Insights into System—-Wide Code Duplication

Matthias Rieger, $phane Ducasse, and Michele Lanza
Software Composition Group
University of Bern, Switzerland
{rieger,ducasse,lang@iam.unibe.ch

Abstract ment, we get a minimum of 1000 to 2000 clone pairs that
have to be investigatéd

Duplication of code is a common phenomenon in the de- The engineers charged with duplication investigation and
velopment and maintenance of large software systems. Théemoval are subject to the usual time and cost constraints of
detection and removal of duplicated code has become aan industrial setting. They most likely do not have the re-
standard activity during the refactoring phases of a soft- sources to remove every last instance of duplication from
ware life-cycle. However, code duplication identification the system but have to prioritize and decide which clones to
tends to produce large amounts of data making the under-remove. To do so, they have to
standing of the duplication situation as a whole difficult.
Reengineers can easily lose sight of the forest for the trees.
There is a need to support a qualitative analysis of the du-
plicated code. In this paper we propose a number of visual-]] o))
izations of duplicated source elements that support reengi- ® identify and select duplication that is “problematic” or

e assess the system regarding the occurrence of duplica-
tion, i.e., get a “mental picture” of the redundancy sit-
uation.

neers in answering questions, e.g., which parts of the sys- Wworthwhile to refactor”. This includes, for example,
tem are connected by copied code or which parts of the sys- |arge fragments that have been copied multiple times
tem are copied the most. but eventually also duplication that is easy to refactor.

Moreover, the engineers need to process the duplication

Keywords: Code duplication detection, code visualiza- data in an organized way by prioritizing the investigations
tion, polymetric views. they must perform. For example one way is to start with the
largest clones or the ones involving the most source files,

. or the ones where a refactoring would have the most im-

1. Introduction pact. Since the ultimate decision on whether to refactor or
not usually involves a manual investigation of the source

Code duplication detection has received increased attenS0de, the information presentation must be interactive and

tion from the reverse engineering research community in con_nected to the underlying code, to allow for short exami-
the last decade. Many detection methods are being investi-natl'onh(_:ydes' | | L 14

gated, from lightweight to sophisticated ones [1], [7], [12], E this paper \]ﬁvg prlt_)post(ej to %pp Yy PO yf.“e”l'.c w(e;wsl.[]
[15], [3] and compared against each other [4]. A main goal to the context of duplicated codeg., we visualize dupii-

is to automate as much as possible not only the detectioncated elements of different levels of abstraction and enrich

but also the removal of the duplication [2]. This is not al- the views with m_etrics that present qualitative information
ways possible, either because the copied code has diverged these abstractions.
too much or that applicable refactorings are not straight for-
ward. In either case, manual investigation is required. 2. Visualizing Duplication Data

The problem is that duplication detection approaches re-
port large amounts of data that must be treated with lit- Our approach to support the understanding of duplicated
tle tool support. For industrial systems a duplication rate code is based on data visualization. According to Ware [16],
of 5-10% is considered a low but common estimate. This visualization is the preferred way of getting acquainted with
means that in a system of 1 million lines of code, 50'000 to
100’000 lines of code are involved in duplication. If we as- 1 Note thatin this paper we are not interested in the method of clone de-
sume an average length of about 25 lines for a copied frag- tection and assume that the problem of false positives has been solved.

and navigating large data pools. Duplication data is rela-

tional data: two source code entities are related by shared : — L
pieces of code. A natural way of expressing these relations E— —
is a graph: the nodes of the graph represent the source en- Em=—=r |-as
tities whereas the edges of the graph represent the duplica- == | S 7 ClonePair
. . — —
tion relations. —— ——
— II:Ol e : F02
2.1. Entities and Relationships
L. . . . —— — 7 _A Clone Class
Our hypothesis is that when investigating a system af- ' S— T = So—
fected by duplication, our mental model basically consists — el b
. ——1 \ I
of the following elements: e~ | g —
N !]]
I 1]
The source entitiegepresent (fragments of) the source — m = 2 = Fs
code. In the context of this paper we use files as source —— = ..
entities. Other entities such as subsystems, modules, EFE=— == _
classes, and methods can be used as well. [m— = A Clone Class Family
| e | EEm—
Theduplication relationshipgonnect the source entities. Ve | —
Theduplicated fragmentare the source code that two (or ==
— — F22

more) source entities have in common.

