
Visualizing the Evolution of Working Sets
Roberto Minelli, Andrea Mocci, Michele Lanza

REVEAL @ Faculty of Informatics — Università della Svizzera Italiana (USI), Switzerland

Abstract—As part of their daily work, developers interact
with Integrated Development Environments (IDE), generating
thousands of events. Together with other aspects of development,
this data also captures the modus operandi of the developer,
including all the program entities she interacted with during a
development session. This “working set” (or context) is leveraged
by developers to create and maintain their mental model of the
software system at hand. Understanding how developers navigate
and interact with source code during a development session is
an open question.

We present a novel visual approach to understand how work-
ing sets evolve during a development session. The visualization
incrementally depicts all the program entities involved in a
development session, the intensity of the developer activity on
them, and the navigation paths that occurred between them.
We visualized about a thousand development sessions, and
categorized them according to their visual properties.

I. INTRODUCTION

Integrated Development Environments (IDEs) are the main
vehicles adopted by developers to build and maintain software
systems. While the interaction with the IDEs apparently has
the sole, ultimate effect of creating and modifying source code,
this interaction also generates myriads of events that capture
the various mechanisms of actual development. Not only is
this interaction data not leveraged and made actionable in
practice, but it is usually not even recorded.

There is increasing evidence about the valuable insights
that can be inferred by mining interaction data, for example
to understand how much time is spent by developers in
performing activities like editing and program understanding,
in IDEs like the PHARO IDE1 [1] or VISUAL STUDIO [2]. In a
more general setting, this data reflects the modus operandi of
a developer, including the UIs and IDE components she uses
more frequently [3], or enumerates all the program entities she
interacted with during a development session.

According to Wexelblat [4], the information path obtained
from navigating in an information space exposes and reveals
the mental model of the system as perceived by a given user. In
the case of software development, the set of entities navigated
and interacted with, compose the “working set” (sometimes
also called context) that developers leverage to create and
maintain their mental model of the software system at hand
supporting their current development task, e.g., [5], [6].

Maintaining the working set is an essential part of program
comprehension that absorbs a considerable portion of develop-
ment time [7]. However, this process is often inefficient and
not properly supported by IDEs. Many studies have shown
evidence of issues related to navigation and the maintenance of

1See www.pharo.org

working sets. A study by Fritz et al. [8], based on observations
on three tasks solved by 12 different developers, found that
on average the context model necessary to solve a task
is composed of 4 classes, together with a subset of their
methods. The study by Sillito et al. involved a variety of
questions asked during maintenance tasks; these tasks included
inspecting several entities, increasing the size of the working
set [9]. A study conducted by Ko et al. found that 27% of
the navigations concern visits to program entities that have
been already visited, and that developers spend around 35%
of their development time navigating source code entities [10].
The study also observed interesting patterns of back-and-forth
navigation to compare related pieces of code. In our previous
work we also found evidence of issues in navigation, as a
likely manifestation of the problem of maintaining working
sets [1]. More recently, we modeled and empirically measured
the actual navigation efficiency of developers compared to
different ideal scenarios, finding that there is significant room
for improvement [11].

Some techniques have been proposed to improve construc-
tion and management of working sets. MYLYN, for example,
leverages interaction data to build a degree-of-interest model
(DOI), filtering the views of the ECLIPSE IDE from entities
with a low DOI value [12], [13]. Other tools, such as NAV-
TRACKS [14], and TEAMTRACKS [15], monitor interactions to
help navigation of software. NAVTRACKS supports this task by
also visualizing related program entities with a simple graph.

We present a novel visualization to characterize how work-
ing sets evolve during a development session. The visualiza-
tion is based on a force-based layout of a graph representing
the methods and classes on the working set. The visualization
depicts the intensity of the developer activity on entities of
the working sets, and the navigation paths that occur between
them. The visualization, implemented in Roassal [16], lever-
ages data recorded with DFLOW, our interaction data profiler
[1]. We visualized about a thousand development sessions
coming from 14 developers, and identified visual patterns on
the evolution of working sets during development.

Our contributions can be summarized as follows:

• A novel visualization of the evolution of working sets;
• A visual analysis of 914 development sessions;
• A catalogue of visual patterns emerged from the analysis.

Structure of the Paper. Section II introduces the concept
of working set and describes our visualization. Section III
details a catalogue of patterns emerged from a visual analyses
of development sessions. Section IV describes related work.
Section V concludes the paper and outlines future work.

