Reverse Engineering Super-Repositories

Mircea Lungu, Michele Lanza
Faculty of Informatics

Tudor Grba
Software Composition Group

Reinout Heeck
Soops BV

University of Lugano, Switzerland University of Bern, Switzerland The Netherlands

Abstract

niques to exploit the information contained in versioning

systems for evolution analysis.

Reverse engineering and software evolution research

In this paper we argue that despite the recent advances

has been focused mostly on analyzing single software syswhich made these field as a whole flourish, two issues are
tems. However, rarely a project exists in isolation; instead, being largely ignored:

projects exist in parallel within a larger context given by a
company, a research group or the open-source community.
Technically, such a context manifests itself in the form of
super-repositoriesontainers of several projects developed
in parallel. Well-known examples of such super-repositories
include SourceForge and CodeHaus.

We present an easily accessible platform which supports
the analysis of such super-repositories. The platform can
be valuable for reverse engineering both the projects and
the structure of the organization as reflected in the inter-
actions and collaborations between developers. Through-
out the paper we present various types of analysis applied
to three open-source and one industrial Smalltalk super-
repositories, containing hundreds of projects developed by
dozens of people.

1. Introduction

Reverse engineering has been defined by Chikofsky and
Cross [3] as “the process of analyzing a subject [software]
system to (1) identify the system’s components and their in-
terrelationships and (2) create representations of the system
in another form or at a higher level of abstraction”.

Indeed, most reverse engineering research is concerned
with answering a number of questions on software systems
which are closely related to these goals. A great variety of
analysis techniques have been created.(metrics[2, 18],
visualization[1, 8], clustering[15], architecture recovery[21,
22]) and implemented either in stand-alone tools, or as part

1. Many reverse engineering techniques are implemented
in stand-alone tools. The tools, ranging from simple
sets of scripts to full-fledged reengineering environ-
ments, such as Moose and Bauhaus, are applied on
the systems that need to be analyzed, the results are
retrieved, and reasoned on. Accessibility and usabil-
ity are often poorly addressed concerns in this context,
i.e., installing and applying such tools in a productive
way requires technical expertise and is often only per-
formed by the tool developers themselves. This often
leads to the scenario, where companies, potentially in-
terested by specific software analysis tools and tech-
nigues, give up on applying them because of the tools’
poor usability and accessibility.

2. Software systems are seldom developed in isolation.

On the contrary, many companies, research institu-
tions and the open-source scene deal with software
repositories existing in parallel, hosted on dedicated
server$. We are faced withsuper-repositorigsthat

is repositories of repositories. In an industrial context
such super-repositories represent dissetsof a com-
pany, and besides the evolution of the software systems
themselves, a super-repository also contains informa-
tion about which developers worked on which projects
at which time, to what extent and collaborating with
whom. Indeed, this added information makes it im-
portant to the company to understand what its super-
repository contains and how it evolves.

In this article we present a platform which of-

of integrated environments. fers a uniqgue and easily accessible entry point to

In the recent years, two interconnected factors have givensuper—reposnones in order to facilitate their compre-

anew drive to the research field, namely (1) the open sourcehensmn' The platform, dubbed Small Project Observa-

5 .)) .
phenomenon, because it led to an increased availability Oftory (SPO), is an interactive web portal accessible through
software systems to be analyzed, and (2) the research topic

of “mining software repositories" which deals with tech- 1 SourceForge for example currently hosts more than 100,000 projects.

a standard web browser. It offers various means to ana-to analyze super repositories with respect to specific ques-
lyze, visualize and interact with the data contained in a tions:

super-repository. We claim that it is useful in a variety of
contexts: when an open-source contributor is searching for
interesting projects to contribute to, when a project man-
ager wishes to supervise multiple projects, or when a new
employee wants to understand the “treasure trove” of soft-
ware that the company has been developing over the
years.

We distinguish between two types of super-repositories,
(1) repositories that are dedicated to a particular language
such as RubyForge[24], CodeHaus[4] and StORE[27],
and (2) repositories that are language agnostic such as
SourceForge[26] and GoogleCode[13]. Although most of
the discourse can be generalized to any of these reposi-
tory types, in this article we focus our attention on the
first category and look at three open-source and one in-
dustrial super-repositories which contain each the his-
tory of several dozens to hundreds of applications written
in Smalltalk.

In Table 1 we provide a brief humerical overview of
these repositories. The oldest and largest of them is the
Open Smalltalk Repository hosted by Cincbrithe next
two are maintained at the Universities of Bern and Lugano,
in Switzerland. The last one is a repository maintained by
the company Soops BV, located in the Netherlands. The
data provided in Table 1 needs to be considered with care
as the numbers are the result of a simple project counting
in the repositories; however super-repositories accumulate
junk over time, as certain projects fail, die off, short-time
experiments are performed, etc. This is inherent to the na-
ture of super-repositories, and actually only adds to the in-
sight that super-repositories need to be understood in more
depth.

