
CH.ifa.draw.test package is relatively new, it appeared in the
sampled version 6 (out of 8), denoted by its light (green)
color. We can observe light yellow small buildings, repre-
senting classes called AllTests that have been added in sam-
pled version 7. Each of these classes contains two meth-
ods: main and suite. The main method is the starting point
for running a suite of tests (defined in the suite method)
for every sub-package of test. The buildings painted in
a wide palette of colors (e.g., classes DrawApplication and
StandardDrawingView) not only have been part of the sys-
tem from the first version (their color starting at the base is
the same as the city ground), but they have permanently re-
quired adaptation during the system’s evolution (with each
version of the system the developers added/removed meth-
ods). We then focused our attention on package test using

the time travel technique3, which confirmed what the age
map depicted: the test package appeared all at once towards
the end of JHotDraw’s lifetime. Since the first sampled his-
tory of JHotDraw contained only 8 versions covering 31/2

years, we did not want to jump to conclusions. The sudden
appearance of all the unit tests could have happened gradu-
ally over a period of 6 months, between Jan. and Jul. 2003.
To reason more accurately about this evolutionary fact, we
sampled the system using a weekly sampling period and to
our surprise, we obtained the same result: The test package
appears entirely from revision 121 (24/01/03) to revision
155 (31/01/03), which reduces the possible period to these
7 days , during which 34 commits were performed. Writing
all tests at once and at a late stage in a project is curious.
Reality Check. The developer who created these classes
told us that he used a JavaDoc-based code generator to au-
tomatically generate test cases for JHotDraw, in the form of
unimplemented skeletons for the work to be done.
Drawbacks. One cannot know when a particular method
disappeared, since its representation is an empty space.
Also, we are not able to distinguish the methods whose
bodies have been changed from the ones that remained the
same. It also raises some scalability issues, e.g., ArgoUML
is represented by over 16,000 elements. Finally, if one visu-
alizes complete systems, the methods of a class are hard to
track. To remedy this, we use the timeline technique to de-
pict the entire history of specific artifact(s), discussed next.

3A movie of this time travel is located at http://www.inf.
unisi.ch/phd/wettel/download/jhotdraw-fine.mov

5

http://www.inf.unisi.ch/phd/wettel/download/jhotdraw-fine.mov
http://www.inf.unisi.ch/phd/wettel/download/jhotdraw-fine.mov


4.2.2 Fine-Grained Timeline

Description. The class versions are represented as plat-
forms next to each other along a timeline, from left (first
version) to right (last version) and the methods are repre-
sented as “bricks”. We combine this with the age map tech-
nique to enable a clearer visual distinction between the dif-
ferent “generations” (i.e., groups of methods created in the
same version) of methods.

m5

m4

m6

C (v1)

m12

TIME (system versions)

C (v2)

C (v3)

m17

m1

m2

Figure 6. Principles of fine-grained timeline

Figure 6 illustrates these principles applied to class C
throughout a history of 3 versions. In the first version, class
C has 7 methods (m1 to m7). In the second version, method
m6 is removed and other 5 methods (m8 to m12) are added
to the class, appearing at the top of the building in a lighter
color than the rest of the methods. The place formerly oc-
cupied by m6 will be represented by an empty space. In
version 3, the older method m4 is removed and 6 methods
are added. The benefit of this visualization is that it pro-
vides a complete representation of an artifact’s evolution,
thus allowing for the detection of evolutionary patterns. We
use this technique mostly at the class level, by visualizing
the evolution of a class in terms of all its methods, but it can
also be applied at the package level, showing a package and
its sub-packages and classes.
Goals. Isolate a reduced set of artifacts to create a view that
presents their entire history including all the inner compo-
nents, and observe evolution patterns, such as incrementally
grown classes, recurring methods, etc.
Application. We analyzed a number of Jmol’s classes with
the timeline. The first example is the class Graphics3D,
which was present in the last 23 versions of the system’s
50 version-long sampled history (see Figure 7). It is prob-
ably a core class, because since its first version it defined a
large number (103) of methods. Signs of decay appear in
its 9th sampled version and intensify with every subsequent
one. At the same time, new functionality (i.e., methods) is
gradually added to the class. The final version reflects its
history of continuous adaptation: out of the 311 methods
throughout its evolution, only 158 made it to this version.

