
Code Review: Veni, ViDI, Vici

Yuriy Tymchuk, Andrea Mocci, Michele Lanza
REVEAL @ Faculty of Informatics - University of Lugano, Switzerland

Abstract—Modern software development sees code review as
a crucial part of the process, because not only does it facilitate
the sharing of knowledge about the system at hand, but it may
also lead to the early detection of defects, ultimately improving
the quality of the produced software. Although supported by
numerous approaches and tools, code review is still in its
infancy, and indeed researchers have pointed out a number of
shortcomings in the state of the art.

We present a critical analysis of the state of the art of code
review tools and techniques, extracting a set of desired features
that code review tools should possess. We then present our vision
and initial implementation of a novel code review approach
named Visual Design Inspection (ViDI), illustrated through a set
of usage scenarios. ViDI is based on a combination of visualization
techniques, design heuristics, and static code analysis techniques.

I. Introduction

Code review is a common software engineering practice
used by organizations and open-source communities to im-
prove the quality of source code [1]. During this activity the
code is reviewed by software developers to check whether it
complies with guidelines, to find defects, and to improve faulty
parts. The most common form of code review is peer review,
a semi-structured approach that can be more easily adopted
(and adapted) for the specific needs of development teams [2].
During peer review, the changes to source code are reviewed
by a small number of developers just before being integrated.

Modern code review is supported by dedicated tools.
Popular examples include Gerrit and Rietveld by Google,
Code Flow by Microsoft, Phabricator by Facebook, Crucible
by Atlassian, etc. Most tools provide a set of common core
features, such as a diff view of the changes to be reviewed,
the ability to comment parts of code, discuss changes, and
mark a code patch as reviewed.

Ideally, code review is an efficient way to improve code
quality, detect critical bugs and share code ownership [1], [2],
[3]. This effectiveness motivated Bacchelli and Bird [4] to
study the expectations of developers and the difficulties they
encounter when performing a review. They found that the main
reason to perform the code review is to find defects in code and
to improve the code written by others. The main difficulty of
code review is understanding the reason of a change that one
has to review. As a side effect of this problem, reviewers start
to focus on the easier to detect code style problems, in essence
going for the low hanging fruits. A natural consequence of
this is that reviewers are not able to effectively tackle software
defects, and the ultimate goal of improving code quality is
hindered. We believe one underlying reason for this status quo
is to be sought in the way code review tools are implemented
and in the features they offer to reviewers.

We conducted a critical analysis of the state of the art
of code review tools, shedding light on a number of facts.

For example many of them leverage static code analysis
techniques, like the ones provided by FindBugs [5], to spot
implementation problems. However, the results from such
techniques are poorly integrated in a code review process, as
we will see later.

We propose an approach to augment code review by inte-
grating software quality evaluation, and more general design
assessment, not only as a first class citizen, but as the core
concern of code review. Our approach, called Visual Design
Inspection (ViDI), uses visualization techniques to drive the
quality assessment of the reviewed system, exploiting data
obtained through static code analysis. ViDI enables intuitive
and easy defect fixing, personalized annotations, and review
session recording. While we implemented a running prototype
as an open source MIT-licensed tool,1 ViDI has a long-term
vision that is beyond the scope of this paper. Thus, a central
contribution of this paper is also a discussion on its open
issues, its potential and the ideas that are part of our future
work. We provide detailed showcase scenarios that illustrate
the benefits and potential of ViDI and our vision. The showcase
scenarios also clarify and exemplify the actual shortcomings
that need further investigation and research.

This paper makes the following contributions:

• A critical analysis of the current state of the art in code
review;
• ViDI, a new approach to integrate software quality assess-

ment in a tool that visually supports the design inspection
of software systems;
• Case studies to illustrate and assess the applicability and

promising value of ViDI;
• A prototype tool implementation based on our approach.

Structure of the Paper. Section II provides a critical
analysis of the current state of art on code review tools
and approaches of static analysis to evaluate code quality. In
Section III we describe the ViDI approach with its core features
and its long term vision. In Section IV we assess ViDI through
two illustrating case studies. Section V discusses the current
status and limitations, and outlines future work. Section VI
concludes the paper.

II. Critical Analysis of the State of the Art

In this section we analyze major existing code review tools,
extracting and organizing their main features. We first describe
how we identified the existing approaches, and we give a short
overview of each tool (Section II-A). Then, we extract core
features of the tools on which we compare them (Section II-B).
Finally, we identify the set of desired features of an ideal code
review approach, and we frame the actual contributions of ViDI
(Section II-C).

1https://github.com/Uko/Vidi



1

1

1

2

2

3

2

4

5

5

4

Review Board Gerrit

Crucible Collaborator

Fig. 1: Code review features: 1 version breakdown; 2 inline comments; 3 comment feed; 4 side-by-side diff; 5 unified diff.

A. Tools Overview

After surveying the related work in this area we identified
a number of code review tools, listed in Table I.