Repository Projects Classes Contributors Active Since

Cincom 288 19.830 147 2000
Bern 190 10.600 76 2002
Lugano 43 2.088 11 2005
Soops 249 11.413 20 2002

Table 1. The analyzed super-repositories

Who should analyze super-repositories2Ve ar-
gue that different stakeholders are interested in ana-
lyzing super-repositories for different tasks. Here we

1. Project Managers may ask questions such as “how
do teams work?”, “how do projects evolve?”, or “who
has worked on a similar project already?”. Organiza-
tional charts only show the team structure in a static,
and often poorly maintained, form. Revealing the ac-
tivity and collaboration of developers and the projects
they work on, shows how the actual work is being per-
formed [12] and how the collaborations between de-
velopers evolved over time. Moreover, since in gen-
eral successful projects need to continuously change
[19], a project manager needs to be up to date with
how projects change and what their current status is.

2. Developersmay have questions such as “who should
| ask if | want to do that?”, “what dependencies does
the system | am working on have and to which applica-
tions?”, or “what do applications on which my appli-
cation depends look like and what is their current sta-
tus?”. One important source of information for devel-
opers, especially for newcomers to a project, are other
developers. Thus, developers need to know whom to
ask [7]. Also, not only the details of a particular project
are relevant, but also the inter-project dependencies
are important. For example, in the case of a frame-
work, it is important to know who the clients are so
that they can be updated. Similarly, when an appli-
cation is built out of components, developers need to
know what components have changed. In the open-
source context there are also developers looking for in-
teresting projects they can contribute to. Since not all
of them have equal chances of success, it is useful to
gain insights on the evolution, activity and the people
involved regarding a particular project.

3. Researcherswant to identify case studies and extract
high level lessons. An easily accessible platform which
helps in identifying the appropriate case studies, is a
valuable asset and helps not only saving time in the
face of the myriads of available systems, but also fos-
ters the research field as approaches can be cross-
validated on the same case-studies.

In the remainder of the article we show how our Small

Project Observatory (SPO) can help in answering many of
these questions by using it in the context of an industrial
and three open-source super-repositories.

identity three categories of users that benefit from a plat- Structure of the papern Section 2 we briefly present the

form such as SPO, namelyroject managersdevelop- functionalities of SPO and then in Section 3 introduce a cat-

ers, andresearchers Each of these has different reasons @log of super-repository visualization perspectives that SPO
offers. We then present an experience report of using SPO
on an industrial super-repository in Section 4. In Section 5

we discuss our approach. We then outline related work in

Section 6 and conclude the paper in Section 7.

2 Inthe given context, the adjectigenallmay be considered a bad pun:
its origin lies in the used implementation language (Smalltalk).
3 http://smalltalk.cincom.com

Seaside

[Newtab rGSGESidE—Q]

« - by o 7 @ httpyf/evo.inf.unisi.ch:8009/spo/go/SmallProjectObservatory?_s=2zVNCAEETHXeWBNWo& _k=IUUFsaJS ? v |G G € YA

The Small Project Observatory

Bern Lugano

General
- Project Listing BaobabDevelopment-> 6 (01 Mar 2003)

)»

1.Interactive
View

Aythors and the projects they
fre working on:
QQ an author to show only

Time Based
- Developer ActivityLines
- Size Evolution
= Activity Evolution

- Parallel Evolution

5. Detail
Perspective

Number oj Commits
517

2. Available
Perspectives

Make Begining of Time
Make End of Time
Select Interval

Focus on this Project
Zoom In on Time Interval
Filter Out this Project

=
]

414 buchli

buehler m =
bunge M
damas W

310 dambros [
fre

Timeless
- InterProject Dependencies
- InterDeveloper Dependencies

- Developer Collaboration
207 greevy ML EN

Only Multi-Author Projects (13)

(remove)

103

Only Active In The Last 1 Year
Add
mever B
mooser B
oscar
onisio ML
OO o
rengali
This view presents an overview of the evolution of the whole rothlisberger 1
repository activity and shows how each project in the repository seeberger
contributes to this evolution, _valerilco [|
vogel &

3. Active Filters

Starting Date: 2001 = 5 < 16 =
Ending Date: 2007 = 6 : 5 ¢
Predefined Interval: Last Week Las)
Apply

The activity is measured in Number of Commits per Unit of time. voinescu Il
wampfler
wettel B
wuyts [
wysseier 1

4. View
Configuration

New Session Configure Togale Halos Profile Terminate XHTML 29068/80 ms

Figure 1. The Interface of The Small Project Observatory

2. The Small Project Observatory Multiple PerspectivesSPO provides multiple perspectives
on a repository such that a user can choose the ones which
are appropriate for the type of analysis he needs. The Avail-
able Perspectives panel (marked as 2) presents the list of
perspectives, some of which we will discuss in the article.

