
Reverse Engineering Super-Repositories

Mircea Lungu, Michele Lanza
Faculty of Informatics

University of Lugano, Switzerland

Tudor Ĝırba
Software Composition Group

University of Bern, Switzerland

Reinout Heeck
Soops BV

The Netherlands

Abstract

Reverse engineering and software evolution research
has been focused mostly on analyzing single software sys-
tems. However, rarely a project exists in isolation; instead,
projects exist in parallel within a larger context given by a
company, a research group or the open-source community.
Technically, such a context manifests itself in the form of
super-repositories, containers of several projects developed
in parallel. Well-known examples of such super-repositories
include SourceForge and CodeHaus.

We present an easily accessible platform which supports
the analysis of such super-repositories. The platform can
be valuable for reverse engineering both the projects and
the structure of the organization as reflected in the inter-
actions and collaborations between developers. Through-
out the paper we present various types of analysis applied
to three open-source and one industrial Smalltalk super-
repositories, containing hundreds of projects developed by
dozens of people.

1. Introduction

Reverse engineering has been defined by Chikofsky and
Cross [3] as “the process of analyzing a subject [software]
system to (1) identify the system’s components and their in-
terrelationships and (2) create representations of the system
in another form or at a higher level of abstraction”.

Indeed, most reverse engineering research is concerned
with answering a number of questions on software systems
which are closely related to these goals. A great variety of
analysis techniques have been created (e.g.,metrics[2, 18],
visualization[1, 8], clustering[15], architecture recovery[21,
22]) and implemented either in stand-alone tools, or as part
of integrated environments.

In the recent years, two interconnected factors have given
a new drive to the research field, namely (1) the open source
phenomenon, because it led to an increased availability of
software systems to be analyzed, and (2) the research topic
of “mining software repositories” which deals with tech-

niques to exploit the information contained in versioning
systems for evolution analysis.

In this paper we argue that despite the recent advances
which made these field as a whole flourish, two issues are
being largely ignored:

1. Many reverse engineering techniques are implemented
in stand-alone tools. The tools, ranging from simple
sets of scripts to full-fledged reengineering environ-
ments, such as Moose and Bauhaus, are applied on
the systems that need to be analyzed, the results are
retrieved, and reasoned on. Accessibility and usabil-
ity are often poorly addressed concerns in this context,
i.e., installing and applying such tools in a productive
way requires technical expertise and is often only per-
formed by the tool developers themselves. This often
leads to the scenario, where companies, potentially in-
terested by specific software analysis tools and tech-
niques, give up on applying them because of the tools’
poor usability and accessibility.

2. Software systems are seldom developed in isolation.
On the contrary, many companies, research institu-
tions and the open-source scene deal with software
repositories existing in parallel, hosted on dedicated
servers1. We are faced withsuper-repositories, that
is repositories of repositories. In an industrial context
such super-repositories represent theassetsof a com-
pany, and besides the evolution of the software systems
themselves, a super-repository also contains informa-
tion about which developers worked on which projects
at which time, to what extent and collaborating with
whom. Indeed, this added information makes it im-
portant to the company to understand what its super-
repository contains and how it evolves.

In this article we present a platform which of-
fers a unique and easily accessible entry point to
super-repositories in order to facilitate their compre-
hension. The platform, dubbed Small Project Observa-
tory2 (SPO), is an interactive web portal accessible through

1 SourceForge for example currently hosts more than 100,000 projects.

a standard web browser. It offers various means to ana-
lyze, visualize and interact with the data contained in a
super-repository. We claim that it is useful in a variety of
contexts: when an open-source contributor is searching for
interesting projects to contribute to, when a project man-
ager wishes to supervise multiple projects, or when a new
employee wants to understand the “treasure trove” of soft-
ware that the company has been developing over the
years.

We distinguish between two types of super-repositories,
(1) repositories that are dedicated to a particular language
such as RubyForge[24], CodeHaus[4] and StORE[27],
and (2) repositories that are language agnostic such as
SourceForge[26] and GoogleCode[13]. Although most of
the discourse can be generalized to any of these reposi-
tory types, in this article we focus our attention on the
first category and look at three open-source and one in-
dustrial super-repositories which contain each the his-
tory of several dozens to hundreds of applications written
in Smalltalk.