forcePixel
disappears after v1

reappears in v9

applyBlueAnaglyph
disappears after v10

reappears in v18

fillTriangle
disappears after v5

reappears in v21

Graphics3D

Figure 7. Timeline of class Graphics3D

Figure 7 also illustrates an interesting pattern: Some of
the building’s missing bricks reappear after a number of ver-
sions, which happens when removed methods are later re-
stored. This pattern is particularly visible with our approach
because of the combined effects of the age map technique
and of the chronological order imposed on the layout. After
a method is resuscitated, the color of the brick representing
it stands out as an anomaly in every subsequent version of
the class, i.e., it breaks the color pattern of the bricks around
it. Although its position denotes the fact that it was born in
the same version as its neighbor bricks, the color reflects a
shorter life (i.e., fewer versions) than the one of its neigh-
bors. Figure 7 shows 3 methods of the class exhibiting this
behavior. The more versions pass between the removal and
the restoration, the more striking is this color anomaly, as in
the case of method fillTriangle (an interval of 15 versions).

To further investigate this evolutionary pattern, we corre-
lated the timelines of 4 class histories, presented in Figure 8.
At a first glance, we see how each timeline reflects the evo-
lutionary characteristics of one class history. For instance,
the peak of each timeline (the height of the last version of
the building) depicts the number of method histories: Eval
is twice as tall as JmolViewer or TransformManager. Viewer
is, due to its over 1,000 method histories, difficult to display
entirely. Eval lost many of its methods during its evolu-
tion (166 out of 432) and looks unstable with many missing
bricks in its current version (i.e., last column). This shows
that the fine-grained timeline depicts the decay of software
in a very suggestive way.

6



Viewer

TransformManager

Eval

revision 6,098 

revision 5,154 

(detail)JmolViewer

revision 6,098 

revision 5,154 

Eval 166432 266

150

TransformerManager

27
Viewer

Class History
177

59
279

Total Methods Removed Methods

750
220 161

JmolViewer
1029

Current Methods

Figure 8. Similar pattern in 4 classes of Jmol

Figure 8 presents a detail of the timeline of class Viewer,
which had 1,029 methods throughout its history, and the
complete timelines of the classes JmolViewer (the super-
class of Viewer), Eval, and TransformManager. Each of
these timelines contains a set of bricks which disappears in
revision 5,154 from 22/05/2006 and reappears after exactly
three sampled versions, in revision 6,098 from 6/11/2006.
Our hypothesis was that the developers massively removed
methods from these logically coupled classes, thus gener-
ating bugs which were not detected right away and which
could only be fixed later by reviving the removed methods.
Reality Check. The revision log 5,091 from 10/05/2006
says: “No more javax.vecmath.Point3f in g3d shape draw-
ing routines. There were some cases where screen coor-
dinates were being passed in as Point3f objects[..]” and the
log of revision 5,579 from 17/09/2006 acknowledges the re-
covery of the previously removed methods: “Revert of vec-
math lib change”. Also, three Jmol developers confirmed
this and told us that after some refactorings they reverted
to an earlier state because of performance problems in their
graphic display module which resulted in slow rendering.
Drawbacks. Scalability issues in the case of an artifact hav-
ing hundreds or more of revisions.

5 Discussion

Tracking events in time. The actual time at which a par-
ticular event happened can be anywhere between the com-
mit times of the earliest sampled version in which the event
occurs and of the previous sampled version. In this con-
text, the sampling period plays a major role in establishing
accurate time localization of events.

