
Blended, Not Stirred:
Multi-concern Visualization of Large Software Systems

Tommaso Dal Sasso, Roberto Minelli, Andrea Mocci, Michele Lanza
REVEAL @ Faculty of Informatics — Università della Svizzera italiana (USI), Switzerland

Abstract—While constructing and evolving software systems,
developers generate directly and indirectly a large amount of data
of diverse nature, such as source code changes, bug tracking
information, IDE interactions, stack traces, etc. Often these
diverse data sources are processed and visualized in isolation,
leading to a partial view of systems.

We present a blended approach to visualize several data
“ingredients” at once, to give as complete an answer as possible to
the question “What happened to the system in the last few days?”.
The goal is to enable a quick and comprehensive assessment of
what happened to a software system in any given time frame.

I. INTRODUCTION

Software development involves a variety of activities carried
out with a number of tools, components and environments,
that relate to many different aspects of a system. The in-
creasing size of software projects, the increasing popularity
of distributed development platforms like GitHub1, and the
amount of tools and frameworks available for every language,
turned a significant part of modern software development
into an integration process, where the developer can define a
behavior by orchestrating and specializing library components
and third-party entities.

This has turned the engineering of any software system into
an information-heavy process, which is ultimately distilled into
(hopefully functional) source code. The vast majority of the
corollary information (such as discussions, design decisions,
email communication between developers, bug reports, etc.)
is either discarded or ignored. This is in part due to its
often only semi-structured nature, where structured fragments
are interleaved with natural language. The mining of such
unstructured data has become a research field of its own in
the past few years.

When it comes to the understanding of any system, the natu-
ral focus is the source code, and indeed it –and the overarching
structure and architecture– has been the primary subject of
study of program comprehension research. In the context of
software visualization many approaches have been developed
to visualize the (evolving) structure of software systems, which
range from static visualizations to historical or dynamic ones.
What strikes in this context is that many approaches consider
only single concerns, such as the architecture, the structure,
the evolution, the relationships, etc., but there is little in terms
of visualizing multiple concerns at once.

We present here an approach to visualize multiple concerns
concurrently. The concerns we tackle are interaction data,

1See https://github.com

failure information, and evolution. Interaction data stems from
how developers interact with the integrated development en-
vironment (IDE) while developing and maintaining a system.
In essence, it provides evidence of where and how people
have been active while developing [1]. Failure information
is generated each time the debugger is triggered because an
exception has been raised. In our previous work we have
shown that such data can be leveraged to understand where the
particularly tricky spots in a software system are located [2].
Both interaction data and failure data are more fine-grained
than their respective counterparts, namely versioning informa-
tion and bug reports. We complement these two types of data
with a third one, the evolution of the system.

Although we focus on these types of information, our
approach can be extended to feature any kind of information
artifact related to a large software system under development.
In essence, our goal is to answer one of the most often asked
questions raised by developers and managers alike, namely
“what happened to our system recently”? [3]

We present a visual approach to blend development data
originated by different sources, e.g., by different tools that
record and persist code changes, interaction data and stack
traces. We propose an interactive map that summarizes the rel-
evant events that involved the system in a given period of time,
using the city metaphor to represent a software system [4],
and coloring each entity according to the combination of data
gathered around it. We allow to explore the evolution of the
system by navigating the information during time, and refining
the search of interesting events to specific moments. We then
present some stories obtained through our visualization that
illustrate interesting properties of an existing software project
and its community.

The contributions we make with this article are:
• A novel approach to visualize multiple concerns concur-

rently in large scale software systems.
• The supporting tool infrastructure to mine and integrate

the data stemming from various sources of information.
• Initial anecdotal evidence that our approach indeed allows

us to discover and investigate facts that would otherwise
remain hidden in the literal “sea of data” that surrounds
any large and long-lived software system.

Structure of the Paper. Section II presents the related
work. In Section III we describe the ingredients of our blended
visualization, which is presented in Section IV. In Section V
we use the visualization to tell interesting evolutionary stories.
Finally, Section VI summarizes and concludes our work.

II. RELATED WORK

Many researchers showed how using data generated during
the programming activity can provide valuable information
about the evolution of a project.