Since the investigated systems are of huge proportions
(millions of LOC), data growth reaches unwieldly amounts Figure 1. Containment hierarchy: Clone Pairs,
(thousands of clones). Would we visualize all individual ~ Clone Classes, and Clone Class Families and
clones, we would get views where overplotting of nodes and the source files they are found in.
especially of edges are hindering interpretation. To achieve
scalability we therefore aggregate related clones into higher
level entities. We define three duplication entities which
form a containment hierarchy. Each higher order entity ag-
gregates lower level entities.

We identify the following duplication entities as illus-
trated by Figure 1:

Note that the clone class family is not only a conve-
nient way of reducing the entities and relations in the graph,
it also holds direct interest for the reengineer: First, since
1. Clone Pairs: The lowest level of detail on which to de- clone class families contain only entire clone classes, they

scribe duplication is thelone pair<a,b> . The pair assemble all instances of a source fragment found in the

comprises two source code fragmeatandb which system. Second, a clone class family reveals duplication ac-

are copies of each other. tivity that goes beyond the duplication of a single continu-
ous source fragment. If two fragments, which were initially
copies of each other, evolve differently over time, they may
not be recognized as one clone pair any more (the “split du-
plicates” problem mentioned in [13]). The clone detector
may identify smaller parts which are still similar individu-
ally. A clone class family will reunite those clone fragments.
In summary, a clone class family aggregates all elements
that are necessary to make informed decisions about refac-
toring measures for a particular fragment of copied code.

2. Clone Classes:A clone class is the union of all
clone pairs which have source fragments in com-
mor?. For example, if we have the clone paira,b>
and <b,c> , it is likely® that there is a clone pair
<a,c> . Theclone classhen encompasses the frag-
mentsa,b,c . The domainof a clone class is the
set of source entities from which its source frag-
ments stem. The domain of the clone class in the mid-
dle of Figure 1, for example, are the fil€41, F12,

andF13. The visualizations we propose use the source files and

3. Clone Class FamiliesMWe group all clone classes that the clone class families as entities. The decision not to dis-

have the same domain to formckone class family play clone classes or clone pairs is due to scalability con-
straints. The lower level clone entitiesg. the clone classes

2 In[15] clone classes are calletbne communities and clone paiI’S which are the real targetS of eventual refac-

3 Note that for some clone relation definitions transitivity does not hold toring operations, must however be reachable from their
in general. containers.

Position Metrics (X, Y) [Source File Metrics |
[Name [Description]

<+—— Width Metric ———»

LOC Lines of Code.
T The size of a file is a common metric, despite its obviqus
Color Metric Height drawbacks. It is immediately understood by every progrgm-
Metric mer and thus well suited to identify important files.
LCC Amount of copied code in the source file.
Entities This is the central aspect we are interested in. This records
Relationship ~ every piece of code in the file that has been copied some-
Edge Width Metric where else in the system, including in the file itself.
and Color Metric LIiC Lines of Code copied file—internally.

A subset ofLCC, this metric records code that has begen
copiedwithin a source file.

LEC Lines of Code copied file—externally.
Another subset o£. CC. This metric records code that is
shared with other files. Note thAtC andLEC are not nec-
essarily disjunct.

[Clone Class Family Metrics |

[Name [Description]

Figure 2. The principle of a polymetric view.

2.2. Polymetric Views

NSF Number of Source Files.
In how many source files are the copied fragments found?
Polymetric views [14] are a visualization method This is the set that defines the clone class family.
for nodes—and—edges graphs enriched with semantic iny NCC | Number of Clone Classes. .

. . . . How many clone classes have been grouped together |in a
formation such as metrics. Figure 2 illustrates how family? This says how many different source fragments are
two-dimensional nodes representing entitiesg., soft- shared by all the files in the group.
ware artifacts, and edges representing relationships can bg-¢¢ ngsng);r]cyoﬁrgg?ggde does the dlone class family encdm-
enriched b)_’ SOftwar_e metrics: _A node_flgure IS able to ren- pass? For each clone instance that is part of the clone ¢lass
der up to five metric values: in its width, height, x— and family, the number of copied lines is summed up.

y—position, and in its color. An edge figure is able to visu-
alize two metric values: width and color.