TABLE I: State of the Art Code Review Approaches

Name License Website
CodeFlow Proprietary http://goo.gl/jH2YkP
Collaborator Proprietary http://goo.gl/C6oqI8
Crucible Proprietary https://www.atlassian.com/software/crucible
Differential Apache v2 http://phabricator.org/applications/differential
Gerrit Apache v2 https://code.google.com/p/gerrit/
GitHub Multiple https://www.github.com
Review Board MIT https://www.reviewboard.org
Upsource Proprietary https://www.jetbrains.com/upsource

CodeFlow is the tool on which Bacchelli and Bird [4]
mainly focused on. Differential by Facebook is also mentioned
by the same authors. Gerrit and Collaborator were used,
together with CodeFlow, in the work of Rigby and Bird [3]
for the analysis on contemporary software review practices.
Balachandran [6] introduced Review Board and extensions
for it. We also included the tools released by two important
software development companies: Crucible by Atlassian and
Upsource by JetBrains. Last but not least, we also reviewed
the features of GitHub, since researchers have compared the
mechanism of pull requests to the review process [7]. Figure 1
provides a set of screenshots coming from some code review
tools, with some core features highlighted.

CodeFlow is a code review approach and tool developed by
Microsoft. CodeFlow is partially integrated into the last public
release of Visual Studio; i.e., CodeFlow uses file comparison
(diff) capabilities provided by this IDE. The normal usage of
CodeFlow is for pre-commit patches, which means that it is
normally used to review code before commits to the versioning
system are made. CodeFlow allows one to leave comments on
any selected piece of code, which are then reported together
with general review comments in a unique separate feed. It
provides a context of review sessions for each person, but there
seems to be no support for a review workflow. In particular,
there is no mention to support review history; e.g., after a
review, there is no way to link the reworked contribution to
the original submitted code. CodeFlow supports review patches
generated by Visual Studio, and it appears to be Software
Configuration Management (SCM)-agnostic.

Gerrit is an open-source tool developed at Google for the
Android project. It is a fork of Rietveld, the successor of the
Mondrian review tool. It provides both side-by-side and unified
diffs. It also provides a way to select which of the reviewed
patch versions to get a diff of. Gerrit allows to leave comments
on any code selection and they are shown between the lines
just under the selection. This tool can be easily integrated with
the Jenkins2 continuous integration service.

2http://jenkins-ci.org



It can also benefit from the sputnik3 project, which inte-
grates comments on the review diff with the reports produced
by quality checkers like Checkstyle4, PMD5 and FindBugs [5].
Gerrit can notify other people about a review, which is similar
to the “watcher” feature of other tools. Gerrit works only with
git, and this enables the so-called gerrit-style code review. It
relies on a process where each new contribution is versioned
in a new git branch [8]. Actual code review occurs when
the merge request is issued, and in case of approval, the
contribution branch will be merged into the main trunk of the
project. This makes Gerrit essentially a post-commit review
tool, that is, reviews are performed on code that has been
already committed to a repository. Reviewers must also rate
the patch when they conclude the review. Thus, based on the
average review rating, a decision is made whether to allow or
forbid the integration of a contribution. Having contribution
patches available as commits in the source code repositories
makes it possible to automatically run unit test before the
review. It is also possible to integrate the review with additional
data like static code analysis reports. Some extensions integrate
Gerrit with issue trackers, but they are not yet mature.

Collaborator is the review tool by SmartBear, available
either as a web client or as a plugin for IDEs like VisualStudio
and Eclipse. It provides both a unified and side-by-side diff
for patches. Collaborator is also a document review tool, as
it provides special diffs for filetypes like Word documents
and PDFs. Since the review process may consist of several
iterations of changes, Collaborator allows to select which
changes to see in the diff. The tool allows to leave comments
per line of code and they appear in the general feed together
with global review-related comments. As Collaborator can be
used to review non-source code, it allows to leave comments
on “push pins” that are associated to the coordinates of a
reviewed file. The tool does not allow to run test and quality
checks automatically, but SmartBear provides a guide on how
to run test on Jenkins, and how to integrate quality analysis
tools results into the review. Collaborator provides the ability
to create reviewer pools that allow authors to select a whole
pool for participation in a review. Besides reviewers, authors
can invite observers who do not impact the review itself, but
can spectate to familiarize with changes. This tool provides a
review session for each person and integrates in into the global
session called workflow. Workflows are customizable, as many
other features of Collaborator. It can be used to perform both
pre- and post-commit reviews: The main workflow is based on
sequential patch submission and review, but it also supports
the gerrit-style code review. Optionally, an issue tracker such
as Bugzilla6 can be integrated, allowing to open or associate
an issue with the comment on a code review. Collaborator
supports many version control systems, from free software like
svn and git, to proprietary ones like IBM Relational Team
Concert and Microsoft Team Foundation Server. Collaborator
also has a lightweight version called CodeReviewer.

Crucible is part of Atlassian’s family of development tools.
This allows Crucible to be easily integrated with the issue
tracker JIRA and other development tools of the company.

3https://github.com/TouK/sputnik
4http://checkstyle.sourceforge.net
5http://pmd.sourceforge.net
6http://www.bugzilla.org

Crucible supports only unified diff views, with no special
support for non-source files. On the other hand, it provides
a timeline view of review iterations and allows to select a
time window of which it will generate the diff. Crucible
allows to leave comments per line of code, and the comments
are displayed just after each line. The tool provides a way
to select groups of reviewers as well as suggest individual
reviewers based on i) contributions to code, using total lines
of code for the files currently under review; ii) availability,
using number of outstanding reviews; iii) randomness, with
two random users added to the list to help get fresh eyes on
the code, and to spread the effort for code reviews. Crucible
can be integrated with Bamboo continuous integration server,
enabling unit tests to run automatically. At the moment, there is
no straightforward way to integrate quality analyzers. Crucible
does not provide dedicated support for observers, but allows
to send emails with snippets of the review, which can be used
for knowledge sharing. It also allows to mention users from
the review comments, and it can create issues in JIRA issue
tracker from the reviews. Integration with JIRA enables to link
the issue to the related review. Crucible supports a dedicated
workflow for reviewers to vote for integration or rejection
and ultimately reach a consensus; it also supports moderators
who take the full responsibility for the decision. Moreover,
reviews are performed inside recorded sessions, collecting data
about the time spent by the reviewer and percentage of code
reviewed. Crucible mostly focuses on post-commit reviews,
but it is also possible to use it for pre-commit reviews. The
tool supports cvs, svn, git, Hg and Perforce SCMs.