Sampling policies. The sampling policy has a major in-
fluence on the information we can extract from the history,
which encourages us to strive towards shorter sampling pe-
riods and thus richer histories. However, manipulating tens
to hundreds of versions of an industrial system raises the is-
sue of scalability with respect to memory requirements and
processing time. We believe that an incremental approach
can be applied in such cases, by starting first with a sparse
history, i.e., few samples distant from each other in time,
and then focusing on interesting intervals by increasing the
number of samples and decreasing their temporal distance.
We applied this approach in the case of the JHotDraw sys-
tem. We also experimented two different sampling policies,
namely time-based (JHotDraw and Jmol) and release-based
(ArgoUML). The time-based sampling allows us to observe
the evolutionary process as a “slow motion movie” with
the drawback of potential duplicated samples. The release-
based sampling has the advantage that the frames are steps
of the actual development cycle. This eliminates duplicate
samples but has the disadvantage that one needs to correlate
the development steps with the actually elapsed time.

Color scheme limitations. Applying a color scheme
to depict age limits the number of versions one can clearly
distinguish. In our experience, a color scheme works best
up to a maximum of 10 versions. Increasing this number
hinders the visual distinction among consecutive versions.

City metaphor. The city metaphor is a promising way
of building evolutionary visualizations. Due to the evo-
lutionary layout which takes into account the entire his-
tory of every software element in the system, we support
consistent locality, which helps in keeping the viewer ori-
ented at any time. This enables the user to observe hot-
spot neighborhoods with respect to the evolutionary phe-
nomenon: conservative districts (which rarely change), dis-
tricts permanently “under construction” or moving districts.
The price of providing consistent locality is the extra space
used by the layout for allocating lifetime estates to every
entity (even to ones with a short life).

The views. Despite the evolutionary structural overview
that the age map and the time travel techniques provide with
the coarse-grained representation, their drawback is the low
level of detail provided for classes. To make up for this, we
created a fine-grained representation, to see how method ad-
dition and removal drives the evolution of classes. However,
this level of detail raises scalability problems in the case of
very large systems. Moreover, the overview is lost for such
large systems, i.e., the details are not visible from far away
and after zooming in, we lose the overall context. Since our
views present only one version of the system at a time, with
the possibility to perform time travels, we needed to be able
to focus on a single element throughout its entire evolution.
The timeline technique makes this possible and allows for
the detection of evolutionary patterns.

7



6 Tool Support

We built our tool called CodeCity on top of the Moose
framework [11], which provides an implementation of a
meta-model for history, called Hismo [16]. In Hismo, a his-
tory is a sequence of versions of the same kind of entity
(e.g., class history, package history, etc.), where a version
is a snapshot of an entity at a certain point in time. Since
we do not work directly with the source code, but with a
FAMIX model, we first have to load the models for each
version and create a model history of the system that we
analyze. For parsing Java projects, we use iPlasma [29].
Once we have the model of the system’s history, we create
interactive visualizations with our tool.

CodeCity allows us to define various view configura-
tions, where we can specify which types of elements in our
model to represent, the figure types for each element type,
the mapping set between software metrics and visual prop-
erties of the figures, layouts, etc. The created visualizations
allow the viewer to navigate the urban environment and to
interact with the entities by means of manual inspection or a
query mechanism. The viewer can apply the age map color
scheme, perform time travels and generate timelines for the
selected artifacts. An extended discussion on CodeCity’s
functionality and configurability is presented in [41].