For example, Bacchelli et al. proposed an Eclipse plugin to
integrate email communication in the IDE [5]. They showed
that having the email data produced during the development of
a software system at one’s disposal helps supporting program
comprehension tasks, such as finding entry points in a system
and recovering additional documentation. Another example
has been given by Zimmermann et al., who applied data min-
ing techniques to version histories to detect changes and build
prediction model to suggest future changes to developers [6].

To effectively present and understand such an amount of
data, many researchers and practitioners are adopting visu-
alization and Visual Storytelling approaches. The ability of
contextualizing the information in a story that explains the
meaning of the data is becoming more and more central to
the skills required to data scientists [7].

Among the different visualizations that researchers used to
represent a software system, the city metaphor has proven
to be effective in giving a high level picture of a group of
entities, allowing the user to navigate, zoom and inspect the
various components and refine the view [8]. This approach has
been adopted in different scenarios, depicting different kind
of information pertaining several steps of the development
activity, such as changes in the system, the defects involving
different components in the system, issues in quality checking
rules or the exceptions in the system [9].

Other visualization approaches tried to focus on the evolu-
tion of software systems, specifically the version repositories,
the dependencies or the structures. For example, Fischer et
al. [10] proposed EvoGraph, an approach based on data
extracted from a system release history, that visualizes the
evolution of structural dependencies through 2D visual repre-
sentations. Girba et al. [11] focused on the visualization of
the evolution of class hierarchies, correlating the history of
classes and their relationships, e.g., inheritance. The approach
by Voinea et al. [12] uses a combination of color and texture to
represent as many attributes as possible to display information
extracted from software configuration management systems.
Another important approach is the one by Ratzinger et al. [13],
that represents systems as nested, zoomable graphs.

However, while these approaches effectively visualize data
about a single aspect that impacts or involves a system, they
fall short in correlating this information with knowledge com-
ing from diverse data sources and impacting diverse concerns.
Such additional information could effectively integrate the
existing data to uncover further relations between the elements
of the system.

We think that an approach that considers more than one
kind of data and presents the information in a unified, uniform
view, normalizing and balancing each source, could provide
a greater value in understanding a software project and the
activities happening in its ecosystem.

III. THE INGREDIENTS

Our visualization presents a composition of different infor-
mation, obtained by blending together different data sources
and enabling visual analytics from heterogeneous and multi-
dimensional perspectives. To get a tractable subset of data, we
focus on a timespan ranging from January 1st 2015 to May
1th 2015. In the rest of this section we present the context of
our analysis (Section III-A), and then we briefly describe the
three main ingredients together with the tools that enable the
data collection process.

A. The Pharo Ecosystem

PHARO is a Smalltalk inspired programming environment,
composed of the PHARO programming language, an integrated
development editor and a set of libraries covering the common
needs for the daily programming tasks.

Apart from a rich software collection, the PHARO ecosystem
is composed of a vibrant and active community2 that includes
about 2,000 developers both from academia and industry.
The community actively participates in the development of
the system by building tools to improve the user experience,
submitting bug reports and proposing patches to solve defects.

B. Source Code Changes

A typical metric that is often considered in evaluating the
growth and evolution of a system is the number of changes
that it goes through during its development. In the case of
PHARO, the whole system is self-contained and distributed as
an image, a single file that works as a virtual environment
where new code is installed inside the default system. The
PHARO system is released once a year, and during this period
it goes through an intense phase of improvement, debugging
and polishing. The test and release process is managed by a
continuous integration server,3 that stores the previous builds
of the system. In our analyses we modeled and extracted all
the source code changes between subsequent releases of the
PHARO system.

Retrieving the different version: We focused on the
release of PHARO 4, which just finished its release cycle. We
downloaded all the development versions from the file server,4

that we also used to retrieve the exact release date of each
version. The full cycle of development images ranges from
version 40, 000 to the image 40, 613, from May 26th 2014 to
May, 5th 2015. The last release in date May 1th 2015 was
version 40, 611.

Extracting a system model: We extracted from each
image a model representation of the system. Such a model
is composed of the names of all packages, classes, instance
and class methods, and instance and class attributes.

Generating an incremental change model: We leveraged
each system model to obtain an incremental diff model that
describes each change. We considered as change a variation

2See http://pharo.org/community
3See https://ci.inria.fr/pharo/
4See http://files.pharo.org/image/40

in the names of the collected entities. Since we had no
way to precisely determine when an entity was renamed,
we considered every event in terms of creation and deletion.
Table I summarizes the available source code changes data.