Differential is part of the Phabricator development suite
originally developed internally at Facebook. It is now an open
source Apache-licensed project maintained by Phacility, Inc.
Differential has side-by-side diff for code review. A review
report page contains a list of all versions related to the review
and allows to select which ones on which the diff should
be based. The tool allows to comment multiple lines at once
and comments are displayed between the code lines. Another
tool currently being developed, called Harbormaster, should
provide continuos integration for the tool suite. Command Line
Interface (CLI) Arcanist allows to enrich code review with
feedback obtained from static quality analysis tools. Another
useful tool called Herald allows to define rules that automate
reviewer selection. For example, it can assign a specific re-
viewer to each contribution committed by new interns. Finally,
Phacility announced a new tool called Pholio, which will be
used to review design sets. Differential allows one to add
watchers to the review. It also supports different kinds of
workflow, and reviewers should “approve” reviews in order
to close it. Differential can integrate with Maniphest, the issue
tracker of the Phabricator suite. As stated in its documentation,
Differential focuses mainly on pre-commit reviews, but we
managed to uncover only workflows with gerrit-style code
review, and so we rather categorize it as post-commit review
tool. Phabricator integrates with git, svn, and Mercurial.

GitHub is an online hosting service for git repositories.
This analysis covers also GitHub Enterprise, which is a paid
version for private development, and GitLab7, the free ana-
logue of GitHub Enterprise. Both unified and side-by-side
diffs are provided. GitHub allows to compare changes made

7http://gitlabcontrol.com



TABLE II: Comparison of code review tools

Tool Diff Comments Integration Reviewers
Selection

Review process Code Nav-
igationUnified Side-by-side Non-source Versions Global Selection Tests Quality Watchers Workflow Issues

CodeFlow X X — ? X S — — S — X* — —
Collaborator X X X X* X L+ X X S, G X X X —
Crucible X — — X X L X — S, G, A — X X —
Differential ? X ? X X ML X X S, R X X X —
Gerrit X X ? X X S X X S X X X* —
GitHub X X X — X L X — — — — X —
Review Board X X — X X ML+ X X S, G, A — — X* —
Upsource X X — X* X S X X S, I X — X* X

Legend: (?) unknown, (—) no support, (X) full support, (X*) partial support, (N/A) not applicable

to images in three different ways, renders changes in 3D STL
files and uses special diff for prose documents. Github has a
pull-based code review style similar to Gerrit [7]: It provides
implicit review during pull requests. Users can discuss code
and the review itself. This allows maintainers of open-source
projects to review changes before integrating them into the
project. A pull request theoretically ends by being integrated
or closed, but after this users can still use the code review
features. Moreover, GitHub allows to mention other users
in order to attract them to review. Travis CI8 can be easily
integrated and provides feedback of whether the integration
commit succeeded or not. Github works only with git, but
lately svn access has been added to the repositories.

Review Board provides unified and side-by-side diff views.
It also provides a timeline overview of the versions of a
patch and the ability to select a time window upon which
the diff will be generated. Review Board allows comments
on multiple lines at a time. Commented line numbers are
emphasized and clicking on them opens the comments in a
popup window. Review Board also supports reviewing im-
ages, allowing to leave comments on a rectangular selection
of the image. This tool has been influenced by VMware;
Balachandran [6] introduced Review Bot as an extension for
Review Board, which improves code quality understanding
and helps with reviewers selection. Review Bot acts as virtual
reviewer, and runs FindBugs, CheckStyle, and PMD to add
review comments with their feedback. This functionality was
later improved to automatically fix some detected defects [9].
To assist with reviewers selection, Review Bot analyzes the
history of changes and suggests developers that worked on
the same parts of code. This algorithm was improved by
Thongtanunam et al. [10]. Review Board allows one to select
predefined groups of developers for review. During a review
session, comments can be transformed into issues that have to
be explicitly resolved or dismissed. It does not provide any per-
reviewer sessions, but provides an option of a special comment
type called “Ship it”. When this comment is used, the review is
marked as positive. This does not restrict others to participate
in the review, but this action cannot be undone. Review
Board can be used for both pre- and post-commit reviews and
supports Bazaar, ClearCase, cvs, git, svn, Mercurial, and
Perforce SCMs.