CodeCity is written in Smalltalk, runs on every major
platform and is freely available at: http://www.inf.
unisi.ch/phd/wettel/codecity.html

7 Related Work

Visualizing repositories. Gall et al. analyze, by means of
diagrams, the evolution of the structure and relate that to the
adaptations made to the system, based on product release
history [15]. With this very coarse-grained approach they
target the module level of detail and describe in large evo-
lutionary aspects, such as growth rates. Van Rysselberghe
et al. [37] use version management systems as source for
the analysis and visualize it by plotting the file releases
against release dates to identify components that are unsta-
ble or change together, relations that changed, or the sys-
tem’s productivity pace. However, seeing a file that was of-
ten changed does not say anything about how the software
entities inside evolved. The EvoGraph by Fischer et al. [14]
is based on the information extracted from the systems’ re-
lease history and produces 2D visual representations of the
evolution of structural dependencies. Taylor et al.’s review-
ing towers view [35] shows how versioning systems repos-
itories evolve. Voinea et al. [38] aim at enriching the quan-
tity of information extracted from software configuration
management systems that can be displayed in a view. They
use a combination of color and texture for the representa-
tion of as many attributes as possible and clustering for the

reduction of the complexity in such visualizations. Coll-
berg et al. [9] visualize the evolution of a software system
as large evolving graphs, using colors to depict the changes.

Visualizing evolving dependencies. Holt et al. [19] look
at the evolution of systems from the perspective of depen-
dencies and provide comparisons of pairs of versions of the
system and focus on the common dependencies on the new
ones. Keast et al. [21] implement a Rigi [22, 30] extension
for visualizations of the evolution of relationships.

Ratzinger et al. [33], who represent systems as nested
graphs, built their approach around the concept of view
lens, which provides the user with enhanced zooming ca-
pabilities and allows him to define a focal point for the lens
view and navigate along the time dimension by user-defined
time windows. Beyer et al.’s approach called animated sto-
ryboards [5] aims at visualizing how dependencies evolve
and uses color schemes to depict how much each element
changed. Hindle et al. [18] use animation based on mod-
ules connected by animated edges to observe the evolution
of dependencies. Lungu et al. [27] work at the module level
of granularity and explore evolution of the inter-module re-
lationships by means of filmstrips that depict “stories of re-
lationships” between modules. Due to their focus on the
evolution of the dependencies between modules, the only
common characteristics between these approaches and ours
is that we all target several versions of a system, looking at
different aspects of the evolution.

Visualizing evolving structure. Our timeline represen-
tation is partially inspired from Lanza’s Evolution Matrix
[25], which shows the evolution of classes, represented as
rectangles, in terms of a set of metrics mapped on the di-
mensions of the rectangles. Girba et al. [17] raise the gran-
ularity level and look into the evolution of class hierarchies
using a 2D visualization which correlates the histories of
classes and inheritance relationships. Eick et al. [13] also
use color to depict the age, however at at a lower abstraction
level: Each line of code is visualized as a row and the files
are visualized as columns in SeeSoft, in which the color of
the row depicts the age of a line of code. The age maps
in CodeCity depict information at a higher abstraction level
and from an object-oriented point of view (i.e., the age of
packages, classes, and methods, rather than of each line of
code in a file) and puts all of these in the structural context
of the system. Pinzger et al. [32] work at a higher granu-
larity and visualize various evolutionary aspects of complex
software systems using Kiviat diagrams to depict multiple
evolution metrics, which provide static visualizations of a
large number of metrics for the entire evolution of modules,
yet lacks both an overview of the entire system and a fine-
grained level of detail. Wu et al. [42] propose a visualiza-
tion technique called evolution spectrographs, which por-
trays the evolution of a spectrum of components based on
a particular property measurement which reduces the each

8

http://www.inf.unisi.ch/phd/wettel/codecity.html
http://www.inf.unisi.ch/phd/wettel/codecity.html


version of a file to a number. Jazayeri et al. [20] use 3dSoft-
Vis to visualize evolution by means of a compacted 3D vi-
sualization that shows 2D tree graphs aligned in time and
a compact 2D visualization obtained by projecting 3D dia-
grams onto 2D space. We argue that in spite of the useful
information they provide, these visualizations oversimplify
the representation of the evolution.