In Table 1 we provide a brief numerical overview of
these repositories. The oldest and largest of them is the
Open Smalltalk Repository hosted by Cincom3. The next
two are maintained at the Universities of Bern and Lugano,
in Switzerland. The last one is a repository maintained by
the company Soops BV, located in the Netherlands. The
data provided in Table 1 needs to be considered with care
as the numbers are the result of a simple project counting
in the repositories; however super-repositories accumulate
junk over time, as certain projects fail, die off, short-time
experiments are performed, etc. This is inherent to the na-
ture of super-repositories, and actually only adds to the in-
sight that super-repositories need to be understood in more
depth.

Repository Projects Classes Contributors Active Since
Cincom 288 19.830 147 2000
Bern 190 10.600 76 2002
Lugano 43 2.088 11 2005
Soops 249 11.413 20 2002

Table 1. The analyzed super-repositories

Who should analyze super-repositories?We ar-
gue that different stakeholders are interested in ana-
lyzing super-repositories for different tasks. Here we
identity three categories of users that benefit from a plat-
form such as SPO, namelyproject managers, develop-
ers, and researchers. Each of these has different reasons

2 In the given context, the adjectivesmallmay be considered a bad pun:
its origin lies in the used implementation language (Smalltalk).

3 http://smalltalk.cincom.com

to analyze super repositories with respect to specific ques-
tions:

1. Project Managers may ask questions such as “how
do teams work?”, “how do projects evolve?”, or “who
has worked on a similar project already?”. Organiza-
tional charts only show the team structure in a static,
and often poorly maintained, form. Revealing the ac-
tivity and collaboration of developers and the projects
they work on, shows how the actual work is being per-
formed [12] and how the collaborations between de-
velopers evolved over time. Moreover, since in gen-
eral successful projects need to continuously change
[19], a project manager needs to be up to date with
how projects change and what their current status is.

2. Developersmay have questions such as “who should
I ask if I want to do that?”, “what dependencies does
the system I am working on have and to which applica-
tions?”, or “what do applications on which my appli-
cation depends look like and what is their current sta-
tus?”. One important source of information for devel-
opers, especially for newcomers to a project, are other
developers. Thus, developers need to know whom to
ask [7]. Also, not only the details of a particular project
are relevant, but also the inter-project dependencies
are important. For example, in the case of a frame-
work, it is important to know who the clients are so
that they can be updated. Similarly, when an appli-
cation is built out of components, developers need to
know what components have changed. In the open-
source context there are also developers looking for in-
teresting projects they can contribute to. Since not all
of them have equal chances of success, it is useful to
gain insights on the evolution, activity and the people
involved regarding a particular project.

3. Researcherswant to identify case studies and extract
high level lessons. An easily accessible platform which
helps in identifying the appropriate case studies, is a
valuable asset and helps not only saving time in the
face of the myriads of available systems, but also fos-
ters the research field as approaches can be cross-
validated on the same case-studies.

In the remainder of the article we show how our Small
Project Observatory (SPO) can help in answering many of
these questions by using it in the context of an industrial
and three open-source super-repositories.

Structure of the paper.In Section 2 we briefly present the
functionalities of SPO and then in Section 3 introduce a cat-
alog of super-repository visualization perspectives that SPO
offers. We then present an experience report of using SPO
on an industrial super-repository in Section 4. In Section 5
we discuss our approach. We then outline related work in
Section 6 and conclude the paper in Section 7.

2. Available
Perspectives

4. View
Configuration

3. Active Filters

5. Detail
Perspective

1.Interactive
View

Figure 1. The Interface of The Small Project Observatory

2. The Small Project Observatory

Figure 1 presents The Small Project Observatory4 within
the Opera web browser being used on the Bern super-
repository. SPO is a highly interactive web application, and
here we present a few of the interaction modes.

The interactive view.The central view displays a specific
perspective on a super-repository. In Figure 1 we see the ac-
tivity (measured in terms of commits to the repository) over
a period of 5 years. Each colored layer in the view repre-
sents a different application. The view is interactive in the
sense that the user can select and filter the depicted projects,
obtain contextual menus for the projects or navigate be-
tween various perspectives. Figure 1 presents the contextual
menu obtained when the user selects a given project. The
view can be configured in terms of the displayed time in-
terval through a selection mechanism available in the view
configuration panel (marked as 4).