Upsource, developed by JetBrains, is part of a family of
tools such as IntelliJ IDEA, TeamCity, YouTrack, and others.
Upsource provides unified and side-by-side diff views. It also
provides the possibility to switch between the diffs of the

8https://travis-ci.org

versions included in the review, but this feature is significantly
limited compared to other approaches. Comments can be
placed over any selection of the source code and are displayed
between the selected lines. Upsource will be soon integrated
with TeamCity and YouTrack which are respectively the CI
server and the issue tracker developed by JetBrains. Upsource
provides a unique approach for code understanding and quality
assessment. While browsing a patch diff in Upsource, the
reviewer is able to take a peek into the JavaDoc [11] of
an entity or jump to its definition in the same revision as
you would do in the IDE. Upsource also uses the JetBrains
static code quality analysis and visualizes it in the same way
as IntelliJ IDEA. This tool is also a repository browser. At
the moment it is supposed be used for free-form reviews on
the available commits. Upsource does not provide any way
to conclude review by the reviewers, but has the possibility
to invite watchers to the review. Upsource provides a way
to mention people from text and thus invite them to review.
The tool provides post-commit review and supports git, svn,
Mercurial, and Perforce SCMs.

B. Features

Table II provides a catalog of core features for the code
review approaches we previously selected and analyzed. We
now proceed to explain each category of features in detail.

Diff. This is one of the basic concerns of a peer review,
as it provides the main visualization of the changes that must
be reviewed. Diff can be implemented in different styles and
can support different formats. We found that code review tools
support the following variations of diff support:

• Unified: diff is displayed in a single view, highlighting
the changed lines to identify what was added/removed.
• Side-by-side: diff is represented as the previous and

current version positioned side-by-side, which improves
understanding of a change.
• Non-source diff: it can be special diff for either text files

or binary files like PDFs or images.
• Version breakdown: a diff can span across multiple ver-

sions. We differentiate between full or partial support of
this feature. Full support represents dedicated support to
navigate a timeline of commits or iterations and select a
timespan one wants to examine. Partial support represents
the possibility to check only a pair of versions at a given
time.

Comments. As modern code reviews are usually performed
asynchronously, the communication between the reviewers



is accomplished by commenting the review, which can be
implemented as follows:

• Global: represents the ability to leave a general comment
regarding the whole review.
• Selection: enables commenting specific code entities;

selection can be either a single line of code (L), multiple
lines of code (ML), or any code selection (S). The
plus sign (+) indicates that the tool provides dedicated
selection and commenting in non-source code files.

Integration. This feature concerns integration with data
coming from other development tools. We found the following
supported integrations:

• Tests: this feature runs tests against a contribution to be
reviewed. Since modified code may break some function-
ality, if a defect can be detected by automated test runs,
the modification may be rejected automatically.
• Quality analysis: it provides integration with static code

analysis tools like FindBugs or CheckStyle.

Reviewer selection. Code review tools may provide sup-
port to select who should review code. We found the following
variations:

• S: the tool provides invitation for single reviewers;
• G: the tool has a notion of a group which can be invited

for review;
• A: the approach provides an algorithm which suggests

who should be invited;
• R: rules can be constructed to include specific reviewers

automatically if certain conditions are met;
• I: identifies the possibility to invite reviewers by mention-

ing them in the text of a review.

Review process. This category identifies features support-
ing specializations of the review process.

• Watchers: it adds a new category of developers that just
observe the review.
• Workflow: it forces a specific workflow of actions to reach

the final state of the review, while some review tools
follow a less structured process.
• Issues: determines whether the tool is integrated with an

issue tracking system and thus can link to open a new
issue.

Code navigation. This feature indicates support for IDE-
like navigation of code and documentation during a review.
As suggested by Bachelli and Bird, this feature can improve
code understanding and thus improve the effectiveness of code
reviews.

Summing up. As we can see from this overview, each tool
was implemented with specific strengths and weaknesses, and
there seems to be no common baseline requirements that such
tools should fulfill. Moreover, such tools seem to not be an
integral part of a software development process, but more as
an afterthought. Last, most tools are dedicated to patch review,
and not as general design assessment tools.

C. Desiderata of an Ideal Code Review Approach

What are the desiderata of an ideal code review approach?
One could consider an idealized version of all the feature
classes that we found in the analysis of the state of the art:

• Precise Diff support, to be able to effectively understand
what changed in a given contribution to be reviewed;
• Support for effective code commenting, since it is

mainly through comments that reviewers communicate
their concerns and objections during a review session;
• Integration with tools for testing and quality assess-

ment, to facilitate the understanding of the issues in a
given contribution to be reviewed;
• Optimal reviewer selection, to identify the best people

that could perform a given code review task;
• Support for a clear, defined review process, to facilitate

integration with tools like the issue tracker;
• Effective code navigation, to support understanding of

code to be reviewed and more easily identify possible
issues related to code design and architecture.

However, these desiderata are abstract and general. Many
features are implemented slightly differently in each tool
supporting code review, and it is unclear what would be the
best choice for each category of features in an ideal approach.
A definite, finalized answer about all the desired features of
an ideal code review approach, and how to realize them, is
beyond the scope of this paper: Instead, after the analysis of
the state of the art, we focus on the challenges identified by
Bacchelli and Bird [4] as a starting point, from which we
frame the contribution of ViDI. An interesting aspect is that
CodeFlow is missing features if compared with the other tools
(see Table II): it is missing integration with static code quality
analyzers, which can be essential to easily spot defects of code
to be reviewed. According to Bacchelli and Bird the top-ranked
motivations of developers for code review are finding defects
and code improvement. Moreover, authors found out that de-
fects – while being the top motivation for code review – occur
less frequently (i.e., at rank four) among the actual results
of code review. This is unsurprising: authors also discovered
that finding defects is perceived as the activity which requires
the highest level of code understanding among the expected
outcomes of code review. The analysis of the state of the art
backs up, as further evidence, the fact that the concern about
software quality is relevant and not really addressed by the
currently available approaches. Most of the existing approaches
which support integration with code quality assessment tools
like FindBugs are limited in the sense that they simply report
their results as additional data to the review, and thus they
are poorly integrated in the review process. Furthermore, there
is a surprising lack of support for code navigation, which is
essential to enable code understanding, a prerequisite to find
defects and ultimately improve software quality.