TABLE I
SOURCE CODE CHANGES

Metric Value
Number of considered versions 611
Number of changes 4,928
Average changes per version 8
Max number of changes per version 527
Min number of changes per version 0

C. SHORELINE REPORTER and Stack Traces

A consistent part of the time spent by developers consists in
finding and solving defects. The debugging activity involves
tests to reproduce a problem or verify that a defect has
been solved. This process generates many stack traces, that
contain valuable information about the failures in a system.
Such information is normally used by a developer to identify
a faulty status in her program. Moreover, if collected and
stacked together, stack traces can also give a hint of what
parts of the system are the most active, or which ones are
causing more troubles. To exploit this source of information,
we developed SHORELINE REPORTER [2], a platform to
collect and store stack traces generated by the whole PHARO
community. The data we collect contains the signature of every
method invocation, to keep track of each entity involved in
the failure, though excluding the method parameters, to avoid
privacy issues for the single developer.

In enabling the reporter, each developer can decide to
inspect each stack trace and choose the ones to submit, or
enable the automatic reporting feature and submit all the
traces produced by its activity. While this option produces
many duplicates and non relevant data, it is still interesting to
see where the activity of the developers focuses in different
periods of time. The collected data can then be used to aid the
debugging activity, for example detecting if a large volume of
new stack traces coming from different developers involve a
specific class, or by looking for existing bug reports in the bug
tracker to provide a contextual help when a user encounters
an exception and ease the understanding of a piece of code.
The presence of many different stack traces for a specific
component might also suggest that an API has a problematic
design, and that the users struggle in understanding its usage,
thus highlighting the need for documentation or refactoring.

Table II summarizes the collected and available data for
stack traces.

D. DFLOW and IDE Interaction Data

During the process of software construction and evolution,
supported by integrated development environments (IDEs),
developers generate a large amount of data known as “IDE
Interaction data” [14], [15]. Examples of such data include
i) IDE meta events, like adding a method to a class, saving

TABLE II
STACK TRACES DATA

Metric Value
Number of traces 14884
Number of submitters 43
Total number of stack trace lines 714,420
Average stack trace size (in lines) 48
Longest stack trace 1,086
Shortest stack trace 1

some edited code, or inspecting a variable in the debugger,
ii) UI events, like moving a window or a tab in the IDE, or
resizing them, and low-level events, like keystrokes, mouse
clicks, drags and simple movements.

Since current IDEs do not record these data, in our previous
work we developed DFLOW, a silent interaction profiler for
the PHARO IDE [1]. DFLOW records 32 different types of
events at different levels of abstraction. For this work we
only focused on a subset of meta events that involve code
entities. Some meta events have an associated program entity:
A browse event, for example, where the user opens a new code
browser, can be performed on a method or on a class.

For this work we aggregated all meta events to the class-
level: An event performed on method foo of class Bar counts
as an event involving directly the class Bar. In total we have
ca. 239,000 interaction data events covering a timespan of 4
months (i.e., from January to April 2015).

The IDE interactions impact 2,988 different classes, of
which 965 are part of the standard PHARO distribution. The re-
maining 2,023 classes are user defined classes that are outside
the scope of our study. Out of the 32 types of meta events
recorded with DFLOW [1], only 13 types of events appear
in the dataset. This is because some of the recorded meta
events do not carry any information related to program entities.
For example, the meta event that represents the opening of a
Finder, a user interface used in PHARO to search for pieces
of code, has no associated program entity.

Table III summarizes the dataset and provides additional
details.

TABLE III
IDE INTERACTION DATA

Metric Value
Number of Interaction Events 238,741
Number of Developers 18
Number of Interested Classes (in the PHARO distro) 2,988 (965)
Number of Different Event Types (total) 13 (32)

E. Blended, Not Stirred

Our goal is to develop a visualization approach which
can represent diverse data sources, such as the ones we just
presented. The approach is not geared towards the specific
types of sources, and also not limited to depicting just those,
but is in principle extensible to feature any number and any
source of data.

