
Reverse Engineering with Logical Coupling

Marco D’Ambros
Faculty of Informatics
University of Lugano

Michele Lanza
Faculty of Informatics
University of Lugano

Abstract

Evolutionary information about software systems has
proven to be a good resource to complement existing reverse
engineering approaches, because it helps in giving a his-
torical perspective of the system to be reverse engineered.
Moreover, it provides additional types of information that
are not present when only one version of a system is con-
sidered. Logical coupling, the implicit dependency between
artifacts which changed together, is one example of such
information. However, the recurrent problem is that such
information comes in large amounts and must be processed
to be useful for the reverse engineering of a system.

In this paper we propose an approach to use logical cou-
pling information at different levels of abstraction to detect
areas in the system which may lead to maintenance prob-
lems. They represent a good starting point to decrease the
coupling in the system. Our approach uses an interactive
visualization technique called the Evolution Radar, which
can effectively break down the amount and complexity of
the logical coupling information. We present our technique
in detail and apply it on a large open-source software sys-
tem.

1 Introduction

The analysis of the evolution of software [15], has two
main goals, namely to infer causes of its current problems,
and to predict its future development. Many approaches
based on evolutionary information demonstrated that not
only can such information be used to predict the future evo-
lution [16, 23], but it can also provide good starting points
on where to start reengineering activities [11].

The history of a software system also holds information
about logical coupling. These are implicit and evolutionary
dependencies between the artifacts of a system which, al-
though potentially not structurally related, evolve together
and are therefore linked to each other from an evolution-
ary point of view. In short, logically coupled entities have
changed together in the past and are thus likely to change in

the future. Logical coupling information reveals potentially
misplaced artifacts in a software system, because entities
that evolve together should be placed close to each other
for cognitive reasons: A developer who modifies a file in a
system could forget to modify related files because they are
placed in other subsystems or packages.

Logical coupling information can be used to find good
starting points for a reengineering process, because logi-
cally coupled artifacts lead to maintenance problems: De-
creasing the logical coupling in a system leads to an im-
proved system structure.

The problem is that although seemingly lightweight (the
analysis of logical coupling does not imply parsing entire
versions of the system, but only the simple log-files of ver-
sioning systems), extracting the logical couplings leads to
vast quantities of information that must be processed and
understood. The current approaches based on logical cou-
pling work at two distinct levels of abstraction: (i) the mod-
ule or package level [9] or (ii) class, file and finer-grained
levels [10, 18, 27]. In focusing only on one of those levels
either we lose the details or we lose the big picture.

In this paper we propose an integrated technique to in-
spect logical coupling relationships, which combines infor-
mation both at a module-level (which subsystems are cou-
pled with each other) and at a file-level (which files are re-
sponsible for the logical couplings). Our technique is based
on a specific visualization called Evolution Radar [6,8]. We
decided to use visualization [20, 24] because it provides ef-
fective ways to break down the complexity of information,
and because it has proven to be a successful means to study
the evolution of software systems [1, 5, 12, 13, 17, 22, 23].
By rendering logical coupling information in an intuitive
and simple way, we enable a developer to study and inspect
these hidden dependencies and guide him to the responsible
files.

Structure of the paper. In Section 2 logical coupling is
described in detail. In Section 3 we introduce our approach
based on the Evolution Radar to render logical coupling in-
formation. We validate our technique on a large software
system in Section 4. Benefits and shortcomings of the ap-
proach are discussed in Section 5. In Section 6 we look at

1



related work and we conclude by summarizing our contri-
butions in Section 7 .

2 Logical Coupling

Logical coupling is the implicit dependency between two
or more software artifacts that have been observed to fre-
quently change together during the evolution of a system.
This co-change information can either be present in the ver-
sioning system, or must be inferred by analysis.

The analysis of logical coupling is useful for reverse en-
gineering because of two reasons:

1. It can reveal dependencies that are not structural, and
therefore are not present in the code or in the documen-
tation. These dependencies are the most troublesome
and tend to be sources of bugs in software projects.

2. It is more lightweight than structural analysis, as we
need to analyze a smaller amount of data, i.e., only the
data provided by the CVS log files. Moreover, as it
works at text level, it can analyze systems written in
different languages without the trouble of parsing and
analyzing the data.