We frame the focus of this paper, and the conceptual con-
tribution of ViDI, to a single specific concern of code review,
that is, software quality evaluation and more generally design
assessment, escalating its importance as the core concern of
core review. We do not intend to demean the other desiderata,
but are confident that once the core concern of code review
has been properly addressed, we could better address also the
other concerns, which is part of our future work.



Fig. 2: ViDI main window, composed of 1 quality rules pane; 2 system overview pane; 3 critics of the selected entity; 4 source code of
selected entity.

III. Visual Design Inspection

A. Philosophy and Core Concepts

As we saw in the previous section, most review tools focus
on a specific context, the one of pieces of code (patches) that
need to be reviewed before being allowed into the release
version of the system code base. We argue that this is a specific
scenario of a wider context, namely the one of continuous
assessment of the quality of a software system. We believe
there is the need for an approach where quality concerns are
not reported only for patches, but become an integral part
of the development process. In the ideal case such a quality
control would be performed in real-time, but for the time
being we opt for a session-based approach, where developers
verify the quality of parts of a system (either old parts, or
newly contributed parts, such as patches) in dedicated quality
assessment sessions. ViDI is thus rooted in the concept of
a review session, that can focus on a package or a set of
packages. During the review session, all changes made by
reviewer are recorded and can be accessed in the future.
The system to be reviewed is presented in a dedicated visual
environment augmented with automatically generated quality
reports. The environment is self-contained: The reviewer can
navigate, inspect and change the system from inside ViDI:
ViDI supports both system understanding and improvement in
an integrated environment. As a system can be changed during
the review session, ViDI automatically re-evaluates the quality
assessment, to keep the reviewer updated about the current
state of the system. Sessions can be stopped, and the session-
related data can be archived for further usage. Furthermore, the
session can be visually inspected at any time to understand the
impact of the review, in terms of the amount of changes and
how the system under review improved from the perspective
of code and design quality.

ViDI is implemented in Pharo9, a modern Smalltalk-
inspired programming language and full-fledged object-
oriented development environment. We use SmallLint [12]
to support quality analysis and obtain reports about issues
concerning coding style and design heuristics [13]. It is similar
to other tools, like FindBugs [5], that exploit static analysis of
code to identify defects. The version of Smalllint that we used
has 115 rules that are organized into 7 different categories,
which range from simple style checks to more complex design
flaws. Each rule concerns specific code entities (i.e., classes
or methods), and can be checked against them to determine
if the rule is violated or not. A violation of a rule is called
a critic and means that the software entity does not satisfy
the rule prescriptions. As opposed to the output of FindBugs,
in SmallLint critics are full-fledged objects which can be
manipulated, inspected, etc.

B. User Interface

The main window of ViDI is depicted on Figure 2. It
consists of three horizontal panes, which respectively provide
i) a list of categorized quality rules violations (critics), ii) an
overview of the system, and iii) detailed information about a
selected entity.

Critics List. This pane provides an organized overview
of the occurrences of critics in the system. The list of critics
provides two columns containing the name of the rule and the
number of critics occurrences in the current system. Rules are
hierarchically organized into predefined categories. Each rule
and category can be deselected with a checkbox next to it. This
removes the critics related to this rule (or category) from the
other panes of the tool. By default, all categories are selected.

9http://pharo.org



The System overview consists of a city-based code visu-
alization [14], [15]. We depict classes as bases on which their
methods are stacked forming together a visual representation
of a building. A status bar provides a short summary about the
system, containing information about the classes and methods
under review, those which have critics, and the total number
of critics on the system. The system overview pane supports
immediate understanding of the quality of the system under re-
view, relating its structure and organization with how critics are
distributed over it. In this view, method and class colors also
depend on the amount of critics. The element with the most
critics is colored in bright red. This color gradually changes to
gray as number of related critics decreases. Elements with no
critics are colored in gray. The view considers only the critics
and categories selected in the critics list. Hovering over the
elements of the city displays a popup with the name of the
element and the number of critics, if present. Clicking on an
element selects it: When an element is selected, it is colored
in cyan and can be inspected in the rightmost pane of ViDI.

The Selection Pane is dedicated to inspection and modi-
fication of an entity (i.e., package, class or method) selected
in the system overview. The name of the selected entity is
displayed on top of the pane, while the rest of the pane is split
in two parts. In the top half, the pane contains the list of all
visible critics about this element. Selecting one of the critics
highlights the problematic parts in the source code, which is
displayed in the bottom part of the pane. The reviewer can
make changes in the source code and save them. When an
element is changed, the critics are re-evaluated.

ViDI extends some of SmallLint rules to provide automatic
fixes. This option can be triggered from the context menu of a
critic. For example, Figure 3 shows how by clicking “Perform
transformation” in the context menu ViDI will automatically
fix the problematic part of the method.