The city metaphor. Knight et al. [23] and Charters et
al. [8] use a city metaphor, while Marcus et al. [28] and
Balzer et al. [2] use a similar 3D metaphor to visualize
single versions of software systems. None of these works
embeds the time factor to visualize the evolution of soft-
ware systems in their 3D environments. Ducasse et al. [10]
use the city metaphor of the SimCity game to express chal-
lenges behind software evolution, which remained an idea.
Another metaphor idea without implementation is proposed
in Panas’s [31] description of such a 3D city. Langelier et
al. [24] use 3D visualizations to display structural informa-
tion, by representing classes as boxes with metrics mapped
on height, color and twist, and packages as borders around
the classes placed using a tree layout or a sunburst layout.
The fact that the space occupied by their buildings is al-
ways the same eases the layout procedure at the price of
less-realistic looking cities. They also look at the evolution
of individual classes or packages by aligning the represen-
tation of each version of that class/package. This provides
some useful information about the evolution of that partic-
ular entity, however at a too high granularity, reducing thus
the effects of the change over one entity to a number.

8 Conclusions

We proposed an approach based on a set of visualiza-
tion techniques built around a 3D city metaphor to explore
the evolution of object-oriented software systems. Applying
our approach to correlate the current status of such systems
with their history helped us to better understand the evo-
lutionary process and revealed important information that
cannot be extracted from any of the versions considered
separately, but only in the historical context.

We applied the approach on three large open-source in-
dustrial case-studies. In the case of one of the systems for
which we already had some prior knowledge about one ver-
sion (ArgoUML) we finally succeeded in answering two
questions that were left suspended due to lack of evidence.
We also applied the approach on two systems we have not
analyzed before and obtained interesting insights, later con-
firmed by the developers of the systems.

The main contribution of this article is a set of 3D visu-
alizations, that scale up both to real-world software systems
and across several versions of the systems. Our techniques
provide tangibility to the otherwise ephemeral nature of the
phenomenon of software evolution.

Our future work in this area is applying our approach on
larger, more long-lived systems, such as GCC, and to inves-
tigate additional views to make software evolution tangible.

Acknowledgments. We gratefully acknowledge the fi-
nancial support of the Hasler Foundation for the project
“EvoSpaces” (MMI Project No. 1976).

References

[1] S. Alam and P. Dugerdil. Evospaces visualization tool: Ex-
ploring software architecture in 3d. In Proceedings of 14th
Working Conference on Reverse Engineering (WCRE 2007),
pages 269–270. IEEE Computer Society, 2007.

[2] M. Balzer, A. Noack, O. Deussen, and C. Lewerentz. Soft-
ware landscapes: Visualizing the structure of large soft-
ware systems. In VisSym 2004, Symposium on Visualization,
pages 261–266. Eurographics Association, 2004.

[3] K. Beck. Extreme Programming Explained: Embrace
Change. Addison Wesley, 2000.

[4] J. L. Bentley. Multidimensional binary search trees used
for associative searching. Commun. ACM, 18(9):509–517,
1975.

[5] D. Beyer and A. Hassan. Animated visualization of soft-
ware history using evolution storyboards. In Proceedings
of the 13th Working Conference on Reverse Engineering
(WCRE 2006). IEEE Computer Society, 2006.

[6] S. Boccuzzo and H. C. Gall. Cocoviz: Supported cogni-
tive software visualization. In Proceedings of 14th Working
Conference on Reverse Engineering (WCRE 2007), pages
273–274. IEEE Computer Society, 2007.

[7] S. Boccuzzo and H. C. Gall. Cocoviz: Towards cognitive
software visualizations. In Proceedings of IEEE Interna-
tional Workshop on Visualizing Software for Understanding
and Analysis (VISSOFT 2007), pages 72–79. IEEE Com-
puter Society, 2007.

[8] S. M. Charters, C. Knight, N. Thomas, and M. Munro. Visu-
alisation for informed decision making; from code to com-
ponents. In International Conference on Software Engineer-
ing and Knowledge Engineering (SEKE ’02), pages 765–
772. ACM Press, 2002.