The concept was first introduced by Gall et al. [9] to de-
tect implicit relationships between modules, by using in-
formation extracted from the CVS versioning control sys-
tem. They used logical coupling to analyze the dependen-
cies between the different modules of a large telecommuni-
cations software system and showed that the approach could
be used to derive useful insights on the architecture of the
system.

Later the same authors revisited the technique to work at
a lower abstraction level. They detected logical couplings
at class level [10] and validated it on 28 releases of an in-
dustrial software system. The authors showed through a
case study that architectural weaknesses such as poorly de-
signed interfaces and inheritance hierarchies could be de-
tected based on logical coupling information.

Ratzinger et al. [18] used the same technique for ana-
lyzing the logical coupling at the class level with the aim
of learning about, and improving the quality of the system.
To accomplish this, they defined code smells based on the
logical coupling between classes of the system.

Working at a finer granularity level, Zimmermann et
al. [27] used the information about changes that are occur-
ring together to predict entities that are likely to be modified
when one is being modified.

The main problem with the mentioned approaches is that
they either work at the architecture level, i.e., without know-
ing which finer-grained entities cause the logical coupling,
or they work at the file (or even finer) granularity level, i.e.,
losing the global view of the system.

In this paper we propose an approach to overcome this
shortcoming by means of a visualization technique called
the Evolution Radar, presented next.

3 The Evolution Radar

The Evolution Radar is a visualization technique which
renders dependencies between groups of entities. It is im-
plemented as an extension of the BugCrawler tool [7]. In
this paper we use it to visualize the logical coupling be-
tween files and groups of files, i.e., modules or subsystems.

Figure 1. The Evolution Radar structure.

In Figure 1 we see the principles of the Evolution Radar:
The module in focus is visualized as a circle and placed in
the center of a pie chart. All the other system modules are
represented as sectors. The size of the sectors is propor-
tional to the number of files contained in the corresponding
module. The sectors are sorted according to this size met-
ric, i.e., the smallest is placed at 0 radian and then all the
others clockwise (see Figure 1). Within each sector files
are represented as colored circles and positioned using po-
lar coordinates where the angle and the radius are computed
according to the following rules:

• Radius d (or distance from the center). It is inversely
proportional to the logical coupling the file has with
the module in focus, i.e., the more they are coupled, the
closer the circle (representing the file) is to the center
circle (representing the module in focus).

• Angle θ. The files of each module are alphabeti-
cally sorted considering the entire directory path, and
the circles representing them are then uniformly dis-
tributed in the sectors with respect to the angle coordi-
nates.

2



We can map arbitrary metrics on the color and the size
of the circle figures. For example for the color a color-
temperature mapping is used where pure blue represents the
lowest value and pure red the highest.

Figure 2. An example Evolution Radar applied
on the Model module of ArgoUML.

Example. Figure 2 shows an example Evolution Radar
visualizing the coupling between the Model module (rep-
resented as the cyan circle in the center) and all the other
modules of ArgoUML1 (represented as the sectors). The
size of the figures is fixed and the color metric is the same
as the distance, i.e., the logical coupling. We see that the
Diagram module is the largest and most coupled module.
The three files marked as 1 in the figure are the ones with
the strongest coupling. They should be further analyzed to
understand which is the most appropriate module to contain
them: Model or Diagram. For the remaining modules the
coupling is not as strong as for Diagram but we see the pres-
ence of some outliers (files for which the coupling is much
higher with respect to their context). The two files marked
as 2, belonging to the Application and Internationalization
modules, have a very strong coupling with respect to the
other files belonging to the same modules. They should also
be analyzed and moved in case they belong to the wrong
module.

3.1 Logical Coupling Measure

In the Evolution Radar files are placed according to the
logical coupling they have with the module in focus. To

1ArgoUML is an UML modeling tool written in Java. It is available at:
http://argouml.tigris.org.

compute this metric value we use the following formula:

LC(M, f) = max
fi∈M

LC(fi, f) (1)

LC(M,f) is the logical coupling between the module in
focus M and a given file f and LC(fi, f) is the coupling
between the files fi and f . It is also possible to use other
group operators instead of the maximum like the average or
the median. We use the maximum because it points us to the
files with the strongest coupling, i.e., the main responsible
for the module dependencies.