Fig. 3: Automatically fixing a critic

Another option offered by the context menu is the inspec-
tion of the details of a critic, that illustrate its rationale and
further details. Finally, another option is to add a note, the
purpose of which is for the reviewer to leave a comment
related to the specific critic, propose a solution, or details on its
rationale. Figure 4 shows a specific example of this scenario.

Fig. 4: Adding a note in ViDI

After a note is added, it is displayed in the list of critics:
Such a note is essentially a custom critic by the reviewer.
Notes have the same role and importance of critics: They are
stored alongside entity critics and they are equally considered
fundamental for the purpose of evaluating the quality of a
system. The purpose is to elevate reviewer comments at the
same level of automatically generated critics.

At the end of a session, or at any moment, the reviewer
can reflect on the session itself and understand the effects of
the review on the system. We designed and implemented two
complementary views: the critics evolution view (Figure 5a),
and the changes impact view (Figure 5b).

(a) Critics evolution during a review session

(b) Impact of changes made during a review session

Fig. 5: Reviewing a Review Session

The Critics evolution view displays how the amount of
critics changes in time during a review. Figure 5a shows
an example where the graph is monotonically decreasing,
with minor exceptions (around 17:36). With this view, the
reviewer can visualize the fact that the session decreased
a significant amount of issues in the reviewed code, from
119 initial critics to 26 critics, in a timespan of around 35
minutes. The visualization also displays the impact of each
change, displayed as dark semitransparent circles, whose radii
correspond to the change impact.

The Change impact view shows a histogram of changes
made during the session to reason on the amount of changed
code that corresponds to the number of resolved critics. The x
axis contains the sequence of changes in the code, the y axis
shows the change impact, a simple metric of how the change
impacted the reviewed code. As a preliminary metric we chose
the number of changed characters in the source code. We plan
to study alternatives that would take into account the nature of
each change to code, like refactoring choices. In both views,
hovering over an entity shows a popup with information about
the change, while clicking on it opens a dedicated diff view
of a change.



IV. ViDI Demonstration

In this section we walk through two review sessions to
demonstrate ViDI: The former is about ViDI on ViDI itself
(Section IV-A), and the latter is on DFlow10 [16], a profiler
for developer’s actions in the IDE (Section IV-B).

A. ViDI on ViDI

We developed ViDI following the principle of dogfood-
ing [17], that is, by using ViDI on ViDI itself to continuously
validate its capabilities. Once we reached a working prototype
status, we started reviewing and developing ViDI with the
support of ViDI itself. This allowed us to refine concepts
and ideas, but it also helped us to upkeep the quality of
ViDI’s code, which is what we focus on here. At the moment,
ViDI contains 23 classes with 201 methods and extends11 14
classes with 33 methods. Figure 5a and Figure 5b, that we
discussed previously, show one of the many review sessions
of ViDI. That session involved mainly method categorization.
Such critics are Smalltalk specific: In Smalltalk, methods can
be categorized, meaning that a developer can assign it a
category representing the class of purpose of the method. ViDI
helped to solve these critics, and others that were automatically
fixable, many times during its own development. This ability is
effective to focus on more important design issues, alleviating
the burden of checking a long report originated by a static
analysis tool. Moreover, by assigning an impact to changes, we
could also more effectively review the more important changes
we performed on ViDI. Figure 5b shows how most of the
changes are in fact minor, automatically resolvable, issues of
low impact. The changes with higher impact focus on three
different moments of the session, in the beginning and in
the end of a session, when the developer solved a number
of style-related critics involving the use of conditionals, and
other functional critics that required refactoring of methods.
Unfortunately, a couple of rules solved in the end of the session
suggested invalid changes to the code, and led to malfunctions
of ViDI that were corrected in subsequent reviewing sessions.
This suggests that SmallLint, the static code analysis technique
that we currently use, has some shortcomings; in the long term,
we plan to address them specifically, but at the current point,
we assume that the critics we obtain can be generally trusted.
Finally, the developer noticed some missing features from ViDI
while reviewing a specific piece of code. In particular, he added
two accessors to get the start and end time of a session. Even if
the modification was not motivated by solving a critic, this is
an interesting use case of ViDI that we plan to better support,
for example by asking the reviewer a motivation for the change
when it is not clear which was the issue he was trying to solve.

The current quality state of ViDI can be seen in Figure 6;
it still contains few critics that we could not resolve. As
we are working with Pharo, a dynamically typed language
with no type inference [18], many rules are based on limited
imprecise heuristics. This leads to misleading false positives.
For example, since ViDI uses reflection, we found rules that
identified bad style in references to abstract classes, which
however is fine when using reflection methods.

10http://dflow.inf.usi.ch
11In Smalltalk it is possible to extend classes by adding methods in “ghost”

representations of classes located in other packages.

Fig. 6: Vidi quality status

This suggests either refinement of SmallLint critics or,
more likely, improvements of ViDI to manage exceptions and
the personalization and localization of rules.

Another class of rules that we needed to ignore are rules
that are general and conceptually fuzzy, like rules detecting
overlong methods. For example, some specific api usages (e.g.,
for visualization) tend to generate methods which contain
many parameters to be set through method calls. This domain-
specific API usage generates relatively long methods, which in
turn generate critics by SmallLint. However, such critics are
false positives because such long methods are due to domain-
specific usages, and not because of method complexity. Again,
this suggests the need for a specific management of exceptions.