4 A demo version of The Small Project Observatory is available at
www.inf.unisi.ch/phd/lungu/spo/

Multiple Perspectives.SPO provides multiple perspectives
on a repository such that a user can choose the ones which
are appropriate for the type of analysis he needs. The Avail-
able Perspectives panel (marked as 2) presents the list of
perspectives, some of which we will discuss in the article.

Filters. Given the sheer amount of information residing in
a super-repository, filters need to be applied on the super-
repository data. The panel marked as (3) lists the active fil-
ters (in this case only multi-authors projects are depicted in
the interactive view), and the user can choose and combine
other filters. A user can also apply filters through the inter-
active view, for example by removing a project or focusing
on a specific project using the contextual menu.

Detail perspectives.Providing details on demand is a way
of coping with complexity[25]. To the right of the explo-
ration view there are detail panels (marked as 5) which pro-
vide additional information on the view or on the selected
elements in the view. In Figure 1 the detail panel presents
the list of developers which are involved in the projects in
the view and the projects they are involved in.

3. Super-repository Perspectives

The Small Project Observatory is implemented as a
service which maintains an up-to-date model of a super-
repository. Based on this model a multitude of analyses can
pe performed. This section presents the types of analyses
by presenting the perspectives offered by The Small Project
Observatory, and describe how they can be interpreted.

Size Evolution. This perspective illustrates the evolution
of the projects in the super-repository with respect to vari-
ous metrics. The visualization principle, used with success
by Wattenberg in other applications [30] is to assign to each
project a specific color, and represent it as a surface where
the horizontal axis shows time and the height of the surface
is given at every point by a certain metric computed at the
respective time in the life of the project. Since we are work-
ing with projects written in object-oriented languages, we
consider Number of Classes to be a good estimation [11]
for the evolution of the size of the projects.

Size is Constant

Size is Changing

P
ro

je
ct

 O
rd

er
in

g

New

Old

Figure 2. Size Evolution perspective of the
Lugano Super-repository (2005 - 2007)

Figure 2 illustrates the concept of the size evolution per-
spective on a subset of the projects from the Lugano super-
repository between 2005 and 2007. The time interval of in-
terest is divided in months, but can be divided also in days
or weeks. All the project surfaces are stacked to provide an
overview of the total super-repository size evolution. The
order in which they are stacked is chronological starting
with the oldest projects at the bottom. The view not only
emphasizes the evolution in size but also emphasizes the
specific time intervals when each project’s size changes: the
brightness of the project color is higher in the periods when

the size remains constant. With this convention we can in-
fer from Figure 2 that the project at the bottom, the oldest
in the repository, has been discontinued after an initial and
steady size increase.

Activity Evolution. The Activity Evolution perspec-
tive complements the previous perspective by depicting the
activity within the super-repository over time, i.e., it ren-
ders the effort spent by developers. To measure activity we
use the number of commits.

Net Client Support

Web Services

Figure 3. Activity Evolution perspective of the
Cincom Super-repository (2000 - 2007)

Figure 3 presents the evolution in time of the aggre-
gated activity in the Cincom super-repository between 2000
and 2007. The units on the horizontal axis are months. A
first observation related to Figure 3 is that there are sev-
eral projects which are continuously active for long periods
of time. The two marked are Net Client Support and Web
Services, two of the oldest projects in the repository. An-
other observation regarding activity is that the alternance
of peaks and valleys presents some repetitive patterns with
drops in August and December. This is easily attributable
to the holidays seasons. Another interesting phenomenon
is the increase in productivity at the beginning of the year,
marked by circles. Although we have observed the same
phenomenon in the Bern super-repository we have no the-
ory on the underlying cause.

Parallel Evolution. This perspective combines the two
previously presented ones into one single perspective, and
is mostly useful during drill-down phases.

PackageCrawler Softwarenaut SPO

T1 T2

Figure 4. Parallel Evolution Perspective of 3
projects (2005 - 2007).

Figure 4 was obtained by filtering in only the projects in
the Lugano super-repository for which one of the authors
(i.e.,Lungu) was the main developer. We see three projects
(i.e.,PackageCrawler, Softwarenaut, and SPO) correspond-
ing to various research directions explored during the PhD
of one of the authors. The view shows that at mid-2005 (T1)
the activity on PackageCrawler stops completely and the ac-
tivity on Softwarenaut begins. What is not visible in the fig-
ure is the fact that Softwarenaut took several components
from PackageCrawler and continued from there. The sec-
ond observation is that at the beginning of 2007 (T2) the fo-
cus of the development effort changes from Softwarenaut to
SPO although the work on Softwarenaut continues.5

Developer Activity Lines. The Developer Activity Lines
perspective presents a visual summary of the developer
activity in the repository. Each contributor to the super-
repository has an associated activity line which sumarizes
his activity by marking the periods in time when (s)he was
comitting changes to the super-repository.