The value of the coupling between two files is equal to
the number of transactions which include both files. Since
transactions are not recorded by CVS we reconstruct them
using the sliding time window approach proposed by Zim-
mermann and Weißgerber in [26], which is an improvement
of the simpler fixed time window approach.

(a) Fixed time window

(b) Sliding time window

Figure 3. Fixed and sliding time window.

Figure 3(a) shows an example of both techniques. In the
fixed time window approach the beginning of the time win-
dow is fixed to the first commit (file1, version 1.1). Then all
the other commits with a timestamp included in the window
are considered to be in the same transaction (only file2 ver-
sion 1.4). With the sliding window approach the beginning
of the time window is moved to the most recent commit
recognized to be in the transaction. By doing this, file3 ver-
sion 1.2 is also included in the transaction. The transactions
reconstructed using the sliding time window include com-
mits which take longer than the size of the time window. As
in [26] we use a time window of 200 seconds.

3



(a) January - June 2004 (b) June - December 2004 (c) January - June 2005 (d) June - December 2005

Figure 4. The logical coupling evolution of the Model module of ArgoUML. Moving through time, the
Evolution Radar can keep track of certain files (yellow border).

3.2 Interaction

The Evolution Radar is implemented as an interactive
visualization. This is not just a feature, but a constraint
to exploit its full potential. It is possible to inspect all
the entities visualized, i.e., files and modules, to see
commit-related information like author, timestamp lines
added and removed etc. Moreover, it is also possible to see
the source code of selected files. Three important features
for performing analyses with the Evolution Radar are (1)
moving through time, (2) tracking and (3) spawning.

Moving through Time. The logical coupling measure is
relative to a period of time. We compute it either consider-
ing the entire history of files or with respect to a given time
window, i.e., the Evolution Radar is time dependent. When
creating the radar the user can divide the lifetime of the sys-
tem into time intervals. For each of them a different radar
will be created, and the logical coupling is computed with
respect to the given time interval. The radius coordinate has
the same scale in all the radars, i.e., the same distance in
different radars represents the same value of the coupling.
This makes it possible to compare radars and to analyze the
evolution of the coupling over time. In our tool implementa-
tion the user “moves through time” by using a slider, which
causes the corresponding radar to be displayed.

By considering the entire history, the obtained value
of the logical coupling takes into account all the changes.
Since we want to understand design problems in the cur-
rent version of the system we are more interested in recent
changes and coupling. Moreover, we are also interested in
understanding the sources of these current problems, which
can be far in the past. A good solution consists in divid-
ing the lifetime of the system into time intervals (e.g., six to
three months) and then create the corresponding Evolution
Radars. By inspecting the last one we can detect recent cou-
plings and then, by moving the time, we can see whether

these couplings were strong or not in the past, i.e., in the
previous time intervals.

Tracking. This feature allows the user to keep track of
files over time. When a file is selected for tracking in a
visualization related to a particular time interval, it is high-
lighted in all the radars (with respect to all the other time
intervals) in which the file exists. Figure 4 shows an exam-
ple of tracking through four radars, related to four consec-
utive time intervals, from January 2004 to December 2005.
The highlighting consists in using a yellow border for the
tracked files and in showing a text label with the name of
the file (indicated with arrows in Figure 4). Like this it is
possible to detect files with a strong logical coupling with
respect to the last period of time and then move the time and
analyze the coupling in the past. This allows the distinction
between persistent and recent logical coupling.

Spawning. The spawn feature is aimed at inspecting the
logical coupling details. Outliers indicate that the corre-
sponding files have a strong coupling with certain files of
the module in focus, but we ignore which ones. To uncover
this dependency between files we spawn a secondary Evo-
lution Radar as follows (see Figure 5):

• Group. The outliers are grouped to form a temporary
module Mt represented by a circle figure.

• Expand. The module in focus (M ) is expanded, i.e., a
circle figure is created for each file composing it.

• Display. A new Evolution Radar is created. The tem-
porary module Mt is placed in the center of the new
radar. The files belonging to the module previously in
focus (M ) are placed around the center. The radius co-
ordinate, i.e., the distance from the center, is inversely
proportional to the logical coupling they have with the
module in the center Mt. For the angle coordinate al-
phabetical sorting is used. Since all the files belong to
the same module there is only one sector.