Start

End

Not Edited Entities
(past)

Edited Entities
(past)

Past
Working Set

Current
Working Set

First Entity

Last Entity

A

B
Edges

Nodes

Colors and Stroke

1 interaction

10+ interactions

has been edited

Size

most recent
interaction

past
interaction

Colors and Stroke
1 occurrency

10+ occurrencies

Shape

method

class

Fig. 1. Visualizing Working Set: Visualization Principles

II. VISUALIZING THE EVOLUTION OF WORKING SETS

To better understand how working sets evolve during devel-
opment sessions, we devised a novel visualization presented
in Section II-B. First, we define the concept of “working set”
(Section II-A).

A. What is a Working Set?
A “working set” is a group of program entities which a

developer has interacted with during a particular period of
time. We consider methods and classes as possible entities, and
we consider the following interactions happening in the IDE,
as recorded by DFLOW: i) navigation events, e.g., opening
a class definition; ii) edit events, e.g., modifying a method’s
source code; iii) inspection events, e.g., checking the state of an
object at runtime; we consider its class as the interacted entity.
Our working set definition is similar to the “task context”
defined by Kersten and Murphy [17].

We distinguish two kinds of working set:
• Current Working Set. The group of entities the de-

veloper interacted with during the last timeframe. The
“last timeframe” can be defined in terms of number of
interactions (i.e., the last 30 interactions) or in a temporal
fashion (i.e., the interactions that took place in the last
10 minutes).

• Past Working Set. All the entities the developer inter-
acted with in the past, before the current working set.

Our visualization depicts both working sets and their evo-
lution during the recorded development session.

B. Visualization Principles
Figure 1 shows a development session depicted using our

visualization. The view is made of two parts, depicting the cur-
rent (Fig 1.A) and the past (Fig 1.B) working set respectively.
The visualization is composed of nodes and edges.

Nodes. In the visualization, nodes represent program entities
(i.e., methods and classes) the developer interacted with during
a development session. Methods are depicted using circles,
while classes are depicted using squares. Each node is colored
using a gray-scale denoting the intensity of the interaction on
the program entity it represents. A light gray node is a node
with one (or a few) interactions. A node depicted in black is a
node with 10 or more interactions, i.e., the color scale saturates
at 10 to make the visualization more simple to understand.

We distinguish two kinds of interactions: Interactions that
do not modify the source code of the entity (e.g., reading a
class definition) and interactions that modify it (e.g., editing
the body of a method). The visualization adds a red border to
the nodes that have been involved in at least one edit operation.

The size of each node (i.e., diameter for circle and side
for square) depicts the recency of the interaction on the
corresponding entity. By default, all nodes have a standard size
of 20 pixels. The last interacted node has double the standard
size, and the nodes targeted by the last 10 interactions follow
a linear scale from this double size to the standard size.

The visualization uses the labels Start and End to denote
respectively the first and the last program entity the developer
interacted with in the visualized interaction histories.

Edges. Edges express the flow of the interactions, and not
structural properties of source code. For example, an edge
between method Foo and class Baz means that, in the
interaction histories, two subsequent events involved these two
program entities (e.g., a navigation event from Foo to Baz).
To simplify the visualization, edges are undirected: The edge
between method Foo and class Baz summarizes all the
interactions between these two nodes.

Both the color and the stroke width of edges are mapped
to the same metric, i.e., the number of times the path rep-
resented by the current edge is followed by the developer in
the interaction history. Both features are bounded. An edge
depicted in light grey represents a path that is traversed one
(or a few) times in the interaction history. A path depicted in
black represent a path that has been crossed 10 or more times
by the developer. The stroke width is bounded between 1 and
20 pixels (i.e., that corresponds to the standard size of nodes).
It follows a linear scale between the minimum number of
occurrences of the path (i.e., 1) and the maximum occurrences,
computed using all the interactions of the entire session.

Layout. The view uses two layouts to depict current and
past working set. For the current working set (Figure 1.A)
we use a force-directed graph layout. Figure 2 depicts the
underlying mechanics of the force based layout.

node

edge
(spring)

A
Forces of
springs

Forces of
nodes

B

Fig. 2. Force-Based Layout Principles

Each node has a charge that tends to repulse other nodes.
At the same time, edges act as springs, thus tend to assume
their “ideal” length, i.e., neither too compressed nor too
spread. From an initial random configuration, depicted in
Figure 2.A, the layout will progressively move the nodes trying
to minimize all the forces exercised on the graph: the repulsive
forces of nodes (i.e., charge) and the attractive forces of edges.
Figure 2.B shows a configuration where forces are minimal.