B. ViDI on DFlow

DFlow consists of 8 packages, 176 classes and 1,987 meth-
ods. We reviewed a single package which consists of 23 classes
and 119 methods. The package uses meta programming [19]
to instrument and augment the Pharo IDE with additional
functionalities. The quality of such a package is essential, as
it can break the IDE and cause issues to development itself.

The starting point of the session is depicted in Figure 7a.
The system overview pane shows a relatively distributed num-
ber of critics. The two categories with the largest number of
critics are “Unclassified methods” and “Inconsistent method
classification”. Critics point out that a method has no category,
or that the category of the method is different from the one
of the method that it overrides. As these violations are related
to documentation, and they do not lead to real bugs, we can
decide to omit them by deselecting the checkboxes next to
related rules. The resulting view gives us a clearer image to
focus to more serious issues (Figure 7b). Another way to assess
the quality of the system is to deselect all rules and then select
just one or a few them. This allows to focus on specific kinds
of issues that may be more important to a project.

After filtering unimportant rules, a reviewer can automat-
ically resolve issues related to code style and optimization.
This leaves more complex issues that neither can be dismissed
because they are important, nor can they be fixed automatically.
For example there is a method violating 2 rules: the method
is too long and it directly access a class methods structure,
which is specific to the current implementation of Pharo.



(a) All critics visible. (b) Unclassified and inconsistently classified methods critics hidden.

Fig. 7: Initial state of the review sessions.

Fig. 8: Commenting on complex issue.

Suppose the reviewer is not the author of the method.
The fact that critics cannot be automatically fixed leaves the
reviewer in front of a choice: He could either manually fix the
method or leave a note for future inspection. In the latter case,
the reviewer can ask the author to split the method and remove
direct access to internal class as shown on Figure 8. The note is
left as a full-fledged critic in the system, that can be inspected
when reviewing the system. Notes are stored in ViDI and can
be manually exported and imported by a reviewer.

Figure 9 shows the critics evolution of the session, which
was relatively prolific: the number of critics went from 105 to
11 in just 10 minutes. At the beginning, critics almost instantly
dropped under the mark of 58 critics. This was caused by
the automated resolution of categorization issues. Then, after
20:29 mark style and optimization issues were fixed which
generated changes in the code, and so this part contains dark
circles with larger diameters. These fixes also correspond to
a steep drop on the number of critics, because resolution was
automated. The next change appears after 20:32:29.

Fig. 9: Critics evolution on a DFlow review session

By hovering over the circle, the reviewer can see a popup
which informs that this change was a modification of a method
called signaturesForDebugActions in a class DFProfilerDe-
bugAction. A diff of this change can be seen by clicking
on the circle. This was a non-trivial issue that could not be
automatically fixed, as the reviewer was understanding how he
should resolve the issue. There is also a longer period without
any change after the resolution in signaturesForDebugActions.
This is because the reviewer was trying to understand how to
resolve the second issue and writing a note to the author. At
the end there is a part where the critics line descends. These
changes corresponded to the reviewer manually categorizing
methods. Finally, close to the end, another steep drop can be
seen. This happened because the reviewer categorized methods
on the top of a class hierarchy and overriding methods at the
bottom were categorized automatically.

V. Discussion

As we illustrated in Section IV, ViDI can be used not only
to visually inspect the design of a software system, but also
to effectively solve critics, ranging from simple style checks
to more complex issues. The case studies we analyzed pointed
out both benefits and important shortcomings of ViDI, that we
now analyze to take a critical stance against our tool.



Critics Representation and Detection. We found relevant
shortcomings in the way SmallLint critics are represented
and detected. There is significant research to be done in
detecting high-level design issues, for example by integrating
mechanisms based on object-oriented metrics [20]. Another
shortcoming we found involves false positives, like the ones re-
lated to long methods. While some rules require improvement
in their representation, others may require a new representation
of rules themselves. All SmallLint critics return a boolean
result about the evaluated code entity, that is, they either violate
the rule or not. This is too rough: Ideally, rules should have
a severity grade [21], to identify the entities where rules are
violated more seriously and to focus on them first.

Fixing Critics. At the current status, some of critics can
be solved automatically, while others require manual fixing
by the developer. Requiring a manual fix does not mean that
we should not provide at least semi-automatic support for
resolution, especially for critics that would require specific
refactoring methods. For example, proposed changes can be
presented to the reviewer before being applied, and can be
personalized to adapt them to meet the reviewer intention.

Notes and Review support. ViDI gives a basic support to
leave notes on code entities, which are treated as full-fledged
critics. This idea can be expanded in many directions, for
example to support more complex comments [22], [23] that are
common on other code review tools, or to provide dedicated
mechanisms to handle exceptions and personalizations.

Diff support. We provide basic support for code diff.
We plan to improve ViDI by considering related approaches
outside the area of code reviewing. For example, the approach
of supporting integration of source code changes provided
by Torch [24] could inspire solutions for ViDI on code
contributions, and not on the analysis of entire systems.