By applying metrics to the x— and y—position of the
nodes, for example, similar entities are clustered close to-
gether in an easily identifiable region of the graph exhibit-
ing some of their defining characteristics. Entities with dif-
fering characteristics are then placed in a distinct region of
the graph. In this way, the shape of the visualized graph is

able to communicate useful facts about the set of all visual- A yvell known problem in graph layouting isverplot-
ized items. ting, i.e., when too many nodes and edges are crammed

on too little screen space, making a diagram unintelligible.
Since we want to be able to display large datasets, we are
forced to take precautions against overplotting. We employ
the following techniques:

Reduction and filteringBy pooling related clones into
clone classes and clone class families we reduce the size of
the clone sets significantly. In the same manner source files
can be combined into directories and subsystems.

Adaptive Graphical Representatio8ince our views are
intrinsically interactive, visual enhancements like highlight-
ing can be triggered by roll-over mouse events. Multiple se-
lections of nodese.g.,via their names or their connections
are necessary as well to take advantage of the views.

Table 1. Duplication Metrics for source files
and clone class families.

2.4. Display Scalability

2.3. Duplication Metrics

To discern between instances of code duplication we se-
lect a number of metrics that characterize the source files
and clone class families (see Table 1). The choice of met-
rics is guided by the goal to create views that visually dis-
tinguish the entities in the view most effectively and intel-
ligibly. The metrics are simple and can be computed from
the results of any duplication detection tool without the aid
of a parser.

The distinction betweehIC andLEC is motivated by
the possibly more complex situation that has to be under-
stood when clone instances are located in different source .) o
entities. The smaller the amount of code that is involved in 3- Polymetric Views of Duplication
the duplication (the copied coded the surrounding con-
text), the lighter is the cognitive load. Kapser and Godfrey This section proposes a set of polymetric views that sup-
[10] have proposed a clone taxonomy which is built on this port the understanding of the duplication situation in a sys-
distinction. tem and can guide refactoring measures. We order the de-

Figure 3. The Duplication Web of the MaAIL-
SORTING system with LIC (Lines of file—internally
Copied Code) as node width.

scription of the views in a sequence that suggests a way
for the engineer to walk through the task of understand-

ing a system’s duplication (@engineering roadmagp Af-

ter the discussion of each view we present a short overview
of questions answered and potential further questions that
are of interest at this stage. Each view is presented using the
following schema:

Details. Gives a tabular technical description of the view,
its entities, relations, and its layout.

Intention. Explains how the view can support the engineer

Figure 4. The Duplication Web view of MFcC.
Setting heavily—connected nodes apart on
the diameter emphasizes the overall amount

of duplication connections.

in his tasks, It improves on a textual report detailing all clones detected
Symptoms. Details what kind of duplication problems the in ag stem P g
view reveals. M ’

Symptoms: The view reveals the following duplication

Examples.Shows sample views and explains their features. .
P P P problems in a software system:

Scaling. Investigates how the size of a system affects the

view negatively and what can be done about it. ¢ Wide nodes represent files that contain a lot of internal

Overplotting. Investigates if the amount of data can cause duplication.

overplotting problems and how they can be avoided. e Thick edges connect files that share a lot of duplica-
tion.

3.1. The Duplication Web e Nodes with many connected edges represent files shar-

ing duplicated code fragments with many other files.

The Duplication Web is the first view that an engineer gyample 1.Figure 3 of the ML SORTING System shows
can use as it introduces the user to the duplication situation.j91 nodes, 57 of which share code with one or more other
It shows all files in the system and all existing clone con- fjjes. Most of the files are “copy—connected” to only one or
nections between them. two other files. The two files with the largest amounts of in-