[9] C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K. Wampler.
A system for graph-based visualization of the evolution of
software. In Proceedings of the 2003 ACM Symposium on
Software Visualization, pages 77–86, New York NY, 2003.
ACM Press.

[10] S. Ducasse and T. Gı̂rba. Being a long-living software mayor
— the simcity metaphor to explain the challenges behind
software evolution. In Proceedings of CHASE International
Workshop 2005, 2005.

[11] S. Ducasse, T. Gı̂rba, and O. Nierstrasz. Moose: an agile
reengineering environment. In Proceedings of ESEC/FSE
2005, pages 99–102, Sept. 2005. Tool demo.

[12] S. Eick, T. Graves, A. Karr, J. Marron, and A. Mockus. Does
code decay? assessing the evidence from change manage-
ment data. IEEE Transactions on Software Engineering,
27(1):1–12, 2001.

9



[13] S. G. Eick, J. L. Steffen, and S. Eric E., Jr. SeeSoft—a tool
for visualizing line oriented software statistics. IEEE Trans-
actions on Software Engineering, 18(11):957–968, Nov.
1992.

[14] M. Fischer and H. C. Gall. Evograph: A lightweight ap-
proach to evolutionary and structural analysis of large soft-
ware systems. In Proceedings of the 13th Working Con-
ference on Reverse Engineering (WCRE), pages 179–188.
IEEE Computer Society, 2006.

[15] H. Gall, M. Jazayeri, R. Klösch, and G. Trausmuth. Soft-
ware evolution observations based on product release his-
tory. In Proceedings International Conference on Software
Maintenance (ICSM’97), pages 160–166, Los Alamitos CA,
1997. IEEE Computer Society Press.

[16] T. Gı̂rba. Modeling History to Understand Software Evolu-
tion. PhD thesis, University of Berne, Berne, Nov. 2005.

[17] T. Gı̂rba, M. Lanza, and S. Ducasse. Characterizing the evo-
lution of class hierarchies. In Proceedings of CSMR 2005
(9th European Conference on Software Maintenance and
Reengineering), pages 2–11. IEEE CS Press, 2005.

[18] A. Hindle, Z. M. Jiang, W. Koleilat, M. Godfrey, and
R. Holt. Yarn: Animating software evolution. In 4th IEEE
International Workshop on Visualizing Software for Under-
standing and Analysis, 2007 (VISSOFT 2007), pages 129–
136, 2007.

[19] R. Holt and J. Pak. GASE: Visualizing software evolution-
in-the-large. In Proceedings of Working Conference on
Reverse Engineering (WCRE 1996), pages 163–167, Los
Alamitos CA, 1996. IEEE Computer Society Press.

[20] M. Jazayeri, H. Gall, and C. Riva. Visualizing Software Re-
lease Histories: The Use of Color and Third Dimension. In
Proceedings of ICSM ’99 (International Conference on Soft-
ware Maintenance), pages 99–108. IEEE Computer Society
Press, 1999.

[21] J. Keast, M. Adams, and M. Godfrey. Visualizing architec-
tural evolution. In Proceedings of ICSE’99 - Workshop on
Software Change and Evolution (SCE’99), 1999.

[22] H. Kienle and H. Muller. The Rigi reverse engineering en-
vironment. In Proceedings of WASDeTT 2008 (1st Interna-
tional Workshop on Advanced Software Development Tools
and Techniques), 2008.

[23] C. Knight and M. C. Munro. Virtual but visible software.
In International Conference on Information Visualisation,
pages 198–205, 2000.

[24] G. Langelier, H. A. Sahraoui, and P. Poulin. Visualization-
based analysis of quality for large-scale software systems.
In Proceedings of 20th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE 2005), pages
214–223. ACM, 2005.

[25] M. Lanza. The evolution matrix: Recovering software evo-
lution using software visualization techniques. In Proceed-
ings of IWPSE 2001 (4th International Workshop on Princi-
ples of Software Evolution), pages 37–42. ACM Press, 2001.