At the beginning all nodes have the same charge and all
edges have the same strength and ideal length2, however
as further discussed in Section II-C, these parameters evolve
together with the evolution of the working set.

The outer part of the view (Figure 1.B) depicts the past
working set using a radial (or circular) layout where nodes
are equidistant. The radius of the layout depends on the inner
part of the visualization, i.e., the bigger is the space occupied
by the inner part, the larger will be the radius of the circular

2Node charge: -1,000; Edge strength: 1; Edge ideal length: 35

layout for the past working set. Nodes are sorted according to
the intensity of the interactions. Starting from the top of the
circle (i.e., 90◦), nodes representing edited entities are placed
clockwise, while the ones representing non-edited ones are
placed counterclockwise.

Interaction. The view is interactive. The user can pan and
zoom the visualization. By hovering on a node, the view shows
a tooltip with additional information such as the name of
the entity, the number of interactions and, if applicable, the
number of edits on the hovered entity. Clicking on a node lets
the developer conveniently jump to the respective class/method
definition to read (or modify) the code.

Customization. The view can be customized by changing
a number of parameters. For example, one may change the
number of interactions considered recent (i.e., impacting the
size of nodes) or the criteria to distinguish between past and
present working sets.

C. Co-Evolution of Working Set and Visualization

The final goal of our visualization is not to present a static
visualization but rather an animation of how the past and
current working sets evolve from the beginning to the end
of a development session.

To make this possible, we co-evolve the visualization with
the working set, as explained in Algorithm 1.

Data: A sequence of events (i.e., InteractionHistory)

1 view ←− initialize an empty view
2 lastEntity ←− null

3 for event ∈ InteractionHistory do

4 currentEntity ←− extract the entity from the event

// Adding or updating the node
5 if view contains currentEntity then
6 UpdateNode(currentEntity)
7 else
8 add currentEntity to the view
9 end

// Adding or updating the edge
10 edge←− edge from lastEntity to currentEntity
11 if view contains edge then
12 UpdateEdge(edge)
13 else
14 add edge to the view
15 end

16 ApplyLayout(view)

17 ApplyAging(view)

18 lastEntity ←− currentEntity
19 end

Algorithm 1: Constructing the View

First, for every event in the interaction history, the algorithm
checks whether the program entity is already visualized and
updates it, otherwise it adds it to the view.

Second, it applies the layout and the aging mechanism on
all the nodes and edges of the visualization, as described in
Algorithm 2 and 3 respectively.

1 method UpdateNode (node) :
2 update color of node (using # interactions)
3 reset size of node (to max size, since last visited)
4 reset time-to-live (TTL) of node (to default value)
5 if node has been edited then
6 add a red stroke
7 end
8 charge←− 80% ∗ charge
9 end

Algorithm 2: Updating a Node in the View

Every time a node is re-visited, its color is updated with
a linear grey-scale representing how many interactions have
involved that entity. Its size is restored to the maximum size,
since it is the last visited node. The algorithm also resets
the time-to-live (TTL) of the node to the default value, i.e.,
30. The TTL is used to distinguish between current and past
working set: When the TTL reaches 0, the node no longer
belongs to the current working set. The last line of Algorithm 2
updates the node charge, used by the force-directed graph
layout to arrange the current working set. At the beginning
each node has the same initial negative charge; for how the
layout is implemented, negative charges tend nodes to repulse
themselves. For each interaction with an entity, we decrement
its node charge by 20%, making the node less repulsive, and
obtaining a more compact view of the current working set.

Algorithm 3 explains how we update each edge.

1 method UpdateEdge (edge) :
2 update color of edge (using # interactions)
3 update width of edge (using # interactions)
4 strength←− 120% ∗ strength
5 end

Algorithm 3: Updating an Edge in the View

An edge color is mapped to a linear grey-scale that rep-
resents how many times the edge has been walked by the
developer. The same information is also encoded in its stroke
width. The last step is the update of the edge strength, used
by the force-directed graph layout for the current working set.
The strength represents the force of attraction for the edges. A
high value results in having nodes together. At the beginning
each edge has the same initial strength (i.e., 1). Every time the
developer walks an edge, we increment its strength by 20%,
bringing the two connected nodes closer.

Our approach considers the recency of the last interaction
on a node as a key factor to determine the current and the past
working set. Algorithm 4 explains this mechanism.