Figure 5 presents the history of developer contributions
in the Bern super-repository between 2002 and 2007. The
figure reveals that the majority of the contributors are ac-
tive for short periods of time (e.g.,C), such as the master
students who work on their thesis project. There are also
several developers who contribute for long periods of time
(such as the ones marked A and B in the figure), mostly PhD
students and Post-docs. In terms of continuity we see that
some developers contribute intermittently (B) while others

5 The activity spike at the end consists in several changes needed to sup-
port the current paper.

A

B

C

Figure 5. Developer ActivityLines perspec-
tive of the Bern super-repository (2002-2007).

contribute continuously (A and C).

Inter-project Dependency. The Inter-project depen-
dency perspective presents the static dependencies between
projects of a super-repository. Such an overview pinpoints
the critical projects in a company, or projects thatcan-
not die. The projects which are mostly depended upon
are at the bottom. Various metrics computed for the indi-
vidual projects can be mapped on the color of the project
representations.

Figure 6. Inter-Project Dependencies be-
tween the projects active in the last month in
Bern

Figure 6 shows the dependencies between the projects
which were active during the month of June 2007 in the
Bern super-repository. The convention for the color is that
the darker the shading of the project the older it is. The view
shows that the oldest project from the projects which are
still active is also the one on which the most projects de-
pend on. The project in this case is MooseDevelopment, the
reengineering flagship of the SCG research group.

Developer Collaboration. This perspective shows how
developers collaborate with each other within a super-
repository, i.e., across project boundaries. We say that
two developers collaborate on a certain project if they
both make modification to the project for a certain num-
ber of times above a given threshold. We call this metric
the developer commit count (DCC). Based on this in-
formation we construct acollaboration graphwhere the
nodes are developers and the edges between them represent
projects on which they collaborated. To represent the col-
laboration graph for a super-repository we draw the graph
using aforce-based layout algorithmwhich clusters con-
nected nodes together and offers an aesthetically pleasing
layout [9]. Thus, developers which collaborate will be po-
sitioned closer together. The intensity of a node’s color
can be proportional to other metrics. Because an arc be-
tween two nodes represents the project on which the two
nodes collaborate, the arc has the color of the respec-
tive project.

Figure 7 presents the collaboration perspective of the
Bern super-repository. We considered only developers with
a DCC count> 15. The intensity of a node is proportional
with the overall activity in the repository of the node (i.e.,
the darker the node, the more active is the corresponding de-
veloper). The perspective allows for a classification of de-
velopers based on their type of collaboration.

We observed three types of developers,loners, collabo-
rators, andhubs. Loners work alone on projects. Figure 7
shows that in the analyzed repository this type of user is
very well represented, probably given to the “lonely” na-
ture of the development performed during a PhD or Mas-
ter’s. Collaborators work with others on few projects. As an
example, developer “lienhard” (point A) from Figure 7 is
involved in a single project in which other two developers
work. Hubs collaborate on many projects. For example, de-
veloper “wuyts” (point B) from Figure 7 has connections to
multiple developers and is involved in several projects.

Overall, the Bern super-repository shows a large and
tightly coupled community. Indeed the Berne research
group has worked on many facets of reverse engineer-
ing during the past years, leading to a myriad of tightly
coupled tools, capped by the Moose reengineering envi-
ronment. This might be a result of Conway’s law which
states that organizations that produce systems are con-
strained to produce designs which are copies of those

B

A

Figure 7. Developer Collaboration perspec-
tive of the Bern super-repository

organizations [6].