Nodes [Source Files ternal duplication also exchange the most external duplica-
Edges | Clone Connections tion.
Metrics
Node Size Height=— Example 2.Figure 4 shows the application of the Duplica-
S ‘(‘gfgh(ahfs(gt&”;g %%%'g)d Code) tion Web view to the Microsoft Foundation ClassesA®).
Layout Nodes placed on a circle; Nodes with many connec- It iS formed by 240 source files, 50 of which are connected
tions are placed apart on the diameter. by duplication links. In this variant, node size corresponds
Examples Figure 3,Figure 4

to number of connections. Following the edges one is able
Intention: This view gives an impression of the number of to divide the duplication activity of Mc into two larger
files in the system and the amount of duplication that con- groups of multiple interconnected files, and a few file pairs.
nects them. It shows the entire system at once in a well de-Scaling: The dimensions of the view can be controlled be-
fined shape that is independent of the physical organization.cause of the fixed shape of the circle. For large numbers of

files the radius of the circle must be reduced, bugéstalt
can still be recognized. If there are too many files, group-
ing them into directories, modules, or subsystems is help-
ful.

Overplotting: Since the intention of the view is to give an
overview rather than to guide actual refactoring actions, the
overplotting is not too problematic. Thanks to the fixed po-
sition for each node, overplotting can only become a prob-
lem if many nodes have a very highC value. If too many
clone connections exist between the files, the edges in the
center of the view will become impossible to distinguish.
The view then only conveys the information that a lot of
copy&pastegprogramming has been going on.

Reengineering RoadmapHaving gotten an impression of
the duplication activity in general, we want to focus a bit
more on the individual files. Which are the files that are
heavily duplicated, which are the ones where only a small
part has been copied?

3.2. The Clone Scatterplot

The Clone Scatterplot displays the same nodes and edges
as the Duplication Web but the layout takes into account
the size and duplication metrics for each file. It has still
overview character but enables informed selections since Figure 5. Two examples of the Clone Scat-

more information is included in the presentation. terplot: On top is an extract of the ~ ACCOUNT
_ ING system. Below, the entire AGREPSystem.
Nodes [Source Files
Edges [Clone Connections Both views are overlaid with lines indicat-
Metrics ing duplication rates of 100% (45°) and 50%
Node Position X-Pos =LOC (Lines of Code) 929 50
Y-Pos =LCC (Lines of Copied Code) (:)
Edge Width LCC (Lines of Copied Code)
Layout Scatterplot
Examples Figure 5

in the lower half of Figure 5. Here the system has very lit-
tle variation around the main diagonal. This indicates that
the level of duplication is equally high in all of the larger
files. The largest file has common code with all the other
files involved in external duplication.

Scaling: Since we use theOC metric as X—Position, the
view can grow very large when files contain a lot of lines.

Intention: The Clone Scatterplot confronts the size of the
files with the amount of duplication they contain. Files of
different duplication levels can be identified by the region
they are positioned in. The edges tell us if code is shared
between large and small files, or between files of similar
size. Heavily copied files can be selected for closer inspec-

tion.) Logarithmic scales can then be applied to the X— and Y-
Symptoms: :
metrics.
e Nodes on the left represent small files, while the ones Overplotting: Thanks to the use of theOC metric as
on the right represent large files. X—Position, the source files are spread out over the view
¢ Nodes at the top of the view represents files having lit- area, ameliorating the overplotting situation for the nodes.
tle or no duplication. Smaller files without duplication are clustered in the upper

e Nodes that are not at the top of the view but are un- left corner of the view, frequently overplotting each other.
connected represent files having only internal duplica- Since these files are not interesting for the user the prob-

tion. lem does not have any impact. Clone edges tend to over-
e Nodes close to th¢5° diagonal represent files contain- plot quickly around thel5° diagonal, where the files with
ing a lot of duplication with respect to their size. high duplication rates are located.

Examples: The gestaltimpression that this view gives can Reengineering RoadmapUntil now the views only con-
be best observed with the scatterplot of therkP system tained nodes representing individual files. Files are how-

Aggregated LIC

r LIC

LEC

A File;

File

Aggregated LEC

Filef
Wide Nodes
Square Nodes

<+— Tall Nodes

File| Directory|

Figure 6. Node placement in the Treemap.
Nodes are separated by their shapes and ar-
ranged so that the values of
are aggregated horizontally and vertically, re-
spectively.