Figure 1 presents The Small Project Observatavithin
the Opera web browser being used on the Bern super
repository. SPO is a highly interactive web application, and

here we present a few of the interaction modes.]]) . o
Filters. Given the sheer amount of information residing in

The inter_active viewThe cen;ral view _displays a specific 4 super-repository, filters need to be applied on the super-
perspective on a super-repository. In Figure 1 we see the actepository data. The panel marked as (3) lists the active fil-
tivity (measured in terms of commits to the repository) over ters (in this case only multi-authors projects are depicted in
a period of 5 years. Each colored layer in the view repre- e interactive view), and the user can choose and combine
sents a different application. The view is interactive in the giner filters. A user can also apply filters through the inter-

sense that the user can select and filter the depicted project$ctive view, for example by removing a project or focusing
obtain contextual menus for the projects or navigate be-gp, g specific project using the contextual menu.
tween various perspectives. Figure 1 presents the contextual

menu obtained when the user selects a given project. Theyey| nerspectivesProviding details on demand is a way
view can be configured in terms of the displayed time in- of coping with complexity[25]. To the right of the explo-
terva}l thrqugh a selection mechanism available in the view ration view there are detail panels (marked as 5) which pro-
configuration panel (marked as 4). vide additional information on the view or on the selected
elements in the view. In Figure 1 the detail panel presents
4 A demo version of The Small Project Observatory is available at the list of developers which are involved in the projects in
www.inf.unisi.ch/phd/lungu/spo/ the view and the projects they are involved in.

3. Super-repository Perspectives the size remains constant. With this convention we can in-

fer from Figure 2 that the project at the bottom, the oldest

The Small Project Observatory is implemented as a in the repository, has been discontinued after an initial and
service which maintains an up-to-date model of a super-steady size increase.

itory. B hi I Iti f anal . . - .
repository. Based on this model a multitude of analyses CanACtIVIty Evolution. The Activity Evolution perspec-

pe performed. This section presents the types of analyse?. ; : e
b . . . —five complements the previous perspective by depicting the
y presenting the perspectives offered by The Smal I:’rOJeCtactivit within the super-repository over time, i.e., it ren-
Observatory, and describe how they can be interpreted. y P P y R
] i] o . ders the effort spent by developers. To measure activity we
Size Evolution. This perspective illustrates the evolution | ;se the number of commits.
of the projects in the super-repository with respect to vari-
ous metrics. The visualization principle, used with success
by Wattenberg in other applications [30] is to assign to each Number of Commis 54
project a specific color, and represent it as a surface where O
the horizontal axis shows time and the height of the surface
is given at every point by a certain metric computed at the
respective time in the life of the project. Since we are work- O
ing with projects written in object-oriented languages, we Web Sarvices ",l 637
consider Number of Classes to be a good estimation [11]
for the evolution of the size of the projects.

892

765

510

382

New Number of Class 1327 255
o 4 1180 27
c |
E ! 1032

o | -
= 2003 2004 2005 2006
O ! 885
= | .
[S]
o ! o Net Client Support
09_ 1

|

590
Oid

Se==- e P S ” Figure 3. Activity Evolution perspective of the

Size is Changing Cincom Super-repository (2000 - 2007)

Figure 3 presents the evolution in time of the aggre-

gated activity in the Cincom super-repository between 2000

and 2007. The units on the horizontal axis are months. A

Figure 2. Size Evolution perspective of the first observation related to Figure 3 is that there are sev-
Lugano Super-repository (2005 - 2007) eral projects which are continuously active for long periods
of time. The two marked are Net Client Support and Web

Services, two of the oldest projects in the repository. An-

other observation regarding activity is that the alternance

F|gure 2 illustrates the concgpt of the size evolution per- of peaks and valleys presents some repetitive patterns with
spective on a subset of the projects from the Lugano SlJper'drops in August and December. This is easily attributable

repositorg_pztv;e_en ZOOianS 2007.k')l'h§_ti_rgedintlervgl (:jf in- to the holidays seasons. Another interesting phenomenon
terest s divided in m_ont S, but can be divided also IN A8YSis the increase in productivity at the beginning of the year,
or weeks. All the project surfaces are stacked to provide an . arked by circles. Although we have observed the same

ov((jervu?w orf]_tr;]et:]otal supetr—rekpc()j5|_toryh5|ze Ievqlut||ort1. Ihe phenomenon in the Bern super-repository we have no the-
order in which they are stacked is chronological starting ory on the underlying cause.

with the oldest projects at the bottom. The view not only

emphasizes the evolution in size but also emphasizes thdParallel Evolution. This perspective combines the two
specific time intervals when each project’s size changes: thepreviously presented ones into one single perspective, and
brightness of the project color is higher in the periods when is mostly useful during drill-down phases.

xxxxxxxx
Number of Classes T

03 e em cocceomEn
.......