4



Figure 5. Spawning Evolution Radars.

3.3 Discussion

The Evolution Radar has several visual advantages: It
occupies a settable amount of screen space, i.e., it is always
possible to visualize the whole radar on screen, indepen-
dent of its resolution. It is rotation invariant like Chuah’s
time wheels [4]. It does not visualize the coupling relation-
ships as edges and therefore does not suffer from overplot-
ting: The radar always remains intelligible, i.e., it is easy to
make out the heavily coupled modules which are displayed
as “spikes” pointing to the center. It is also easy to make out
single files responsible for the coupling which are placed
close to the center.

This visualization technique can be enriched by adding
more structural information. A sector can be further divided
in sub-sectors, using both the radius and the angle coordi-
nates, for visualizing sub-groups, e.g., sub-modules, direc-
tories etc. This visual decomposition is proposed in [21].

The Evolution Radar is a general visualization technique,
i.e., it is applicable to any kind of entities. The only require-
ment is to define a group criterion and a distance metric.
Possible examples are:

• Visualization of classes for architecture recovery us-
ing the package as group criterion and the number of
invocation for the distance.

• Visualization of developers for accessing the team
structure. The group criterion is the team and the dis-
tance is computed according to the number of files two
authors share, i.e., both of them committed the files at
least once.

The main drawback, as with all visualizations, it that it
requires a trained eye to interpret the visualization. In our
experience this is not a major problem, and most people to
whom we presented the radar had few problems understand-
ing and using it.

4 Validation

To validate our approach we applied it on ArgoUML, an
open-source UML modeling tool, consisting of more than
200,000 lines of code.

From its documentation on the web site we know the sys-
tem decomposition in modules. We did not consider some
modules for which the documentation says “They are all
insignificant enough not to be mentioned when listing de-
pendencies”. We focused our analysis on the three largest
modules: Model, Explorer and Diagram. From the docu-
mentation we know that Model is the central module that
all the others rely and depend on. Explorer and Diagram do
not depend on each other.

For the initial analysis we created a radar for every six
months of the system’s history. We started the study from
the most recent one, since we are interested in problems in
the current version of the system. Using a relatively short
time interval (six months) ensures that the coupling is due
to recent changes and is not “polluted” by commits far in
the past. As metrics we used the logical coupling for both
the position and the color of the figures. The size (the area)
is proportional to the total number of lines modified in all
the commits performed during the considered time interval.

Figure 6(b) shows the Evolution Radar for the last six
months of history of the Explorer module. From the visu-
alization we see that the coupling with Diagram is much
stronger than the one with Model, although the documen-
tation states that the dependency is with Model and not
with Diagram. The most coupled files in Diagram are
FigActionState.java, FigAssociationEnd.java, FigAssocia-
tion.java. Using the tracking feature, we found out that
these files have only been recently coupled with the Ex-
plorer module. In the other radar (Figure 6(a), showing the
previous six months) they are not close to the center. This
implies that the dependency is due to recent changes only.

To inspect the logical coupling details, we used the

5



(a) From January to June 2005. (b) From June to December 2005.

Figure 6. Evolution Radars applied to the Explorer module for the year 2005.

Figure 7. Details of the logical coupling be-
tween the Explorer module and the files FigAc-
tionState.java, FigAssociationEnd.java and FigAsso-
ciation.java.

spawning feature: We grouped the three files and we gener-
ated another radar, shown in Figure 7 having this group as
the center. We now see that the dependency is mainly due
to ExplorerTree.java. The high-level dependency between
two modules is thus reduced to a dependency between four
files. These four files represent a problem in the system,
because modifying one of them may break the others. The
fact that they belong to different modules makes it easier to
forget this hidden dependency.

The visualization in Figure 6(b) shows that the file Gen-
eratorJava.java is an outlier, since its coupling is much
stronger with respect to all the other files in the same mod-
ule (CodeGeneration). By spawning the group composed of
GeneratorJava.java we obtained a visualization very simi-
lar to Figure 7, in which the main responsible for the de-
pendency is again ExplorerTree.java. Reading the code re-
vealed that the ExplorerTree class is responsible for manag-
ing mouse listeners and generating names for figures. This
explains the dependencies with FigActionState, FigAssoci-
ationEnd and FigAssociation in the Diagram module, but
does not explain the dependency with GeneratorJava.