Figure 7. The tree map of the APACHE system.
LIC and LEC The rectangle on the right marked C is an en-
largement of the second top—level node from
left.

o possible. The view has gestaltproperty,i.e., it can give
ever part of organizational system structures. We want to useful information immediately.

know how these larger entities are affected by duplication. Symptoms:
This raises the abstraction level and we get the useful side '
effect that we can connect gained duplication knowledge e Nodes towards the lower left have increasing amounts
more easily with the fewer elements of the coarse system of external duplication.

structure. e Nodes towards the upper right have increasing
amounts of internal duplication.
3.3. The Duplication Aggregation Tree Map e Nodes in middle have no duplication or equal amounts

of both kinds.

This view aggregates the duplication that until now we e Wide nodes have more internal than external duplica-
have only seen attached to individual files. It shows the en- tion and vice versa.
tire system top—down along the directory structure, anno-
tating each d irectory node with the rgcur_sively_aggregatedCode only with regard to files. If two files within a direc-
amognts of'lnternal apd external QUpllcatlon of its files and tory D share some code, this amount will be aggregated as
_subd|rect_or_|es. The view emphasn_zes system parts accordLEC for the node representing, even though the code is
ing to their involvement in duplication. not copied to files external db.

Note that node height shows the sum of externally copied

ggdes [Source Files, Directories Examples: From the shape of the overall diagram in Fig-
Y = ure 7 we can determine that there is a bit more inter-
Node Size Helght=LEC(I(%xterr|1|allé qu(ljeg %oc;e) nal duplication than external duplication inPACHE. The
Width =LIC (Internally Copied Code - : ; : ;
Node Color LCC (Lines of Copied Code) rightmost nodeA repres_entl_ng the directoffib contains
Layout Modified Tree Map. Nodes are arranged according to the most internal duplication, whereas leftmost nadge
the principle illustrated in Figure 6. The main differ- . : . .
ence to traditional tree maps is that empty space isla- '€Presenting the .d|recton5nodules and its su.bdlr.ectory
lowed. standard contain most of the external duplication. The
Examples Figure 7

directoryos (represented by nod€) contains two subdi-
Intention: The tree map aims to give an overview of the ra- rectorieswin32 (node D) andnetware (nodeFE) which

tio of internal to external duplication, aggregated from the have a similar amount of external duplication (possibly
individual source files up to the root directory of the sys- shared between them).

tem. The parts of the system which exhibit high amounts of Scaling: Thanks to the fractal property of treemaps we can
duplication can be identified at a glance from the top level. display systems of any size on every screen. Zooming pro-
Relative comparison of structures in the hierarchy is madevides an adequate instrument to navigate even very large

systems. Aggregation of data will provide useful informa-
tion even at the highest level where the smaller details are = i
not discernible any more. Contrary to traditional treemaps
this variant visualizes two values in every node, resulting in
some waste of screen space. The advantage over the trad
tional treemaps is that the display is less crowded while still
showing every element of the tree.

Overplotting: The layout precludes all overplotting prob- . a— Class Object

lems.
Reengineering RoadmapHaving gained an overview of
the parts of the system involved in duplication, we want to

know details about the copying. Is code shared within di-

ol
tem borders? These informations are interesting since they

rectories only, or also across directory borders, even subsys:
uncover functional relationships between system parts that
may not be documented. Such knowledge can also further

the understanding of the design of the system.)))
Figure 8. Two variant System Model views of

3.4. The System Model View JBoss The upper half shpws part of the di-

rectory structure. The thicker edges repre-
sent clone relationships between files. The
lower half shows extracts from the class hier-
archy. Small squares represent superclasses

This view shows the directory structure of the applica-
tion, or alternatively the inheritance tree, using the familiar

tree layout. defined outside of JBOSS
Nodes [Source Files, Directories
Edges [Clone Connections, Directory Containment
Metrics . -
Node Size Height =LEC (Externally Copied Code) located in sibling directories, whereas the duplication be-
S \(/:VIIdth =LIC (I?tern‘?g% (Cc"é"‘.’sdc(?gﬁé) tween C and D crosses 4 directories,, probably into an-
e Wi one connections g
? Directory Containment = — P other subsystem. This information is useful when deciding
Layout Spaced Tree about refactoring measures. In the lower half of Figure 8 ex-
Examples Figure 8

tracts from the class hierarchy atdssare shown. On the

Intention: The System Model view shows the duplication left side, sibling classes copy heavily from each other. E
within the physical location of filesi.e., their directory marks a clone relation between a class and its superclass.
structures or the classes and their inheritance relationshipsScaling: The view becomes very large in a system with
It helps identifying problematic subsystems and functional thousands of source files. Clone edges will likely go over

connections between subsystems. the screen boundaries when connecting files in directories
Symptoms: that are far apart, making good navigational features a ne-
cessity.