......

xxxxxxx

PackageCrawler Softwarenaut SPQO ™™™

s

.....

=

;;;;;;;;;;

Figure 4. Parallel Evolution Perspective of 3

projects (2005 - 2007). . L
Figure 5. Developer ActivityLines perspec-

tive of the Bern super-repository (2002-2007).

Figure 4 was obtained by filtering in only the projects in
the Lugano super-repository for which one of the authors
(i.e.,Lungu) was the main developer. We see three projectscontribute continuously (A and C).

(i.e., PackageCrawler, Softwarenaut, and SPO) correspondynter-project Dependency. The Inter-project depen-

ing to various research directions explored during the PhD gency perspective presents the static dependencies between
of one of the authors. The view shows that at mid-2005 (T1) projects of a super-repository. Such an overview pinpoints
the activity on PackageCrawler stops completely and the acthe critical projects in a company, or projects thain-

tivity on Softwarenaut begins. What is not visible in the fig- ot die. The projects which are mostly depended upon
ure is the fact that Softwarenaut took several componentsyre at the bottom. Various metrics computed for the indi-
from PackageCrawler and continued from there. The sec-yjqual projects can be mapped on the color of the project
ond observation is that at the beginning of 2007 (T2) the fo- ygpresentations.

cus of the development effort changes from Softwarenaut to
SPO although the work on Softwarenaut contindes.

Developer Activity Lines. The Developer Activity Lines
perspective presents a visual summary of the developel
activity in the repository. Each contributor to the super-
repository has an associated activity line which sumarizes
his activity by marking the periods in time when (s)he was
comitting changes to the super-repository.

Figure 5 presents the history of developer contributions
in the Bern super-repository between 2002 and 2007. The
figure reveals that the majority of the contributors are ac-
tive for short periods of timeg(g.,C), such as the master
students who work on their thesis project. There are also
several developers who contribute for long periods of time
(such as the ones marked A and B in the figure), mostly PhD
students and Post-docs. In terms of continuity we see that
some developers contribute intermittently (B) while others

MandrianDevelopmant

Figure 6. Inter-Project Dependencies be-
tween the projects active in the last month in
Bern

5 The activity spike at the end consists in several changes needed to sup-
port the current paper.

Figure 6 shows the dependencies between the projects
which were active during the month of June 2007 in the

Bern super-repository. The convention for the color is that
talerico

the darker the shading of the project the older itis. The view

. . . wysseier fpluquet i
shows that the oldest project from the projects which are smichael |- aknight
still active is also the one on which the most projects de- lj b
buehler bergel dambros Eiirger v
) voinescu

pend on. The project in this case is MooseDevelopment, the
bulckaen

reengineering flagship of the SCG research group.

reichhart

Developer Collaboration. This perspective shows how stetter

developers collaborate with each other within a super-
balint
=l

hofstetter

repository, i.e., across project boundaries. We say that G
two developers collaborate on a certain project if they .\
lienhard

both make modification to the project for a certain num- i
Lo [o] L]

ber of times above a given threshold. We call this metric
the developer commit count (DCCBased on this in-
formation we construct &ollaboration graphwhere the
nodes are developers and the edges between them represe
projects on which they collaborated. To represent the col-
laboration graph for a super-repository we draw the graph
using aforce-based layout algorithrwhich clusters con-
nected nodes together and offers an aesthetically pleasing
layout [9]. Thus, developers which collaborate will be po-
sitioned closer together. The intensity of a node’s color
can be proportional to other metrics. Because an arc be-
tween two nodes represents the project on which the two
nodes collaborate, the arc has the color of the respec- o
tive project. organizations [6].