[26] M. Lehman and L. Belady. Program Evolution: Processes of
Software Change. London Academic Press, London, 1985.

[27] M. Lungu and M. Lanza. Exploring inter-module relation-
ships in evolving software systems. In Proceedings of CSMR
2007 (11th European Conference on Software Maintenance
and Reengineering), pages 91–100. IEEE CS Press, 2007.

[28] A. Marcus, L. Feng, and J. I. Maletic. 3d representations for
software visualization. In Proceedings of the ACM Sympo-
sium on Software Visualization, pages 27–36. IEEE, 2003.

[29] C. Marinescu, R. Marinescu, P. F. Mihancea, D. Ratiu, and
R. Wettel. iplasma: An integrated platform for quality as-
sessment of object-oriented design. In ICSM (Industrial and
Tool Volume), pages 77–80, 2005.

[30] H. Muller and K. Klashinsky. Rigi: a system for
programming-in-the-large. Proceedings of the 10th Inter-
national Conference on Software Engineering (ICSE ’97),
pages 80–86, 1988.

[31] T. Panas, R. Berrigan, and J. Grundy. A 3d metaphor for
software production visualization. International Conference
on Information Visualization, page 314, 2003.

[32] M. Pinzger, H. Gall, M. Fischer, and M. Lanza. Visualizing
multiple evolution metrics. In Proceedings of SoftVis 2005
(2nd ACM Symposium on Software Visualization), pages 67–
75, 2005.

[33] J. Ratzinger, M. Fischer, and H. Gall. Evolens: lens-view
visualizations of evolution data. In International Workshop
on Principles of Software Evolution, pages 103–112, 2005.

[34] J. T. Stasko, J. Domingue, M. H. Brown, and B. A. Price,
editors. Software Visualization — Programming as a Multi-
media Experience. The MIT Press, 1998.

[35] C. Taylor and M. Munro. Revision towers. In Proceedings
1st International Workshop on Visualizing Software for Un-
derstanding and Analysis, pages 43–50, Los Alamitos CA,
2002. IEEE Computer Society.

[36] J. van Gurp and J. Bosch. Design erosion: problems and
causes. Journal of Systems and Software, 61(2):105–119,
2002.

[37] F. Van Rysselberghe and S. Demeyer. Studying software
evolution information by visualizing the change history. In
Proceedings 20th IEEE International Conference on Soft-
ware Maintenance (ICSM ’04), pages 328–337, Los Alami-
tos CA, Sept. 2004. IEEE Computer Society Press.

[38] L. Voinea and A. Telea. Multiscale and multivariate visual-
izations of software evolution. In Proceedings of the 2006
ACM symposium on Software Visualization, pages 115–124.
IEEE Computer Society, 2006.

[39] R. Wettel and M. Lanza. Program comprehension through
software habitability. In Proceedings of ICPC 2007 (15th In-
ternational Conference on Program Comprehension), pages
231–240, 2007.

[40] R. Wettel and M. Lanza. Visualizing software systems as
cities. In Proceedings of VISSOFT 2007 (4th IEEE Interna-
tional Workshop on Visualizing Software For Understanding
and Analysis), pages 92–99, 2007.

[41] R. Wettel and M. Lanza. CodeCity. In Proceedings of WAS-
DeTT 2008 (1st International Workshop on Advanced Soft-
ware Development Tools and Techniques), 2008.

[42] J. Wu, A. Hassan, and R. Holt. Exploring software evolution
using spectrographs. In Proceedings of the 11th Working
Conference on Reverse Engineering (WCRE 2004), pages
80–89. IEEE Computer Society, 2004.

10


	Introduction
	The Present is Not Enough
	Our Case Studies
	Looking Back in Time
	Coarse-Grained Representation
	Coarse-Grained Age Map
	Coarse-Grained Time Travel

	Fine-Grained Representation
	Fine-Grained Age Map and Time Travel
	Fine-Grained Timeline


	Discussion
	Tool Support
	Related Work
	Conclusions