The past (see Figure 6(a) and Figure 8(a)) reveals that
GeneratorJava.java is an outlier since January 2003. This
long-lasting dependency indicates design problems.

A further inspection is required for the ExplorerTree.java
file in the Explorer module, since it is the main responsible
for the coupling with the modules Diagram and CodeGen-
eration.

The radars in Figure 6(b) and Figure 6(a) show that dur-
ing 2005 the file NSUMLModelFacade.java in the Model

6



(a) Explorer module. (b) Diagram module.

Figure 8. Evolution Radars of the Explorer and Diagram modules from June to December 2004.

module had the strongest coupling with Explorer (module
in the center). Going six months back in time, from June to
December 2004 (see Figure 8(a)), we see that the coupling
with NSUMLModelFacade.java was weak, while there was
a very strong dependency with ModelFacade.java. This file
was also heavily modified during that time interval, given
its dimension with respect to the other figures (the area is
proportional to the total number of lines modified). Mod-
elFacade.java was also strongly coupled with the Diagram
module (see Figure 8(b)). By looking at its source code
we found out that this was a God class [19] with thousands
of lines of codes, 444 public and 9 private methods, all
static. The ModelFacade class is not present in the other
radars (Figure 6(b) and Figure 6(a)) because it was removed
from the system the 30th of January 2005. By reading the
source code of the most coupled file in these two radars,
i.e., NSUMLModelFacade.java, we discovered that it is also
a very large class with 317 public methods. Moreover, we
found out that 292 of these methods have the same signature
of methods in the ModelFacade class2, with more that 75%
of the code duplicated. ModelFacade represented a problem
in the system and thus was removed. Since many methods
were copied to NSUMLModelFacade, the problem has just
been relocated!

This example shows how historical information can re-
veal problems, which are difficult to detect with only one
version of the system. Knowing the evolution of ModelFa-

2With the difference that in NSUMLModelFacade the methods are not
static and that it contains only two attributes, while ModelFacade has 114
attributes.

cade helped us in understanding the role of NSUMLMod-
elFacade in the current version of the system.

As a final scenario, we analyzed the evolution of the log-
ical couplings of the Explorer module with all the others.
From Figure 8(a), we see that from June to December 2004
the couplings were very strong. Then, from January 2005 to
June 2005 (Figure 6(a)), they decreased a lot. This suggests
that in the previous period the module was restructured and
its quality was improved, since in the next time interval the
couplings with the other modules were weak. The effort
spent for the restructuring can be seen from the size of the
figures, representing the total number of changed lines. In
the radar relative to June - December 2004 (Figure 8(a)) the
figures are bigger than in the radar relative to January - June
2005 (Figure 6(a)). At the end of the restructuring phase,
the class ModelFacade was removed. From June to De-
cember 2005 (see Figure 6(b)) the coupling increased again.
This can be related to a new restructuring phase.

For lack of space we cannot present an in-depth analy-
sis of ArgoUML. We instead showed examples of how to
use the Evolution Radar to detect problematic parts of the
system, which represent good candidates for reengineering.
The main results we found in the discussed example scenar-
ios are:

• The Diagram and Explorer modules are the most cou-
pled. Since this dependency is not mentioned in the
module relationships page in the documentation, ei-
ther the modules should be restructured to decrease the
coupling or the documentation should be updated. We
identified the four files mainly responsible for this hid-

7



den dependency.

• The files GeneratorJava.java in the CodeGeneration
module and ExplorerTree.java in the Explorer mod-
ule should be further analyzed and, in case, refactored.
GeneratorJava.java has a persistent coupling with the
Explorer module, while ExplorerTree.java is coupled
with both CodeGeneration and Diagram.

• Two problematic classes were detected: ModelFacade
and NSUMLModelFacade. Most of the methods of
the first class were copied to the second one, and then
ModelFacade was removed from the system.

• The evolution of the coupling between Explorer and all
the other modules was studied. Different phases were
identified, where two of them are likely to be restruc-
turing phases.