Figure 7 presents the collaboration perspective of the
Bern super-repository. We considered only developers with4. An Experience Report at Soops BV
a DCC count> 15. The intensity of a node is proportional
with the overall activity in the repository of the nodee(, While looking for an industrial case-study for our
the darker the node, the more active is the corresponding detool we approached Soops b.v, a Dutch software com-
veloper). The perspective allows for a classification of de- pany specialized in Smalltalk, if we could analyze their
velopers based on their type of collaboration. super-repository using SPO. Due to privacy reasons they de-

We observed three types of developdosers, collabo- nied, but offered instead to install the tool on their own,
rators, and hubs Loners work alone on projects. Figure 7 experiment with it themselves, and report back the inter-
shows that in the analyzed repository this type of user is pretations:
very well represented, probably given to the “lonely” na- The development team at Soops has been using Store
ture of the development performed during a PhD or Mas- since it was first released in the 5i version of VisualWorks.
ter's. Collaborators work with others on few projects. As an Over time we found thaiundle$, were too cumbersome to
example, developer “lienhard” (point A) from Figure 7 is be used in an agile process, particularly in amerybody
involved in a single project in which other two developers owns the codesetting, so Soops has since declined to use
work. Hubs collaborate on many projects. For example, de-bundles to group code packages, instead we opted to use
veloper “wuyts” (point B) from Figure 7 has connections to a different mechanism calldaheups[20]. In our case the
multiple developers and is involved in several projects. repository contains both lineups and bundles, where bun-

Overall, the Bern super-repository shows a large anddles are created by parties outside Soops and lineups relate
tightly coupled community. Indeed the Berne research to code created at Soops. The first thing that needed to be
group has worked on many facets of reverse engineer-done was to adapt SPO to support lineup analysis. An ini-
ing during the past years, leading to a myriad of tightly tial analysis run reports 249 projects in the repository, ad-
coupled tools, capped by the Moose reengineering envi-justing the filters to only show activity in the past year re-
ronment. This might be a result of Conway’s law which
states that organizations that produce systems are coné Bundles are the Store mechanism for projects. The term will be used
strained to produce designs which are copies of those interchangeably with projects in this section

locher

arevalo

verjus

loewis lungu

Figure 7. Developer Collaboration perspec-
tive of the Bern super-repository

duces this number to 188. All further analyses are restricted
to the past year.

Developer Activity LinesThe first thing that we wanted
to see was the history of developer activity. Looking at Fig- E

Marco aknight chronos PackageBot

ure 8 some things stand out. . Adriaan 0 ric
Reinout
N\
O
Tom %4, georges
oy
Reinout — Mpf
Olaf s
ot T
—— — eoroe
Marco C =
s Suy Cees

s — —— tom

a
.. AThe
ees D
fCees Christiaan
Night e —— — — — 7T —
'Adriaan
| | | | | | | | | | | | | | |
Feb Mai Apr May Jun Jul Aug Sep Oct Nov Dec 2007 Feb Mar Apr Ma:

Figure 9. The Inter-Developer Collaboration
perspective shows abundant collaboration

Figure 8. Developer Activity Lines during the
last year in the Soops repository

Activity Evolution. As we have seen in the previous view,
several of the developers are not part of the core team of
the company so we filtered their projects. On the remain-

User 'Mpf’ is only occasionally contributing to the | : - . .
ing projects we generated an Activity Evolution perspective,

repository. The reason is that he is outsourced to cus- h o
tomers of Soops and hence shows gaps in his commit peSOWN IN Figure 10.) .) _
havior. Packagebot only committed early in the year, this . -00king atthe commit activity there is one project stand-

reveals a breach of Soops’ publishing protocol: the Pack- N9 0ut as being ‘large’, mousing over it reveals that this is
ageBot login was not intended to be used for commit- € "Jun” project, a third party OpenGL access layer that

ting, but this was not enforced by access controls. Threehf"IS _been qsed at Soops for .resea'rch PUrposes. Jun_ IS not
of the developers (marked E, C and T) show no activ- distributed in a format compatible with the Store repository.
ity over this period of time. These three developers were ex-S(_3rIptS are available on the web to convert Jun to Store but
ternal hires in earlier years, their names still appear in IS Proved to be cumbersome, quite a large number of com-

the graph because the projects they worked on are still un- Mits were required before a properly loading project bun-
der active development dle was created. Since Jun is not core to Soops’ products,

Developer CollaborationTo learn more about the de- we elide it from the graph using the filters supplied by SPO

veloper structure we switch to the Collaborations perspec- (displayed in part (b) of the figure). .

: . : The graph now shows a more regular spread of activ-
tive. Figure 9 shows a couple of disconnected developers,it over the proiects. interpreting the araph requires 'mous-
of those "aknight’ and 'chronos’ refer to authors of third- y pro) ' b 9 graphreq

... ing over’ the various parts to see which project names they
party packages. PackageBot should have never committe . : .
X . . . are associated with. This reveals that bundles are drawn as
as explained earlier. Marco is a developer who writes test