After each interaction event, we iterate over all nodes and
we decrement their time-to-live (TTL). Since the size of each
node corresponds to the recency of the last interaction on the
node itself, as nodes become old, we reduce their size (if its

1 method ApplyAging (view) :
2 for node ∈ view do
3 decrease the time-to-live (TTL) of node by 1

4 if size of node > minNodeSize then
5 decrease size of node
6 end

// Disconnect node if TTL elapsed
7 if TTL of node = 0 then
8 disconnect the node from the graph
9 end

10 end
11 end
Algorithm 4: Applying the Aging Mechanism to the View

size is not already below the minNodeSize , i.e., 20 pixels).
The last part of the method checks whether the TTL of a node
is elapsed and disconnects it from the graph, i.e., it removes
all edges connected to it. In other words, if the node has not
been targeted by any interaction in the last 30 iterations of
Algorithm 1, it leaves the current working set.

Finally, the algorithm applies the force-directed graph layout
for the current working set and radial layout for the past
working set. Algorithm 5 illustrates this process.

1 method ApplyLayout (view) :
2 currentWS ←− connected nodes in the view
3 pastWS ←− disconnected nodes in the view
4 sortedPastWS ←− sort pastWS according to

number of interactions and edits;

5 apply force-based layout to currentWS
6 apply radial layout to sortedPastWS (its radius is

bigger than the currentWS, so that it fits inside)
7 end

Algorithm 5: Applying the Two Layouts to the View

After the aging process described in Algorithm 4, our
approach can identify the current and the past working set.
The current working set is composed of all the nodes that
are connected in the visualization. To these nodes, we apply
a force-directed graph layout, using the up-to-date charges
and strengths computed in Algorithms 2 and 3 respectively.
Among the advantages of this layout, the obtained visualiza-
tion is aesthetically pleasing, simple, and intuitive.

The remaining, disconnected nodes represent the past work-
ing set. We layout the past working set with an equidistant
radial (or circular) layout. The circular layout ensures that all
the nodes are treated neutrally, since they are at equal distances
from each other and from the center of the visualization [18].
In addition, in our layout nodes are sorted according to the
number of interactions and the editing status, i.e., whether the
represented program entity has beed edited in the past or not.
This does not affect the neutrality of nodes, but enables a
quicker assessment of which entities from the past working
set have been interacted (or edited) the most.

III. VISUAL ANALYSIS: METRICS AND PATTERNS

As a proof of concept, we visualized the evolution of a large
set of development sessions collected with DFLOW. Our visual
analysis revealed a number of patterns referring to a single
snapshot (see Section III-B) and evolutionary patterns (see
Section III-C).

A. Dataset and Metrics
We applied our visualization to 914 development sessions,

collected with DFLOW, coming from 14 developers (open-
source developers and PhDs). They were not given a task,
but rather they were recorded while performing their daily
activities. Table I summarizes the dataset used for this study.

TABLE I
DATASET: TOTALS AND VALUES AGGREGATED PER SESSION

All Total
Sessions 914
Developers 14
Snapshots 72,631

Per Session Avg. Q1 Median Q3

Snapshots 79.21 18 35 87
Working Set (WS) 9.57 4.70 7.13 12.10
Past WS 2.98 0.00 0.33 3.23
Current WS 6.59 4.00 5.86 8.78
Connectedness (%) 21.59% 15.67% 20.94% 26.78%

Our visualization of working sets in development sessions
is evolutionary and incremental. Thus, for every session,
we identify a number of snapshots to build a step of the
visualization. We define a snapshot as a moment in time in
which a program entity is either visited for the first time, re-
visited, or modified. In total we identified 72,631 snapshots in
our entire dataset.

The lower part of Table I reports the snapshot data ag-
gregated per session. On average, each session has 79.21
snapshots (with a median of 35). The working set (WS), on
average, is composed of 9.57 entities (on average 2.98 entities
form the past working set and 6.59 the current working set).

The last metric we report is the percentage of connected-
ness. Given an undirected graph with n nodes, the maximum
number of edges (edgesmax) is:

edgesmax =
n · (n− 1)

2
Considering this as an upper bound, we can measure the

percentage of connectedness of a graph with a given number
of edges (|edges|) as:

connectedness (%) =
|edges|

edgesmax

We compute the connectedness of the current working set.
The connectedness expresses the average probability of two
entities to belong to at least 1 subsequent pair of events in
the recency window defining the current working set. On
average our current working sets graphs have a percentage
of connectedness of 21.59% (and a median of 20.94%). The
most connected working set, not shown in the table, has a
percentage of connectedness of 50%.