5 Discussion

The main benefits of the Evolution Radar consists in
its simplicity and scalability. It is a lightweight approach
which breaks down huge amounts of complex data, visu-
alizing at the same time information at different levels of
abstraction, i.e., information about modules and individual
files. Other important advantages come from the interaction
capabilities. Each file in the visualization can be inspected
and its code can be read on-the-fly. This code proximity al-
lows the user to immediately figure out design issues as God
classes or code duplication, as we did with ModelFacade
and NSUMLModelFacade in the previous section. In these
cases the reasons which generated the logical coupling were
detected without any additional analysis. In other cases our
approach guides us in the detection of the dependencies.
To uncover the design issues behind the coupling a further
analysis is required. However this analysis will be a lot sim-
plified with respect to the dimension of the system and the
modules, since using the Evolution Radar the coupling be-
tween modules is reduced to small set of files by means of
the spawning feature.

A last benefit of our approach is the control of time. In-
stead of summarizing the coupling computed for the entire
history of the system in a single value (per each pair of
files), the Evolution Radar shows how the coupling evolved
over time. This is helpful to discriminate between durable
dependencies and coupling due to recent changes only (us-
ing the tracking feature). It is also possible to identify
phases in the system or in the modules by seeing if the log-
ical coupling is ameliorating or degrading.

Concerning shortcomings, an authority system decom-
position (in terms of modules or subsystems) is required to
apply the Evolution Radar. This documentation can be hard
to find, incomplete or even absent. In such a case using

the package structure is a good trade-off. Once the decom-
position is found, an initial visualization showing all the
modules and their relationships (such as the one provided
in [17]) is a good starting point.

The radar visualization may suffer from the outliers
problem, i.e., files having a logical coupling much higher
with respect to the average value. This files may deform the
visualization by pushing all the other files to the boundary
of the radar3. In such cases the solution consists in com-
puting the distance from the center according to the square
root or, if the gap is large, according to the logarithm of the
coupling value.

The Evolution Radar tool has been improved using the
experience acquired in previous work: It was applied on
Mozilla [8] and PostgreSQL [6]. The wisdom gained high-
lighted the importance of interaction, bringing us to the im-
plementation of new features like tracking and code prox-
imity.

6 Related Work

Since Section 2 already introduced related work on log-
ical coupling, this section presents work related to software
evolution visualization.

A similar approach to visualize logical coupling has been
presented by Pinzger et al. [17] with Kiviat Diagrams. As
a difference they do not visualize file-level information but
use surfaces to depict complete releases, while in our visu-
alization we depict all evolving files in one diagram. An-
other difference is that they represent the coupling as edges
between the visible modules.

The graph based representation in which entities in-
volved in logical coupling were nodes in a graph and cou-
pling was represented as edges between them was used
since the first publications related to logical coupling [9,10].
However, the problem with this representation is that it
either represents only modules, and then it is too coarse
grained, or it represents modules and files, but then it does
not scale to large systems.

A visual data-mining tool to represent both binary asso-
ciation rules and n-ary association rules is EPOsee [3]. The
tool adapts standard visualization techniques for association
rules to also display hierarchical information.

Chuah and Eick present a way to visualize project infor-
mation through glyphs called infobugs. Glyphs are graph-
ical objects representing data through visual parameters.
Their infobug glyph’s parts represent data about software
[4]. The difference with respect to our work is that they use
glyphs to view project management data, while our work
focuses on describing how a module is logically coupled to
the others. One common advantage is that both approaches
are rotation invariant.

3We did not have this problem with ArgoUML.

8



Lanza’s Evolution Matrix [14] visualizes the system’s
history in a matrix in which each row is the history of a
class. A cell in the Evolution Matrix represents a class and
the dimensions of the cell are given by evolutionary mea-
surements computed on subsequent versions. The evolu-
tion matrix does not represent any relationship between the
evolving entities.

Beyer [2] computes a co-change graph and proposes a
layout which reveals clusters of frequently co-changed ar-
tifacts. Jazayeri et al. [13] visualizes software release his-
tories using colors and the third dimension. They do no
visualize any coupling relationships between modules.

Girba et al. used the notion of history to analyze how
changes appear in the software systems [11] and succeeded
in visualizing the histories of evolving class hierarchies
[12].

Taylor and Munro [22] visualized CVS data with a tech-
nique called revision towers. Ball and Eick [1] developed
visualizations for showing changes that appear in the source
code.