. . S the bottom layers of the graph and lineups as the top layers.
suites, he does not contribute application code so he rarely .. N . :)
e . eoince at Soops this dichotomy aligns closely with the third-
commits into the same packages as the developers. 'Mpf)
o " party vs Soops’s software we can concentrate on these two
is in the same position as Marco but has helped develop .
. . : halves separately. Looking at the bottom half we see three
the test tool itself as well, which shows as some of his col- S
. . . L . surges of activity (marked as A) on July 2006, March 2007
laboration edges in the graph. Eric was maintaining a sin- .
: . . o and May 2007. Mousing over reveals that the brown swaths
gle project, mainly together with Tom. The remaining peo-

ple show strong collaboration which reflects the situation at are related to the ‘Base VisualWorks’ bundle, these activity

. : surges show at what times Soops published a VisualWorks
Soops where developers regularly switch between projects. . : : :

. . . release into this repository. The first two peaks correspond
Trying to untangle this central knot of collaborations by

2 - . . : . to builds internal to Cincorhthat Soops has access to, the
switching to a hierarchical layout gives little extra clarity,

collaboration appears to be abundant.

be seen activity on that modernization project has steadily
127 grown since it was ported.

1023

Number of Commits

Size Evolution.Looking at the sizes of projects (Fig-

‘/ ure 11, again with 'Jun’ elided) we can see that the size
A ===\ s11 of the code in the repository has a general tendency to in-
M 2ss crease even if there are periods in the lifetime of the super-

767

— repository where the size decreases. Looking at the projects
v e v S in the repository we can see multiple projects which are be-
a) ing touched intermittently, a sign of ongoing maintenance.

N Number of Commits 685

A 548
///A\\ /a\ Number of Classes 8824
AL AA ==

=19
==5

7059

A

{ 5294

_e———35)9

Figure 10. Activity Evolution in the Soops ' _ o
Repository between June 2006 and June Figure 11. Size Evolution in the Soops repos-
2007 with (a) and without Jun (b). itory

last one signifies the official release of VisualWorks 7.5.
Further inspection of the bundle names reveals that these

commits in 2006 only comprise two bundles (‘Base Visual- one of the most prominent projects in the figure is the
Works’ and "Tools-IDE’) present in the base Smalltalk im- gomewhat 'fat’ one at the bottom signifying the Cincom
age, whereas the two activity peaks in 2007 comprise manyproduct which hardly varies in volume (marker A), ex-
more bundles related to externally loadable libraries deliv- cept once in march 2007 where it collapses slightly. The
ered with the VisualWorks product. light-blue line that disappears in March 2007 (marker B)
Moving our attention to Soops specific projects in the js the 'Refactoring Browser tool that has been renamed
top of the graph we see two that stand out by their activ- anq assimilated into existing bundles. Oddly SPO shows
ity: the light blue swath with its activity peak in August an gverall reduction of code here while we would expect
2006 (marked as B) and the brown ribbon spanning from g change of size, merely a different distribution between
February to June (marked as C). Mousing over the interac- projects. In the range June - September 2007 we see that
tive diagram reveals that the first one is related to a 'plu- Soops’ code also decreases in size, this can in part be at-
gin’ created by Soops to communicate with a third-party ripyted to changes in code generating tools that were in-
product. This project had many technological challenges at roqyced, sparser code was generated for the 'Soops-AP!I’
lower layers (multi-threaded COM connect) requiring sev- project. The reasons for other declines of size are not read-
eral rewrites of it's core components and this is why the jy apparent, trolling through the release comments shows
development spanned half a year. Moving on to the brownnat code for one project "Market Configuration Server’ has
area at the right this shows to be a major application that peen moved to other packages. It seems that SPO no longer
has only recently been ported from VisualWorks version 310 counts this code as part of a project, this could be due to the
version 7.5. Since version 3 uses another SCM tool (Envy)tact that Lineups don't carry enough information to auto-
than 7.5 it has never been committed to this repository until matically discern between code contained in a project and
porting the project got underway in February 2007. As can ¢ode that is a mere prerequisite. The bands on top of the
graphic starting in February (marker C) relate to the project
7 The supplier of VisualWorks Smalltalk. mentioned earlier that was ported from VisualWorks 3.