B. Snapshot Patterns

We discovered a set of interesting patterns that emerge by
visually inspecting single snapshots of a development session,
i.e., a particular state of the past and current working sets of
sessions. Below we discuss 5 patterns that we found.

Past: To Edit or Not To Edit

In our analysis we identified a number of session snapshots
in which the past working set has a remarkable size but it
contains no edit events (i.e., no node in the past working set
has a red stroke). Figure 3 depicts an example with 52 non-
edited entities in the past working set.

Fig. 3. Example of “Past: To Edit or Not To Edit”

This means that all the events performed in the past were
explorative, targeted at the navigation of the system at hand.
We conjecture that the developer needs to build her mental
model prior to start her task, consistent with a significant time
spent on program comprehension [7].

On the other hand, there are snapshots in which the past
working set counts an high number of edits, as in Figure 4.

Fig. 4. Another Example of “Past: To Edit or Not To Edit”

In this snapshot more than 75% of the entities composing
the past working set have been edited. Essentially, this could
mean that the developer completed a given task and moved to
a new one on separate entities.

U Can’t Touch This

Among our sessions, there are snapshots which are entirely
exploratory, i.e., they lack edits both in the past and current
working sets. Figure 5 shows an example of this pattern.

Fig. 5. Example of “U Can’t Touch This”

Across the entire history, this session has, on average, a
working set composed of 39 entities (22 in the past and 17 in
the current). The figure depicts the 120th snapshot (out of 147)
of the session. Only in the last few snapshots the developer
edits 3 program entities.

Potentially, the sessions manifesting this pattern are sessions
in which the developer is addressing a complex task that
requires a very deep understanding of the system, that is
consistent, for example, with a complex debugging activity.
After a deep phase of exploration, the developer has the
necessary knowledge to perform few localized changes.

The Guiding Star

A development session potentially involves a large number
of program entities. However, during development there might
be a few landmarks that the developer uses as guiding stars
for her exploration process. Figure 6 shows snapshot of a
development session that clearly manifests this pattern.

Fig. 6. Example of “The Guiding Star”

On the left side of the current working set we can see a
circle depicting a method colored in black with 7 connected
edges. This method likely plays a key role in the development
session, or better in the current working set, supporting the
exploration of 8 other entities, i.e., 4 methods and 4 classes.

Another observation is that the number of entities colored in
black is relatively low. Since the color represents the number
of interactions, this is consistent with the fact that developers
need to periodically revisit some key entities (as observed by
Ko et al. [10] and Soh et al. [19]), but also with the fact that
the context model necessary to solve the task is often relatively
small, i.e., 4 classes (as observed by Fritz et al. [8]). Moreover,
the edges are relatively long, even the ones connected to the
guiding star. This means that the cognitive jumps between the
guiding star and a given connected entity are relatively few
(since the edges are thin) and equally distributed among the
related entities. This could be consistent, for example, with a
small, limited refactoring.

Stay Focused, Stay Foolish!

Some sessions have a pattern similar to the guiding star, but
involving a greater number of entities that are highly interacted
with between themselves. In other words, the snapshot has
a sort of “guiding constellation”, where the current working
set is highly focused on a set of entities, instead of a single
one like the case of the guiding star. We call a working set
focused if there is a subset of entities that are tightly connected
between themselves and have a dark color, symptoms of a high
number of interactions. Figure 7 shows a snapshot of a session
manifesting this pattern.

Fig. 7. Example of “Stay Focused, Stay Foolish!”

The top part of the current working set is very focused.
Some nodes are very dark i.e., they have been involved on
a lot of interactions. Furthermore, they are tightly connected,
meaning that there have been a lot of cognitive jumps between
all the involved entities. Finally, we observe that the last
interactions happen on a subset of the nodes in the focus
(i.e., some nodes are significantly bigger), meaning that this
snapshot belongs to a task which is still revolving around the
focused entities.

Moving in Circles

The last snapshot pattern that we present is called “Moving
in Circles”. As the name suggests, in the sessions manifesting
this pattern, developers follow circular paths to explore and
eventually modify the software system at hand. Figure 8
manifests this pattern.