4. An Experience Report at Soops BV

While looking for an industrial case-study for our
tool we approached Soops b.v, a Dutch software com-
pany specialized in Smalltalk, if we could analyze their
super-repository using SPO. Due to privacy reasons they de-
nied, but offered instead to install the tool on their own,
experiment with it themselves, and report back the inter-
pretations:

The development team at Soops has been using Store
since it was first released in the 5i version of VisualWorks.
Over time we found thatbundles6, were too cumbersome to
be used in an agile process, particularly in aneverybody
owns the codesetting, so Soops has since declined to use
bundles to group code packages, instead we opted to use
a different mechanism calledlineups[20]. In our case the
repository contains both lineups and bundles, where bun-
dles are created by parties outside Soops and lineups relate
to code created at Soops. The first thing that needed to be
done was to adapt SPO to support lineup analysis. An ini-
tial analysis run reports 249 projects in the repository, ad-
justing the filters to only show activity in the past year re-

6 Bundles are the Store mechanism for projects. The term will be used
interchangeably with projects in this section

duces this number to 188. All further analyses are restricted
to the past year.

Developer Activity Lines.The first thing that we wanted
to see was the history of developer activity. Looking at Fig-
ure 8 some things stand out.

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 Feb Mar Apr May

Adriaan

aknight

Albert

Cees

Cham

Christiaan

chronos

Eric

Georges

georges

Mac

Marco

Mpf

Nic

Olaf

PackageBot

Reinout

Terry

Tom

tom

E

C

T

Figure 8. Developer Activity Lines during the
last year in the Soops repository

User ’Mpf’ is only occasionally contributing to the
repository. The reason is that he is outsourced to cus-
tomers of Soops and hence shows gaps in his commit be-
havior. Packagebot only committed early in the year, this
reveals a breach of Soops’ publishing protocol: the Pack-
ageBot login was not intended to be used for commit-
ting, but this was not enforced by access controls. Three
of the developers (marked E, C and T) show no activ-
ity over this period of time. These three developers were ex-
ternal hires in earlier years, their names still appear in
the graph because the projects they worked on are still un-
der active development.

Developer Collaboration.To learn more about the de-
veloper structure we switch to the Collaborations perspec-
tive. Figure 9 shows a couple of disconnected developers,
of those ’aknight’ and ’chronos’ refer to authors of third-
party packages. PackageBot should have never committed
as explained earlier. Marco is a developer who writes test
suites, he does not contribute application code so he rarely
commits into the same packages as the developers. ’Mpf’
is in the same position as Marco but has helped develop
the test tool itself as well, which shows as some of his col-
laboration edges in the graph. Eric was maintaining a sin-
gle project, mainly together with Tom. The remaining peo-
ple show strong collaboration which reflects the situation at
Soops where developers regularly switch between projects.
Trying to untangle this central knot of collaborations by
switching to a hierarchical layout gives little extra clarity,
collaboration appears to be abundant.

Reinout

Terry

Tom

PackageBot

Nic

Olaf

tom

Eric

Mac

Adriaan

Cham

Georges

Albert

Cees

Mpf

Marco

Christiaan

georges

chronosaknight

E

CT

Figure 9. The Inter-Developer Collaboration
perspective shows abundant collaboration

Activity Evolution.As we have seen in the previous view,
several of the developers are not part of the core team of
the company so we filtered their projects. On the remain-
ing projects we generated an Activity Evolution perspective,
shown in Figure 10.

Looking at the commit activity there is one project stand-
ing out as being ’large’, mousing over it reveals that this is
the ’Jun’ project, a third party OpenGL access layer that
has been used at Soops for research purposes. Jun is not
distributed in a format compatible with the Store repository.
Scripts are available on the web to convert Jun to Store but
this proved to be cumbersome, quite a large number of com-
mits were required before a properly loading project bun-
dle was created. Since Jun is not core to Soops’ products,
we elide it from the graph using the filters supplied by SPO
(displayed in part (b) of the figure).

The graph now shows a more regular spread of activ-
ity over the projects, interpreting the graph requires ’mous-
ing over’ the various parts to see which project names they
are associated with. This reveals that bundles are drawn as
the bottom layers of the graph and lineups as the top layers.
Since at Soops this dichotomy aligns closely with the third-
party vs Soops’s software we can concentrate on these two
halves separately. Looking at the bottom half we see three
surges of activity (marked as A) on July 2006, March 2007
and May 2007. Mousing over reveals that the brown swaths
are related to the ’Base VisualWorks’ bundle, these activity
surges show at what times Soops published a VisualWorks
release into this repository. The first two peaks correspond
to builds internal to Cincom7 that Soops has access to, the

Jun

a)

b) 1 11A A A

B
C

Figure 10. Activity Evolution in the Soops
Repository between June 2006 and June
2007 with (a) and without Jun (b).

last one signifies the official release of VisualWorks 7.5.
Further inspection of the bundle names reveals that these
commits in 2006 only comprise two bundles (’Base Visual-
Works’ and ’Tools-IDE’) present in the base Smalltalk im-
age, whereas the two activity peaks in 2007 comprise many
more bundles related to externally loadable libraries deliv-
ered with the VisualWorks product.