VI. Conclusion

We presented ViDI, an approach that envisions quality
inspection as the core concern of code review. We focused
on this particular concern after a detailed analysis of the
state of the art of code review approaches, which is another
contribution of this paper. ViDI supports design inspection by
providing a dedicated user interface that enables an immediate
understanding of the overall quality of a system. It leverages
automatic static analysis to identify so-called critics in the
code, it enables their inspection and fixing, either manually
or automatically. Moreover, we designed ViDI to record re-
viewing sessions that can be inspected (and reviewed) at
any time, highlighting how the system has been improved
during the session, and enabling a quick evaluation of the
impact of changes performed by the reviewer. We performed a
preliminary assessment of ViDI by providing two case studies,
involving the review of ViDI on ViDI itself, and on DFlow,
an advanced IDE profiler. Given a number of conceptual
limitations and shortcomings, ViDI is just the first step for
the more ambitious goal of providing a full-fledged design
inspector to support all code review desiderata. In that sense,
the vici is our future work.

Acknowledgments

We thank the Swiss National Science foundation for the
support through SNF Project “ESSENTIALS”, No. 153129.

References

[1] M. Fagan, “Design and code inspections to reduce errors in program
development,” IBM Syst. J., vol. 15, no. 3, pp. 182–211, Sep. 1976.

[2] J. Cohen, Best Kept Secrets of Peer Code Review. Smart Bear Inc.,
2006.

[3] P. Rigby and C. Bird, “Convergent contemporary software peer review
practices,” in Proceedings of FSE 2013 (9th Joint Meeting on Founda-
tions of Software Engineering), 2013, pp. 202–212.

[4] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in Proceedings of ICSE 2013 (35th ACM/IEEE
International Conference on Software Engineering), 2013, pp. 712–721.

[5] N. Ayewah, W. Pugh, D. Hovemeyer, D. Morgenthaler, and J. Penix,
“Using static analysis to find bugs,” IEEE Software, vol. 25, no. 5, pp.
22–29, Sept 2008.

[6] V. Balachandran, “Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommen-
dation,” in Proceedings of ICSE 2013 (35th ACM/IEEE International
Conference on Software Engineering), 2013, pp. 931–940.

[7] G. Gousios, M. Pinzger, and A. van Deursen, “An exploratory study
of the pull-based software development model,” in Proceedings of
ICSE 2014 (36th ACM/IEEE International Conference on Software
Engineering), 2014, pp. 345–355.

[8] D. E. Perry, H. P. Siy, and L. G. Votta, “Parallel changes in large-scale
software development: An observational case study,” ACM Trans. Softw.
Eng. Methodol., vol. 10, no. 3, pp. 308–337, Jul. 2001.

[9] V. Balachandran, “Fix-it: An extensible code auto-fix component in
review bot,” in Proceedings of SCAM 2013 (13th IEEE International
Working Conference on Source Code Analysis and Manipulation), 2013,
pp. 167–172.

[10] P. Thongtanunam, R. G. Kula, A. E. C. Cruz, N. Yoshida, and H. Iida,
“Improving code review effectiveness through reviewer recommenda-
tions,” in Proceedings of CHASE 2014, 2014, pp. 119–122.

[11] D. Kramer, “Api documentation from source code comments: A case
study of javadoc,” in Proceedings of SIGDOC 1999 (17th Annual
International Conference on Computer Documentation), 1999, pp. 147–
153.

[12] D. Roberts, J. Brant, and R. Johnson, “A refactoring tool for smalltalk,”
Theor. Pract. Object Syst., vol. 3, no. 4, pp. 253–263, Oct. 1997.

[13] A. Riel, Object-Oriented Design Heuristics. Addison-Wesley, 1996.
[14] R. Wettel, “Software systems as cities,” Ph.D. dissertation, University

of Lugano, Switzerland, Sep. 2010.
[15] R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities: A

controlled experiment,” in Proceedings of ICSE 2011 (33rd Interna-
tional Conference on Software Engineeering). ACM, 2011, pp. 551 –
560.

[16] R. Minelli, L. Baracchi, A. Mocci, and M. Lanza, “Visual storytelling
of development sessions,” in Proceedings of ICSME 2014, 2014.

[17] W. Harrison, “Eating your own dog food,” IEEE Software, vol. 23, no. 3,
pp. 5–7, May 2006.

[18] J. Palsberg and M. I. Schwartzbach, “Object-oriented type inference,”
SIGPLAN Not., vol. 26, no. 11, pp. 146–161, Nov. 1991.

[19] N. M. N. Bouraqadi-Saâdani, T. Ledoux, and F. Rivard, “Safe metaclass
programming,” in Proceedings of OOPSLA 1998 (13th International
Conference on Object-Oriented Programming Systems, Languages and
Applications). ACM, 1998, pp. 84–96.

[20] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice.
Springer-Verlag, 2006.

[21] M. Lungu, “Reverse engineering software ecosystems,” Ph.D. disserta-
tion, University of Lugano, Switzerland, Oct. 2009.

[22] A. Brhlmann, T. Grba, O. Greevy, and O. Nierstrasz, “Enriching reverse
engineering with annotations,” in Model Driven Engineering Languages
and Systems, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2008, vol. 5301, pp. 660–674.

[23] Y. Hao, G. Li, L. Mou, L. Zhang, and Z. Jin, “Mct: A tool for
commenting programs by multimedia comments,” in Proceedings of
ICSE 2013 (35rd International Conference on Software Engineeering),
2013, pp. 1339–1342.

[24] V. U. Gomez, S. Ducasse, and T. D’Hondt, “Visually supporting source
code changes integration: The torch dashboard,” in Proceedings of
WCRE 2010 (17th Working Conference on Reverse Engineering), 2010,
pp. 55–64.