Fig. 8. Example of “Moving in Circles”

In the visualization above there are two large circular paths,
one composed of 8 and the other of 14 entities. It is interesting
to notice how all the entities composing the circular paths are
only observed by the developer and never modified. The only
modified entity in the current working set is the central dark
grey entity that apparently acts as a small guiding star for the
navigation. We conjecture that circular paths represent side
exploration of the system at hand aimed at reinforcing the
developer’s mental model before—or during—the execution
of a task at hand.

A variation of this pattern sees edited entities inside circular
paths, as exemplified in the session depicted in Figure 9.

Fig. 9. Another Example of “Moving in Circles”

This can be consistent in a manual refactoring involving a
sequence of methods of the same class, for example, that does
not need to revisit the edited entities (e.g.,, in the case of a
manual rename of a field).

C. Evolutionary Patterns

Evolutionary patterns consider multiple subsequent snap-
shots during the evolution of a development session. In this
section we discuss 4 evolutionary patterns that we discovered
in our visual analysis of development sessions.

The Past Awakens

During a session, the working set evolves: After taking part
in the current working set, entities get old and move to the past
working set. However we discovered that there are sessions in
which entities also go through the reverse path: From the past
(working set) they jump again into the current working set.

Figure 10 shows an example of “The Past Awakens”. In Part
1, all the entities are in the current working set. Then, due to
the aging process, in Part 2, the past working set grows to
11 entities, accommodating all the entities that the developer
is likely not to need in a short time. Part 3, instead, exhibits
“The Past Awakens”: From the 11 entities the past working
set shrinks to 9 entities, symptoms that 2 entities have jumped
back into the current working set.

Part 1
No past WS

Part 2
Past WS increases

Part 3
“The Past Awakens”

Fig. 10. Example of “The Past Awakens”

Part 1
First Task

Part 2
Exploration

Part 3
Second Task

Part 4
Final Exploration and Verification

Fig. 11. Example of “Multi-Part Session”

The manifestation of this pattern adds evidence to the fact
that, often times, developers need to revisit entities. According
to Ko et al., almost one third of the navigations target entities
that have been already visited in the past [10]. By considering
each of our snapshots as a form of “navigation” we can
compare our data with their findings. On average, 4.53% of the
snapshots of each session manifest this pattern. Even though
these preliminary findings seem to contradict Ko et al., the
fact that an entity comes back from the past working set is
more restrictive than a simple revisit.

Multi-Part Session

A development session is a sequence of conceptually related
events happening in a relatively short timeframe. However,
we can often identify clear subsets of events that correspond
to precise activities or phases. Examples include source code
exploration, debugging, source code modification, etc. We call
“Multi-Part Session” a session exhibiting this pattern.

Figure 11 shows an example of this pattern. In Part 1 the
developer addresses a task: She explores a set of entities and
performs edit operations on 8 entities. In this first part, all
nodes (except for the Start node that alone composes the past
working set, i.e., there are no edges connected to it) are in
the current working set. In Part 2, the developer explores a
different part of the system (i.e., the past working set starts
populated with 12 entities). She jumps from one entity to the
other performing only 2 edit operations, possibly to augment
or refine her mental model prior to performing a new task.
In Part 3 the developer edits two new entities and keeps
interacting with some of the entities she has navigated in the
second explorative part. The last part of the session (i.e., Part
4 in Figure 11), is mostly explorative: All the edited entities
go, or remain, in the past working set. Our conjecture is that
in this last phase the developer explores the entities related to
the ones that she modified during the session to verify the side
effects of her modifications.

Our visualization supported us in visually identifying dif-
ferent development activities and interesting snapshots that
otherwise would have been non trivial to find.

Thirst for Knowledge

Developer are often confronted with unfamiliar code or
code that does not work and need to be fixed. When this
happens they need to spend time in performing program
comprehension and related activities. As depicted in Figure 12,
this phenomenon is visible from our visualization that (mostly)
portrays entities without the red stroke.

Part 1

Part 2

Part 3

Fig. 12. Example of “Thirst for Knowledge”

Part 1 Part 2 Part 3 Part 4

Fig. 13. Example of “The Working Funnel”

Part 1 Part 2 Part 3 Part 4 Part 5

Fig. 14. Another Example of “The Working Funnel”

The Working Funnel

We observed that often the number of program entities that a
developer interacts with in the initial phases of a development
session is larger than the ones she interacts towards the end
of the session. This can be attributed to several different
factors. One possible reason for that is the fact that, prior
to performing source code changes, developers need to gather
a strong knowledge of the system by exploring it. As a result,
in the initial parts of a session there are few edit operations
but a lot of interactions, symptoms of an exploratory phase.