Moving our attention to Soops specific projects in the
top of the graph we see two that stand out by their activ-
ity: the light blue swath with its activity peak in August
2006 (marked as B) and the brown ribbon spanning from
February to June (marked as C). Mousing over the interac-
tive diagram reveals that the first one is related to a ’plu-
gin’ created by Soops to communicate with a third-party
product. This project had many technological challenges at
lower layers (multi-threaded COM connect) requiring sev-
eral rewrites of it’s core components and this is why the
development spanned half a year. Moving on to the brown
area at the right this shows to be a major application that
has only recently been ported from VisualWorks version 3 to
version 7.5. Since version 3 uses another SCM tool (Envy)
than 7.5 it has never been committed to this repository until
porting the project got underway in February 2007. As can

7 The supplier of VisualWorks Smalltalk.

be seen activity on that modernization project has steadily
grown since it was ported.

Size Evolution.Looking at the sizes of projects (Fig-
ure 11, again with ’Jun’ elided) we can see that the size
of the code in the repository has a general tendency to in-
crease even if there are periods in the lifetime of the super-
repository where the size decreases. Looking at the projects
in the repository we can see multiple projects which are be-
ing touched intermittently, a sign of ongoing maintenance.

A

B

C

Figure 11. Size Evolution in the Soops repos-
itory

One of the most prominent projects in the figure is the
somewhat ’fat’ one at the bottom signifying the Cincom
product which hardly varies in volume (marker A), ex-
cept once in march 2007 where it collapses slightly. The
light-blue line that disappears in March 2007 (marker B)
is the ’Refactoring Browser’ tool that has been renamed
and assimilated into existing bundles. Oddly SPO shows
an overall reduction of code here while we would expect
no change of size, merely a different distribution between
projects. In the range June - September 2007 we see that
Soops’ code also decreases in size, this can in part be at-
tributed to changes in code generating tools that were in-
troduced, sparser code was generated for the ’Soops-API’
project. The reasons for other declines of size are not read-
ily apparent, trolling through the release comments shows
that code for one project ’Market Configuration Server’ has
been moved to other packages. It seems that SPO no longer
counts this code as part of a project, this could be due to the
fact that Lineups don’t carry enough information to auto-
matically discern between code contained in a project and
code that is a mere prerequisite. The bands on top of the
graphic starting in February (marker C) relate to the project
mentioned earlier that was ported from VisualWorks 3.

5. Discussion

The Experiment. The experiment with Soops was the first
time that we handed over one of our tools away to be tested
without our presence. Although we did not have control
over the experiment we were satisfied to see that the devel-
opers were interested in using the tool and reporting on its
usage. We received usability feedback which we plan to in-
corporate in future versions. The first lesson learned is that
we have to be ready to adapt our tools to make them fit the
particularities of the case studies. As mentioned in the pre-
vious section, we had to adapt our tool to the way that the
Soops developers define projects.

Another lesson that we have learnt is that different peo-
ple need different views. While The Small Project Observa-
tory has been only tested on open-source systems, when ap-
plied in the Soops context not all views proved to be useful.
For example, one of the Inter-Project Dependency view was
not useful due to too much noise generated by too many de-
pendencies between the projects.

Interpretation Pitfalls. It is tempting to derive conclu-
sions after seing a perspective. It might seem that a devel-
oper with a high commit count is more useful to the com-
pany. However, people have different ways of working and
a developer committing many small changes might still be
less instrumental to the company than one who commits less
frequently but works on an important project in the system.
This is why the perspectives should not be considered alone
but in a larger context.

Developer Collaborations. The way the collabora-
tion relationship is defined can be improved. For exam-
ple, we could evaluate the quality –not only the quantity–
of changes the developers make. Another problem re-
lated with the developer collaboration relatinship is that
although it is a dynamic property of a super-repository cur-
rently the Developer Collaborations perspective represents
the state of the relations between the developers at a sin-
gle point in time, i.e., in the last version of the system. It
would be interesting to visualize the evolution of these re-
lationships.