5. Discussion Matrix to focus on how classes change [17]. Rysselberghe
et al. used a simple plot diagram to identify change pat-
The Experiment. The experiment with Soops was the first terns [28]. Wuet al. made use of the spectrograph metaphor
time that we handed over one of our tools away to be testedto reveal hot periods in a project [32]. Girledal. devised
without our presence. Although we did not have control the Ownership Map to show how developers changed the
over the experiment we were satisfied to see that the develsystem [12]. Voineat al. propose multiple visual perspec-
opers were interested in using the tool and reporting on itstives on the entire project history [29] dsche and Krick-
usage. We received usability feedback which we plan to in- haar [23] presented a system for supervising the evolution
corporate in future versions. The first lesson learned is thatof the refactoring process of a large scale industrial system.
we have to be ready to adapt our tools to make them fitthe ~ There are only few projects which analyze entire reposi-
particularities of the case studies. As mentioned in the pre-tories. One such project is the FlossMole project which pro-
vious section, we had to adapt our tool to the way that the Vides for download a database compilation of open-source
Soops developers define projects. projects from Sourceforge and several other repositories
Another lesson that we have learnt is that different peo- [5]. Weiss performed a very interesting analysis of all the
ple need different views. While The Small Project Observa- Projects in SourceForge, however his visualizations are sta-
tory has been only tested on open-source systems, when agistical in nature[31]. Kawaguclet al. used semantic anal-
plied in the Soops context not all views proved to be useful. Ysis to categorize software systems in open-source software
For example, one of the Inter-Project Dependency view wasrepositories [14]. They provide a tool that categorizes the
not useful due to too much noise generated by too many de-rojects and labels the categories. Kugtral. also used a
pendencies between the projects. similar approach to analyze relationships between projects
Interpretation Pitfalls. It is tempting to derive conclu- [16]'.AS opposed to_ourwork, these approaches have been
sions after seing a perspective. It might seem that a devel-appIIed on one version only. . C
German proposed the analysis of software distributions

oper with a high commit count is more useful to the com- ! derstand the relative i . £ soft
pany. However, people have different ways of working and asameans o understand in€ relative importance ot sottware
packages [10]. Distinct from supre-repositories, software

a developer committing many small changes might still be distributi | tain stabl | 4 soft K
less instrumental to the company than one who commits less IStr lé'ons(‘j on >t/hconha|n s',[a. ?_’ re ??hsed SO vzljare pac -h
frequently but works on an important project in the system. ages. based on the characteristics ol Ine dependency grap

This is why the perspectives should not be considered aloneGerman proposes metrics that quantify the success of vari-

but in a larger context. ous packages.

Developer Collaborations. The way the collabora- .
tion relationship is defined can be improved. For exam- 7. Conclusions

ple, we could evaluate the quality —not only the quantity—

of changes the developers make. Another problem re- In this paper we argue for the importance of super-
lated with the developer collaboration relatinship is that repository visualization and present The Small Project Ob-
although it is a dynamic property of a super-repository cur- servatory, a platform that supports super-repository analy-
rently the Developer Collaborations perspective representssis. Our contributions can be summarized as follows:

the state of the relations between the developers at a sin-
gle point in time, i.e., in the last version of the system. It
would be interesting to visualize the evolution of these re-
lationships.

Privacy. Some of the data that we visualize involves deli-
cate issues such as developer activity. In the case of open-
source systems this information is available but in an indus-
trial context this informatin has to be treated with attention. e We presented an experience report of using The Small
We are grateful to Soops for providing us with information Project Observatory in an industrial setting.

about their development environment.

e We presented a set of super-repository visualiza-
tion perspectives and exemplified them on three
open-source super-repositories,

¢ We implemented the visualizations in a tool called The
Small Project Observatory that we have briefly pre-
sented, and

Acknowledgments. We would like to thank Daniel Ratiu,
Romain Robbes and Jochen Wuttke for feedback on previ-
6. Related Work ous drafts of this article. We are grateful to Soops BV for
trying out and reporting on the usage of SPO. We also ac-
Several approaches rely on visualization to understandknowledge the support of the Swiss National Science Foun-
the history of software systems, but most of them focus on dation for the project “NOREX — Network of Reengineer-
one system only. Lanza and Ducasse devised the Evolutioring Expertise” (SNF Project IB7320-110997).

References

(1]
(2]

(3]

(4]
(5]

(6]
(7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

T. Balland S. Eick. Software visualization in the lar¢eEE
Computer 29(4):33-43, 1996.

S. R. Chidamber and C. F. Kemerer. A metrics suite for ob-
ject oriented designlEEE Transactions on Software Engi-
neering 20(6):476—493, June 1994.

E. Chikofsky and J. Cross Il. Reverse engineering and de-
sign recovery: A taxonomyEEE Software7(1):13-17, Jan.
1990.

Open-Source Project Repository With A Strong Emphasis on
Java. http://codehaus.org. http://codehaus.org/.

M. Conklin, J. Howison, and K. Crowston. Collaboration
using ossmole: a repository of floss data and analyS#s-
SOFT Softw. Eng. Note30(4):1-5, 2005.

M. E. Conway. How do committees inventRatamation
14(4):28-31, Apr. 1968.

D. Cubranic and G. Murphy. Hipikat: Recommending per- 23

tinent software development artifacts. Pmoceedings 25th
International Conference on Software Engineering (ICSE
2003) pages 408—-418, New York NY, 2003. ACM Press.