Figure 13 shows 4 snapshots of a development session that
exhibits this behavior. In Part 1 there are no edits, but a
chain of explorative events. In Part 2 the developer starts to
modify a handful of entities, while continuing the exploration.
In the remaining two parts of the session (i.e., Parts 3 and
4), instead, the number of entities in the current working set
significantly shrinks. This is the symptom that the developer
had stopped exploring. A possible explaination is that she is
checking whether her modifications have the desired effects
on the entities potentially affected by those changes.

A developer with a clear mental model of the system or
that is facing an easy task, instead, could start by editing a
large set of entities right away. Then, in a later part of the
session, she could restrict her current working set to a handful
of entities to perform the last, non trivial and more focused
set of changes that finalizes her task.

Figure 14 depicts 5 snapshots of a development session
that shows this scenario. In Parts 1 and 2 the developer
explores and modifies 21 entities. Parts 3 is a steady phase
in which the developer explores some entities and performs
a few modifications. In the remainder of the session, Parts 4
and 5, the development flow calms down. In Parts 4 there is
still a bit of broad exploration (i.e., the nodes in the graph
are far away, symptom of a pure exploration phase). In Parts
5, instead, the working set is very narrow, nodes are mostly
dark and very close between themselves. This means that the
cognitive jumps are all focused on the current working set.

We call this pattern “The Working Funnel”3. In the sessions
exhibiting this pattern, in fact, the working set is large at the
beginning and progressively narrows down towards the end of
the session, to guide the development flow.

D. Summing Up

We visualized the evolution of a large set of development
sessions collected with our DFLOW tool [1]. The analysis
revealed 9 patterns: 5 referring to a single snapshot of a
development session and 4 evolutionary patterns.

In this section we showed how our intuitive visualization
can support the identification of key entities in a development
session, e.g., “The Guiding Star”, or mechanism of the evolu-
tion of working sets, e.g., “The past awakens”.

3A funnel is a pipe that is wide at the top and narrow at the bottom, used
for guiding liquid or powder into a small opening

IV. RELATED WORK

Researchers proposed different techniques to construct and
manage working sets. MYLYN, for example, exploits interac-
tion data capturing the task structure and building a degree-
of-interest (DOI) model of program entities [20], [12], [13].
This model is then used in the ECLIPSE IDE to identify the
entities that are more relevant for a task, i.e., high DOI value.

NAVTRACKS [14], and TEAMTRACKS [15], instead are tools
that monitor the interactions of the developer with the IDE
to support navigation through software. NAVTRACKS also
provides a simple graph based visualization to visualize how
program entities are related.

Ying and Robillard used MYLYN data to characterize the
editing behavior of developers with respect to the task they are
carrying on [21]. They claim that IDEs can exploit this editing
behavior to customize the views offered to the developer.

Soh et al. studies how developers explore software systems
during maintenance tasks [19]. They characterized the type
of exploration as either referenced or unreferenced. Among
their findings, they discovered that developers mostly follow
unreferenced exploration, i.e., there is no set of entities that
are visited with a higher frequency.

Fritz et al. conducted two observational studies performing
change tasks to understand how big is the context model nec-
essary to complete a change task [8]. Among their results, they
discovered that code navigation models can differ substantially
between different developers.

V. CONCLUSIONS

We presented a novel approach to visualize the working
set of developers starting from interaction data coming from
developer sessions and recorded with our profiler DFLOW. In
particular, we leverage navigation, edit, and inspection events,
and we provide an incremental, evolutionary visualization of
the current and past working set. The visualization is based
on the combination of two different and dedicated layouts: A
radial layout for the past working set, and a force-directed
layout for the current working set.

By visual inspection of the visualization, we identified
several static and evolutionary patterns. In particular, we
illustrated how our visualization can identify long, repeated
navigations involving several entities, or the presence of
central entities (that we called “guiding stars”) that guide
development tasks. On the evolutionary side, we identified
patterns where entities on the past working set return to be
subject of tasks later in the session, or cases where sessions
are really composed of several independent tasks.

While reflecting on the characteristics of working sets is
interesting to get insights about the mechanics of software
development, we believe that our visualization can be more
beneficial if integrated in the IDE and made actionable. Part
of our future work, we envision a situation where the developer
can leverage it to support alternative, possibly better navigation
among program entities.

ACKNOWLEDGEMENTS

We acknowledge the support of the Swiss National Science
Foundation (SNSF) for the project “HI-SEA” (No. 146734).