e Small squared boxes represent files without internal or Overplotting: Trees are simple to layout without node

external duplication. overplotting. Displaying the clone edges can lead to seri-

e Flat wide bo_xes represent files that contain a lot of in- ;5 overplotting problems, especially if the system model
ternally duplicated code. is a shallow tree.

¢ Tall narrow boxes represent files sharing a lot of dupli-
cated code with other files.

e Thick edges among tall boxes represent the amount o
duplicated code exchanged between them.

Reengineering RoadmapuUntil now, our focus has been
fentirely on the files. We know their sizes, their locations
and their connections. We now turn to an investigation of
the connections, the code that is shared. How large is it?
Examples.In the upper half of Figure 8 the directory struc- How many files has it been spread to? Are other common
ture of the Bosssystem is the basis for the arrangement fragments copied along with it?

of the source files in the view. Internal and external duplica-

tion are the metrics that are shown. Files A and B, as well as3.5. The Clone Class Family Enumeration

C and D share code as indicated by the duplication link be-

tween the files, as well as by the similar shapes of the nodes. This view reduces the redundancy of the duplication con-
What can additionally be seenin Figure 8 is that A and B are nections that has been present in all the previous views. The

an increasing number of participating source files, which
Lce makes them interesting targets for investigation. Symmet-
rically, source files at the bottom of the view are only in-
volved in a single clone class family, whereas files in the
middle of the view are more interesting. Small files are to
the left of the view and large files are to the right of the view.
Examples: Figure 9 presents 18 files and 13 clone class
families which stand for 55 clone pairs (a 76% reduction of
duplication entities). The largest clone class famlyen-
compasses duplication in the 5 largest files, as can be seen
from the figure. Clone class familg represents two clone
classes—this means two different source fragments that are
present in all 5 files—or 24 clone pairs.

Scaling: Clone class families or source files containing a
lot of code are positioned at the far right, likely offscreen,
which will require navigation.

Overplotting: The nodes must not overplot since the user
has to be able to select from them. The layout mechanism
thus arranges them side by side. Edge overplotting is of mi-
Figure 9. The clone class families ofthe MuL- nor concern since the focus of the user lies on the nodes.
TIMARKE system. Eventually, clone class families which represent only inter-
nal duplication in a single file could be removed from the
view.

Cloneclass Families

Source Files

l—» # Cloneclass Families
-

o —

(@]

clones are shown in a concise nodes—and—edges view.

The layout uses theCC and theLOC metrics to place
clone class families and source files, respectively, on the
horizontal axis. The intuition “the farther to the right the
bigger” thus can be used to mentally classify both entity = The views achieve the goal of data reduction on different
types presented in the view. The edges connect the uppelevels. We are able to display even very large systems on re-
half of the view - the cloneclass families - with the source stricted screen space. Many of the views hagestaltprop-

4. Discussion

files on the lower half. erty, i.e., they provide overview informatioat a glance
Nodes [Cloneclass Families (CCF), Source Files The reduction of the cardinality of the clone sets, how-
Eigﬁcss | Participation in a Cloneclass Family ever, is sometimes not enough, resulting in cluttered dis-
CCF Lovel NSF (NUmber of Source Files) plays which are hard to read. We must further support read-
CCF Position | X—Pos =LCC (Lines of Copied Code) ability with interactive enhancements of the vievesg.,
File Level Number of clone class groups
File Position X—Pos =LOC (Lines of Code) with the highlighting of connected elements on mouse—
Layout over.
Upper half Multiple Tevels of cloneclass families . . L. .
Lower half Multiple levels of source files By using simple and heuristic layout mechanisms we
Examples Figure 9 provide a fixed arrangement of the nodes for all views ex-