S. Demeyer, S. Ducasse, and M. Lanza. A hybrid reverse en-[24]

gineering platform combining metrics and program visual-
ization. In F. Balmas, M. Blaha, and S. Rugaber, editers; [
ceedings of 6th Working Conference on Reverse Engineering
(WCRE '99) IEEE Computer Society, Oct. 1999.

T. M. J. Fruchterman and E. M. Reingold. Graph drawing by
force-directed placemengoftw. Pract. Exper1991.

D. German. Using software distributions to understand the

relationship among free and open source software projects.[27]

In Mining Software Repositorie2007.

T. Girba, S. Ducasse, and M. Lanza. Yesterday's Weather: [»g

Guiding early reverse engineering efforts by summarizing
the evolution of changes. Proceedings of 20th IEEE Inter-
national Conference on Software Maintenance (ICSM'04)
pages 40-49, Los Alamitos CA, Sept. 2004. IEEE Computer
Society.

T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse. How de-
velopers drive software evolution. Proceedings of Inter-
national Workshop on Principles of Software Evolution (IW-
PSE 2005)pages 113-122. IEEE Computer Society Press,
2005.

Open-Source Project Hosting by
http://code.google.com/hosting.

S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue.
Mudablue: An automatic categorization system for open
source repositories. IRroceedings of the 11th Asia-Pacific
Software Engineering Conference (APSEC 200#8ges
184-193, 2004.

R. Koschke and T. Eisenbarth. A framework for experi-
mental evaluation of clustering techniques. Aroceedings

of the International Workshop on Program Comprehension,
IWPC'2000 IEEE, June 2000.

A. Kuhn, S. Ducasse, and T.iBa. Semantic clustering:

Identifying topics in source codénformation and Software
Technology49(3):230-243, Mar. 2007.

Google.

[18]
[19]

[20]

[21]

[22]

[26

[29]

[31]

[32]

[17] M. Lanza and S. Ducasse. Beyond language independent

object-oriented metrics: Model independent metrics. In F. B.
e Abreu, M. Piattini, G. Poels, and H. A. Sahraoui, editors,
Proceedings of the 6th International Workshop on Quanti-
tative Approaches in Object-Oriented Software Engineering
pages 77-84, 2002.

M. Lanza and R. Marinescu.Object-Oriented Metrics in
Practice Springer-Verlag, 2006.

M. Lehman and L. BeladyProgram Evolution: Processes of
Software ChangelLondon Academic Press, London, 1985.
Travis Grigs’ Blog: Line Ups as Reported by Reinout Heeck.
http://www.cincomsmalltalk.com/userblogs/travis/blogView?
showComments=true&entry=3265388740.

M. Pinzger. ArchView — Analyzing Evolutionary Aspects of
Complex Software SystemBhD thesis, Vienna University
of Technology, 2005.

C. Riva. View-based Software Architecture Reconstruction
PhD thesis, Technical University of Vienna, 2004.

T. Rotschke and R. Krikhaar. Architecture Analysis Tools
to Support Evolution of Large Industrial Systems. Rroc.
IEEE International Conference on Software Maintenance
(ICSM 2002) pages 182-193, 10 2002.

RubyForge the home of open source Ruby projects.
https://rubyforge.org. http://rubyforge.net/.

B. Shneiderman. The eyes have it: A task by data type
taxonomy for information visualizations. IHEEE Visual
Languagespages 336-343, College Park, Maryland 20742,
U.S.A., 1996.

] A Development and Download Repository of Open Source

Code and Applications. http://www.sourceforge.net/.
Team Development with VisualWorks. Cincom Techincal
White Paper. Cincom Technical Whitepaper.

] F.Van Rysselberghe and S. Demeyer. Studying software evo-

lution information by visualizing the change history. Pro-
ceedings 20th IEEE International Conference on Software
Maintenance (ICSM '04)pages 328—-337, Los Alamitos CA,
Sept. 2004. IEEE Computer Society Press.

L. Voinea, J. Lukkien, and A. Telea. Visual assessment
of software evolution.Science of Computer Programming
365(3):222-248, 2007.

[30] M. Wattenberg. Baby names visualization, and social data

analysis. InProceedings of 2005 IEEE Symposium on Infor-
mation Visualization (INFOVIS 2005)ages 1-6, 2005.

D. A. Weiss. A large crawl and quantitative analy-
sis of open source projects hosted on sourceforge. In
Research Report ra-001/05, Institute of Computing Sci-
ence, Pozna University of Technology, Poland, 2005. At
http://www.cs.put.poznan.pl/dweiss/xml/publications/index.xml
2005.

J. Wu, R. Holt, and A. Hassan. Exploring software evolution
using spectrographs. roceedings of 11th Working Con-
ference on Reverse Engineering (WCRE 20pdyes 80—89,
Los Alamitos CA, Nov. 2004. IEEE Computer Society Press.