REFERENCES

[1] R. Minelli, A. Mocci, and M. Lanza, “I know what you did last
summer – an investigation of how developers spend their time,” in
Proceedings of ICPC (23rd IEEE International Conference on Program
Comprehension), 2015, pp. 25–35.

[2] S. Amann, S. Proksch, S. Nadi, and M. Mezini, “A study of visual studio
usage in practice,” in Proceedings of SANER (23rd IEEE International
Conference on Software Analysis, Evolution, and Reengineering), 2016.

[3] R. Minelli, A. Mocci, R. Robbes, and M. Lanza, “Taming the ide
with fine-grained interaction data,” in Proceedings of ICPC (24th
International Conference on Program Comprehension), 2016.

[4] A. Wexelblat and P. Maes, “Footprints: History-rich tools for information
foraging,” in Proceedings of CHI (SIGCHI Conference on Human
Factors in Computing Systems), 1999, pp. 270–277.

[5] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining Mental Models:
A Study of Developer Work Habits,” in Proceedings of ICSE (28th
International Conference on Software Engineering), 2006, pp. 492–501.

[6] M. A. D. Storey, F. D. Fracchia, and H. A. Müller, “Cognitive Design El-
ements to Support the Construction of a Mental Model during Software
Exploration,” in Proceedings of IWPC (15th International Workshop on
Program Comprehension), 2007, pp. 1–17.

[7] T. A. Corbi, “Program understanding: Challenge for the 1990s,” IBM
Systems Journal, vol. 28, no. 2, pp. 294–306, 1989.

[8] T. Fritz, D. C. Shepherd, K. Kevic, W. Snipes, and C. Bräunlich,
“Developers’ code context models for change tasks,” in Proceedings
of FSE (22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2014, pp. 7–18.

[9] J. Sillito, G. C. Murphy, and K. D. Volder, “Asking and answering
questions during a programming change task,” IEEE Transactions on
Software Engineering, vol. 34, no. 4, pp. 434–451, 2008.

[10] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Transactions on Software
Engineering, vol. 32, no. 12, pp. 971–987, 2006.

[11] R. Minelli, A. Mocci, and M. Lanza, “Measuring navigation efficiency in
the ide,” in Proceedings of IWESEP (7th IEEE International Workshop
on Empirical Software Engineering in Practice), 2016, pp. 1–6.

[12] M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest model
for IDEs,” in Proceedings of AOSD (4th International Conference on
Aspect-Oriented Software Development), 2005, pp. 159–168.

[13] ——, “Using task context to improve programmer productivity,” in
Proceedings of FSE (14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering), 2006, pp. 1–11.

[14] J. Singer, R. Elves, and M.-A. Storey, “Navtracks: Supporting navigation
in software maintenance,” in Proceedings of IWPC (13th International
Workshop on Program Comprehension), 2005, pp. 325–334.

[15] R. DeLine, M. Czerwinski, and G. G. Robertson, “Easing program
comprehension by sharing navigation data,” in Proceedings of VL/HCC
(IEEE Symposium on Visual Languages and Human-Centric Comput-
ing), 2005, pp. 241–248.

[16] A. Bergel, D. Cassou, S. Ducasse, and J. Laval, Deep Into Pharo.
Square Bracket Associates, 2013.

[17] M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest model
for IDEs,” in Proceedings of AOSD (4th International Conference on
Aspect-Oriented Software Development), 2005, pp. 159–168.

[18] F. Iragne, M. Nikolski, B. Mathieu, D. Auber, and D. Sherman,
“Proviz: protein interaction visualization and exploration,” Bioinformat-
ics, vol. 21, no. 2, pp. 272–274, 2005.

[19] Z. Soh, F. Khomh, Y. G. Guhneuc, G. Antoniol, and B. Adams, “On the
effect of program exploration on maintenance tasks,” in Proceedings of
WCRE (20th Working Conference on Reverse Engineering), 2013, pp.
391–400.

[20] G. C. Murphy, M. Kersten, M. P. Robillard, and D. Čubranić, “The
Emergent Structure of Development Tasks,” in Proceedings of ECOOP
(19th European conference on Object-Oriented Programming), 2005,
pp. 33–48.

[21] A. T. T. Ying and M. P. Robillard, “The Influence of the Task on Pro-
grammer Behaviour,” in Proceedings of ICPC (19th IEEE International
Conference on Program Comprehension), 2011, pp. 31–40.