Intention: This view presents the clone class families to the cept the System Model view. This is an advantage since
user in a way that eases investigation of individual instancesthere is no need for the user to rearrange the nodes to get a
of duplication. It characterizes the families by the criterion better view. This enables him to stamterpretingthe view

of how many source files they comprise and how much codeimmediately.

they contain. The user can start on a clone class family node What is missing from the description in this paper is the
and see which source files are participating. Or he can starnecessary ingredient if the duplication is to be reengineered:
with a source file node and see in how many clone classmaking the source code of the clone instances reachable
families the file participates. To make the view fully use- directly via the nodes and edges of the views by code
ful, lower level duplication entitied,e., clone classes and browsers. This must be addressed by tool-builders.

finally clones must be made available to the user via the That tool support is only one piece of the duplication
nodes in this view. refactoring puzzle in an industrial context is a fact which
Symptoms:Clone class families in the top rows are less im- we have not included into our considerations. How busi-
portant since they connect only a few source files. The fami- ness decisions and process questions affect the engineers in
lies located on the rows towards the middle of the view have this matter will have to be addressed still.

5. Related Work sures. The focus of his work however was automation rather
than visualizationi.e., seeing the classes and their relation-

Visualizing Duplication with Graphs. Johnson [7] has Ships was not the primary goal.
used Hasse diagrams to visualize textual similarity between
files. For gaqh duplicatiqn—related clust_er of files (a clone 6, Conclusion
class family in our terminology) - the diagram shows the
copied source text and the source files as nodes, and the in- : . . .
If a reengineer has to investigate and refactor duplica-

clusion relationships between the different code pieces as. . Lo
tion in a large system, he is in dire need of support for un-

nggs. _The he|.ght of a node in the graph is determined byderstanding and dealing with the potentially huge amount of
its size: large files or code fragments are towards the bot-~ "~ L :
:) ._copied code. To manage the overwhelming lists of detailed
tom, smaller pieces of code towards the top. His graph is o . 2 :
o)) .~ duplication information produced by duplication detection
similar to the clone class family enumeration proposed in . .
mechanisms, we reckon that he needs to (1) overview of the

Section 3.5. o L . .
In [8] Johnson proposes to navigate the web of files and Soljrﬂlgsgr?n situation and (2) navigate through the sea of in-

clone classes via hyper-linked web pages. Although the en- The approach discussed here is putting emphasis on the

tities and relationships that he defines are the same as Wenuman in the loop’ giving human expertise the helm, in-

have used in this paper, his system lacks the overview andstead of pushing automatization. In this paper we have pro-
selection features that we think are necessary to find one’s P 9 . ' Papery P
way in the mass of duplication data. His browsing system posed first a way of grouping the duplication information

could however act as a backend for the views proposed inInto useful abstract_mns_*.,e., the .clone class family which
this paper. aggregates all duplication that is exchanged between a spe-

: o _— . cific set of files. Second, we have proposed a number of
Visualizing Duplication with Dotplots. A common o : S
: . C polymetric views which structure the data and combine it
method for visualizing duplication is the dotplot [6, 5, 9], .
. ' with the knowledge about the system that the engineer al-
where the lines of two source files are put on the two axes

of a matrix and a dot is placed at each coordinate which rep-ready POSSESSES.

resents two matching lines. Dotplots, however, have some . we have only used a small gnd very 5|mp|e set of mgt-
drawbacks: rics which can be computed without much investment in

parsing infrastructure. Future work should include investi-

¢ Dotplots produce spacious images. The size of the im- gations of metrics or attributes oriented towards qualitative
age depends on the size of the input, not on the size ofaspects of duplication. This will increase the selective capa-
the duplication found. bilities of the views.

e In a dotplot visualizing the comparison of multiple A pertinent problem is the overplotting of edges and
source entities there is no predetermined organizationnodes when systems and the amount of data get too large.
of the image. Some features may only be detected af-We have proposed some aggregation abstractions to reduce
ter rearrangement of the display. the amount of data that must be presented on screen. So-

e Dotplots contain a lot of redundancy. This can be over- phisticated filtering techniques should be the focus of tool
whelming in the case of frequently repeated pieces of development efforts if a visualization tool wants to be ap-
code. plicable to very large systems. Since the views greatly rely

« Dotplots give a detailed account of the duplication sit- on their interactivity, this also means that they have a lim-
uation. As a consequence they convey overviews ratherited usefulness when committed to paper.
poorly.