Privacy. Some of the data that we visualize involves deli-
cate issues such as developer activity. In the case of open-
source systems this information is available but in an indus-
trial context this informatin has to be treated with attention.
We are grateful to Soops for providing us with information
about their development environment.

6. Related Work

Several approaches rely on visualization to understand
the history of software systems, but most of them focus on
one system only. Lanza and Ducasse devised the Evolution

Matrix to focus on how classes change [17]. Rysselberghe
et al. used a simple plot diagram to identify change pat-
terns [28]. Wuet al.made use of the spectrograph metaphor
to reveal hot periods in a project [32]. Girbaet al. devised
the Ownership Map to show how developers changed the
system [12]. Voineaet al. propose multiple visual perspec-
tives on the entire project history [29]. Rötsche and Krick-
haar [23] presented a system for supervising the evolution
of the refactoring process of a large scale industrial system.

There are only few projects which analyze entire reposi-
tories. One such project is the FlossMole project which pro-
vides for download a database compilation of open-source
projects from Sourceforge and several other repositories
[5]. Weiss performed a very interesting analysis of all the
projects in SourceForge, however his visualizations are sta-
tistical in nature[31]. Kawaguchiet al.used semantic anal-
ysis to categorize software systems in open-source software
repositories [14]. They provide a tool that categorizes the
projects and labels the categories. Kuhnet al. also used a
similar approach to analyze relationships between projects
[16]. As opposed to our work, these approaches have been
applied on one version only.

German proposed the analysis of software distributions
as a means to understand the relative importance of software
packages [10]. Distinct from supre-repositories, software
distributions only contain stable, released software pack-
ages. Based on the characteristics of the dependency graph
German proposes metrics that quantify the success of vari-
ous packages.

7. Conclusions

In this paper we argue for the importance of super-
repository visualization and present The Small Project Ob-
servatory, a platform that supports super-repository analy-
sis. Our contributions can be summarized as follows:

• We presented a set of super-repository visualiza-
tion perspectives and exemplified them on three
open-source super-repositories,

• We implemented the visualizations in a tool called The
Small Project Observatory that we have briefly pre-
sented, and

• We presented an experience report of using The Small
Project Observatory in an industrial setting.

Acknowledgments. We would like to thank Daniel Ratiu,
Romain Robbes and Jochen Wuttke for feedback on previ-
ous drafts of this article. We are grateful to Soops BV for
trying out and reporting on the usage of SPO. We also ac-
knowledge the support of the Swiss National Science Foun-
dation for the project “NOREX — Network of Reengineer-
ing Expertise” (SNF Project IB7320-110997).

References

[1] T. Ball and S. Eick. Software visualization in the large.IEEE
Computer, 29(4):33–43, 1996.

[2] S. R. Chidamber and C. F. Kemerer. A metrics suite for ob-
ject oriented design.IEEE Transactions on Software Engi-
neering, 20(6):476–493, June 1994.

[3] E. Chikofsky and J. Cross II. Reverse engineering and de-
sign recovery: A taxonomy.IEEE Software, 7(1):13–17, Jan.
1990.

[4] Open-Source Project Repository With A Strong Emphasis on
Java. http://codehaus.org. http://codehaus.org/.

[5] M. Conklin, J. Howison, and K. Crowston. Collaboration
using ossmole: a repository of floss data and analyses.SIG-
SOFT Softw. Eng. Notes, 30(4):1–5, 2005.

[6] M. E. Conway. How do committees invent?Datamation,
14(4):28–31, Apr. 1968.

[7] D. Cubranic and G. Murphy. Hipikat: Recommending per-
tinent software development artifacts. InProceedings 25th
International Conference on Software Engineering (ICSE
2003), pages 408–418, New York NY, 2003. ACM Press.

[8] S. Demeyer, S. Ducasse, and M. Lanza. A hybrid reverse en-
gineering platform combining metrics and program visual-
ization. In F. Balmas, M. Blaha, and S. Rugaber, editors,Pro-
ceedings of 6th Working Conference on Reverse Engineering
(WCRE ’99). IEEE Computer Society, Oct. 1999.

[9] T. M. J. Fruchterman and E. M. Reingold. Graph drawing by
force-directed placement.Softw. Pract. Exper., 1991.

[10] D. German. Using software distributions to understand the
relationship among free and open source software projects.
In Mining Software Repositories, 2007.