Rysselberghe and Demeyer used a simple visualization
based on information in version control systems to provide
an overview of the evolution of systems [23].

Wu et al. described an Evolution Spectrograph [25] that
visualizes historical sequences of software releases.

7 Conclusion

In this paper we have presented a novel visual approach
for reverse engineering based on logical coupling informa-
tion. The two main benefits of the technique are:

• Integration. The Evolution Radar shows logical cou-
pling information at different levels of abstraction,
i.e., files and modules, in a single visualization. This
makes it possible to understand the dependency be-
tween modules and to detect the main responsible for
the coupling in terms of files, i.e., the files with the
strongest coupling. Using the spawning feature of our
tool a dependency between modules can be reduced to
a coupling between a small set of files.

• Customizable time. Considering the history of logi-
cal coupling is helpful to uncover hidden dependen-
cies between software artifacts. However, summariz-
ing the information about the entire history in a single
visualization may lead to imprecise results. Two arti-
facts which were strongly coupled in the past but not
recently may appear as coupled. The Evolution Radar
solves this problem by dividing the system lifetime in
settable time intervals and by rendering one radar per
each interval. A slider is used to “move through time”.
A tracking feature is provided to keep track of the same
files in different visualizations.

We have validated our approach on a large open source
software system: ArgoUML. We have provided example
scenarios of how to use the Evolution Radar to understand
module dependencies and to detect candidates for reverse
engineering. We have found design issues and dependen-
cies between modules not mentioned in the documentation.
We have also reduced these dependencies to coupling
between small sets of files. These files should be reengi-
neered in order to decrease the coupling at the module level.

Acknowledgments. We gratefully acknowledge the fi-
nancial support of the Swiss National Science foundation
for the projects “COSE - Controlling Software Evolution”
(SNF Project No. 200021-107584/1), and “NOREX - Net-
work of Reengineering Expertise” (SNF SCOPES Project
No. IB7320-110997), and the Hasler Foundation for the
project “EvoSpaces - Multi-dimensional navigation spaces
for software evolution” (Hasler Foundation Project No.
MMI 1976).

References

[1] T. Ball and S. Eick. Software visualization in the large.
IEEE Computer, 29(4):33–43, 1996.

[2] D. Beyer and A. Noack. Clustering software artifacts
based on frequent common changes. In Proceedings
of the 13th IEEE International Workshop on Program
Comprehension (IWPC 2005). IEEE Computer Soci-
ety Press, Los Alamitos (CA), 2005.

[3] M. Burch, S. Diehl, and P. Weissgerber. Visual data
mining in software archives. In SoftVis ’05: Proceed-
ings of the 2005 ACM symposium on Software visu-
alization, pages 37–46, New York, NY, USA, 2005.
ACM Press.

[4] M. C. Chuah and S. G. Eick. Information rich
glyphs for software management data. IEEE Com-
puter Graphics and Applications, 18(4):24–29, July
1998.

[5] C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and
K. Wampler. A system for graph-based visualiza-
tion of the evolution of software. In Proceedings of
the 2003 ACM Symposium on Software Visualization,
pages 77–86, New York NY, 2003. ACM Press.

[6] M. D’Ambros and M. Lanza. Applying the evolution
radar to postgresql. In Proceedings of MSR 2006 (3rd
International Workshop on Mining Software Reposito-
ries), pages 177 – 178, 2006.

[7] M. D’Ambros and M. Lanza. Software bugs and
evolution: A visual approach to uncover their rela-
tionship. In Proceedings of CSMR 2006 (10th IEEE

9



European Conference on Software Maintenance and
Reengineering), pages 227 – 236. IEEE Computer So-
ciety Press, 2006.

[8] M. D’Ambros, M. Lanza, and M. Lungu. The evo-
lution radar: Visualizing integrated logical coupling
information. In Proceedings of MSR 2006 (3rd Inter-
national Workshop on Mining Software Repositories),
pages 26 – 32, 2006.

[9] H. Gall, K. Hajek, and M. Jazayeri. Detection of logi-
cal coupling based on product release history. In Pro-
ceedings International Conference on Software Main-
tenance (ICSM ’98), pages 190–198, Los Alamitos
CA, 1998. IEEE Computer Society Press.