Dotplots and polymetric views can be used as comple-A- Example Systems
mentary duplication visualizations. The polymetric views
are good as a starting point for the assessment phase. They The sample systems we have used to produce the views
give the user aoDo list that has to be cleared point for in this paper are listed in the following table.
point. Having selected a source file or a clone class, a tar-

geted dotplot displaying only the clones belonging to the | "2™® Fies | ioe | Anguege | Origin
selected clone classes can be presented to the user for closeviair SorTiNG 101 39000 | C++ Industry
inspection of the situation. MFc 4.2 ggg ;%830 €++ lngustry
Visualizing Duplication in OO Class Hierarchies. 2(;:?:;;'2.620 o COBO" gp‘e’rftgm
Golomingi [11] has investigated how the information about 3g5ss7.38e7a | 403 | 35000 | Java Open Src.
the location of clones within an object—oriented class hi- | AGrep2.04 22 12°000 | C Academia
erarchy can be utilized to decide upon refactoring mea-_MULTIMARKE 70 7000 | Java Stud.Proj.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

B. S. Baker. A Program for Identifying Duplicated Code.

Computing Science and Statisti@g:49-57, 1992.
M. Balazinska, E. Merlo, M. Dagenais, B. Laguand

K. Kontogiannis. Advanced clone-analysis to support object-
oriented system refactoring. IRroceedings WCRE'QO

Pa es 98-107. IEEE, Oct. 2000.)
. Baxter, A. Yahin, L. Moura, M. S. Anna, and L. Bier. Clone

Detection Using Abstract Syntax Trees. Pnoceedings of

ICSM |EEE, 1998. .
S. Bellon. Vergleich von Techniken zur Erkennung du-

plizierten Quellcodes. Master’s thesis, Univeasituttgart,

Sept. 2002. . _—
S. Ducasse, M. Rieger, and G. Golomingi. Tool support

for refactoring duplicated OO code. Proceedings of the
ECOOP '99 Workshop on Experiences in Object-Oriented

Re-EngineeringJune 1999. FZI-Report 2-6-6/99.
J. Helfman. Dotplot Patterns: a Literal Look at Pattern Lan-

9uia_PeSTAPOS 2(\):31—_4_1, 1995. i
. H. Johnson. Visualizing textual redundancy in legacy

source. InProceedings of CASCON '9fages 9-18, 1994,
J. H. Johnson. Navigating the textual redundancy web in

legacy source. IProceedings of the 1996 conference of the
Centre for Advanced Studies on Collaborative resediBh

Press, 1996. . .
T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multi-

linguistic token-based code clone detection system for large

scale source cod¢EEE TSE 28(6):654—670, 2002.
C. Kapser and M. W. Godfrey. Toward a taxonomy of clones

in source code: A case study. Rioceedings of the First In-
ternational Workshop on Evolution of Large-scale Industrial

Software Applications (ELISA)EEE, Sept. 2003.
G. G. Koni-N'sapu. A scenario based approach for refactor-

ing duplicated code in object oriented systems. Diploma the-

sis, University of Bern, June 2001.
K. Kontogiannis, R. DeMori, E. Merlo, M. Galler, and

M. Bernstein. Pattern Matching for Clone and Concept De-
tection. Journal of Automated Software Engineer;jt3y77—

108,.1996. e .
J. Krinke. Identifying similar code with program dependence

graphs. InProceedings WCRE'01EEE Computer Society,

Oct. 2001. .
M. Lanza and S. Ducasse. Polymetric views — a

lightweight visual approach to reverse engineeringEE

TSE 29(9):782-795, Sept. 2003. .
J. Mayrand, C. Leblanc, and E. M. Merlo. Experiment on the

automatic detection of function clones in a software system

using metrics. IlProceedings of ICSM’'961996.
C. Ware. Information Visualization Morgan Kaufmann,

2000.