[11] T. Gı̂rba, S. Ducasse, and M. Lanza. Yesterday’s Weather:
Guiding early reverse engineering efforts by summarizing
the evolution of changes. InProceedings of 20th IEEE Inter-
national Conference on Software Maintenance (ICSM’04),
pages 40–49, Los Alamitos CA, Sept. 2004. IEEE Computer
Society.

[12] T. Gı̂rba, A. Kuhn, M. Seeberger, and S. Ducasse. How de-
velopers drive software evolution. InProceedings of Inter-
national Workshop on Principles of Software Evolution (IW-
PSE 2005), pages 113–122. IEEE Computer Society Press,
2005.

[13] Open-Source Project Hosting by Google.
http://code.google.com/hosting.

[14] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue.
Mudablue: An automatic categorization system for open
source repositories. InProceedings of the 11th Asia-Pacific
Software Engineering Conference (APSEC 2004), pages
184–193, 2004.

[15] R. Koschke and T. Eisenbarth. A framework for experi-
mental evaluation of clustering techniques. InProceedings
of the International Workshop on Program Comprehension,
IWPC’2000. IEEE, June 2000.

[16] A. Kuhn, S. Ducasse, and T. Gı̂rba. Semantic clustering:
Identifying topics in source code.Information and Software
Technology, 49(3):230–243, Mar. 2007.

[17] M. Lanza and S. Ducasse. Beyond language independent
object-oriented metrics: Model independent metrics. In F. B.
e Abreu, M. Piattini, G. Poels, and H. A. Sahraoui, editors,
Proceedings of the 6th International Workshop on Quanti-
tative Approaches in Object-Oriented Software Engineering,
pages 77–84, 2002.

[18] M. Lanza and R. Marinescu.Object-Oriented Metrics in
Practice. Springer-Verlag, 2006.

[19] M. Lehman and L. Belady.Program Evolution: Processes of
Software Change. London Academic Press, London, 1985.

[20] Travis Grigs’ Blog: Line Ups as Reported by Reinout Heeck.
http://www.cincomsmalltalk.com/userblogs/travis/blogView?
showComments=true&entry=3265388740.

[21] M. Pinzger. ArchView – Analyzing Evolutionary Aspects of
Complex Software Systems. PhD thesis, Vienna University
of Technology, 2005.

[22] C. Riva. View-based Software Architecture Reconstruction.
PhD thesis, Technical University of Vienna, 2004.

[23] T. Rötschke and R. Krikhaar. Architecture Analysis Tools
to Support Evolution of Large Industrial Systems. InProc.
IEEE International Conference on Software Maintenance
(ICSM 2002), pages 182–193, 10 2002.

[24] RubyForge the home of open source Ruby projects.
https://rubyforge.org. http://rubyforge.net/.

[25] B. Shneiderman. The eyes have it: A task by data type
taxonomy for information visualizations. InIEEE Visual
Languages, pages 336–343, College Park, Maryland 20742,
U.S.A., 1996.

[26] A Development and Download Repository of Open Source
Code and Applications. http://www.sourceforge.net/.

[27] Team Development with VisualWorks. Cincom Techincal
White Paper. Cincom Technical Whitepaper.

[28] F. Van Rysselberghe and S. Demeyer. Studying software evo-
lution information by visualizing the change history. InPro-
ceedings 20th IEEE International Conference on Software
Maintenance (ICSM ’04), pages 328–337, Los Alamitos CA,
Sept. 2004. IEEE Computer Society Press.

[29] L. Voinea, J. Lukkien, and A. Telea. Visual assessment
of software evolution.Science of Computer Programming,
365(3):222–248, 2007.

[30] M. Wattenberg. Baby names visualization, and social data
analysis. InProceedings of 2005 IEEE Symposium on Infor-
mation Visualization (INFOVIS 2005), pages 1–6, 2005.

[31] D. A. Weiss. A large crawl and quantitative analy-
sis of open source projects hosted on sourceforge. In
Research Report ra-001/05, Institute of Computing Sci-
ence, Pozna University of Technology, Poland, 2005. At
http://www.cs.put.poznan.pl/dweiss/xml/publications/index.xml,
2005.

[32] J. Wu, R. Holt, and A. Hassan. Exploring software evolution
using spectrographs. InProceedings of 11th Working Con-
ference on Reverse Engineering (WCRE 2004), pages 80–89,
Los Alamitos CA, Nov. 2004. IEEE Computer Society Press.