[10] H. Gall, M. Jazayeri, and J. Krajewski. CVS release
history data for detecting logical couplings. In Inter-
national Workshop on Principles of Software Evolu-
tion (IWPSE 2003), pages 13–23, Los Alamitos CA,
2003. IEEE Computer Society Press.

[11] T. Gı̂rba, S. Ducasse, and M. Lanza. Yesterday’s
Weather: Guiding early reverse engineering efforts by
summarizing the evolution of changes. In Proceed-
ings 20th IEEE International Conference on Software
Maintenance (ICSM’04), pages 40–49, Los Alamitos
CA, 2004. IEEE Computer Society Press.

[12] T. Gı̂rba, M. Lanza, and S. Ducasse. Characteriz-
ing the evolution of class hierarchies. In Proceed-
ings Ninth European Conference on Software Main-
tenance and Reengineering (CSMR’05), pages 2–11,
Los Alamitos CA, 2005. IEEE Computer Society.

[13] M. Jazayeri, H. Gall, and C. Riva. Visualizing Soft-
ware Release Histories: The Use of Color and Third
Dimension. In Proceedings of ICSM ’99 (Interna-
tional Conference on Software Maintenance), pages
99–108. IEEE Computer Society Press, 1999.

[14] M. Lanza. The evolution matrix: Recovering software
evolution using software visualization techniques. In
Proceedings of IWPSE 2001 (International Workshop
on Principles of Software Evolution), pages 37–42,
2001.

[15] M. Lehman and L. Belady. Program Evolution: Pro-
cesses of Software Change. London Academic Press,
London, 1985.

[16] T. Mens and S. Demeyer. Future trends in soft-
ware evolution metrics. In Proceedings IWPSE2001
(4th International Workshop on Principles of Software
Evolution), pages 83–86, 2001.

[17] M. Pinzger, H. Gall, M. Fischer, and M. Lanza. Vi-
sualizing multiple evolution metrics. In Proceedings
of SoftVis 2005 (2nd ACM Symposium on Software Vi-
sualization), pages 67–75, St. Louis, Missouri, USA,
May 2005.

[18] J. Ratzinger, M. Fischer, and H. Gall. Improving
evolvability through refactoring. In MSR ’05: Pro-
ceedings of the 2005 international workshop on Min-
ing software repositories, pages 1–5, New York, NY,
USA, 2005. ACM Press.

[19] A. Riel. Object-Oriented Design Heuristics. Addison
Wesley, Boston MA, 1996.

[20] J. T. Stasko, J. Domingue, M. H. Brown, and B. A.
Price, editors. Software Visualization — Programming
as a Multimedia Experience. The MIT Press, 1998.

[21] J. T. Stasko and E. Zhang. Focus+context display
and navigation techniques for enhancing radial, space-
filling hierarchy visualizations. In INFOVIS, pages
57–, 2000.

[22] C. Taylor and M. Munro. Revision towers. In Proceed-
ings 1st International Workshop on Visualizing Soft-
ware for Understanding and Analysis, pages 43–50,
Los Alamitos CA, 2002. IEEE Computer Society.

[23] F. Van Rysselberghe and S. Demeyer. Studying soft-
ware evolution information by visualizing the change
history. In Proceedings 20th IEEE International Con-
ference on Software Maintenance (ICSM ’04), pages
328–337, Los Alamitos CA, Sept. 2004. IEEE Com-
puter Society Press.

[24] C. Ware. Information Visualization. Morgan Kauf-
mann, 2000.

[25] J. Wu, R. Holt, and A. Hassan. Exploring software
evolution using spectrographs. In Proceedings of 11th
Working Conference on Reverse Engineering (WCRE
2004), pages 80–89, Los Alamitos CA, Nov. 2004.
IEEE Computer Society Press.

[26] T. Zimmermann and P. Weißgerber. Preprocessing
CVS data for fine-grained analysis. In Proceedings 1st
International Workshop on Mining Software Reposito-
ries (MSR 2004), pages 2–6, Los Alamitos CA, 2004.
IEEE Computer Society Press.

[27] T. Zimmermann, P. Weißgerber, S. Diehl, and
A. Zeller. Mining version histories to guide software
changes. In 26th International Conference on Soft-
ware Engineering (ICSE 2004), pages 563–572, Los
Alamitos CA, 2004. IEEE Computer Society Press.

10