Source Code Change

Stack Trace

IDE Interaction

Primary Colors

B

C

D E

NOM

NOA NOA

Package

Class

Selected
Class

A

Fig. 1. The Blended City – Visualization Principles and Proportions

IV. VISUALIZATION PRINCIPLES

Section III introduced the three “ingredients” of the visual-
ization: source code changes, stack traces, and IDE interaction
data. Until now these diverse data sources are processed and
visualized in isolation, leading to an incomplete view of the
system. Our goal is to visualize all these ingredient to enable
a quick and comprehensive assessment of what happened
to a software system in a given time frame. To do so, we
propose the “Blended City”, a visualization that uses the
City Metaphor to depict all the ingredients of a software
system. Wettel and Lanza initially used this metaphor in
CodeCity, a tool that depicts software systems as cities [4].
In addition to the structural source code information presented
by CodeCity, our Blended City uses a mixture of colors to
depict different aspects of the software system itself. Figure 1
shows an example of our visualization.

A. In Practice

Figure 1 shows the tool that we implemented to visualize
the Blended City. It is composed of four main parts: A status
bar to display additional information on the selected entity
(Fig. 1.A), a toolbar to customize the visualization (Fig. 1.B),
the view canvas (Fig. 1.C), and a timeline slider (Fig. 1.D).
With the timeline slider the user chooses the visualized data
timespan. The width (i.e., granularity) of this slider can be
adapted using the dropdown menu on the right part of the
toolbar. In the example of Figure 1 the user selected one month
of data, starting from March 1st. The toolbar (Fig. 1.B) also

features a text-input and a set of sliders. The former enables
simple queries to highlight particular packages in the system
while the latter let the user choose the visual weight of each of
the three ingredients of our visualization. These weights affect
the intensity of the color associated to each of the ingredients.
In the example of Figure 1, all the sliders are at 100%, thus all
the ingredients have the same importance. Figure 2, instead,
shows the data presented in Figure 1 giving high importance
to stack traces (100%), little importance on interaction data
(50%), and no importance to source code changes.

Fig. 2. The Same View Depicted in Figure 1.C with the Following Weights:
0% Source Code Changes, 100% Stack Traces, and 50% Interaction Data

In addition to changing the weights of the three components
and the granularity of the visualized timespan, the view also
features standard interactions such as panning and rotation in
the 3D space. Moreover, the user can click on an entity and
get additional information on the status bar. In Figure 1 the
user selected the class DiffMorph and the tool shows that
this class has 15 attributes and 91 methods (see Figure 1.A).
Selected entities are colored with a bright green.

B. The City Metaphor: Layout and Metrics

In the city metaphor every district of the city is a package
and the buildings, contained inside the districts, represent the
classes [4]. The view uses a rectangle-packing algorithm to
create the layout and it is polymetric, i.e., each dimension
of the visual entity is proportional to a particular metric of
the program entity being represented [16]. Since the visual-
ization is 3D, classes are cuboids and have 3 dimensions that
correspond to three metrics. Our visualization, similar to the
original CodeCity, uses the same metric for both width and
depth and a different measure for the height. In particular, we
use number of attributes (i.e., NOA) for both width and depth
of a class and number of methods (i.e., NOM) for the height of
the cuboid representing a class. The magnification in Figure 1
exemplifies these mappings.

C. Color Harmonies and Blends

Our Blended City presents different types of data, from
structural properties of source code to stack traces and inter-
action data. Structural source code relationships (i.e., nesting
of the package and software metrics) are the foundations for
the layout while colors present the remaining information.

We use a triadic color scheme made of primary colors to
present this information: Yellow for source code changes, red
for stack traces, and blue for interaction data. Figure 3 shows a
the color wheel with an emphasis on the triadic color scheme,
where colors are evenly spaced around the color wheel.

Primary
Colors

(Color Triad)

Yellow

RedBlue

Fig. 3. Color Wheel and Triadic Color Scheme

This offers strong visual contrast while retaining balance,
and color richness. Using colors equally spaced around the
color wheel facilitate the addition of extra sources of informa-
tion, i.e., when we need to display n sources of information,
we can create a new color harmony composed of n colors
evenly spaced around the color wheel.

Color Blends. The three primary colors can only depict
entities which are affected by a single of the three information
sources. However, in a given timespan a class might be
affected by both IDE interactions and stack traces, for example
when a developer is adding new functionalities to a class and
testing them. To depict this information, we use linear color
blends between the different sources of information. A class
with both IDE interactions and stack traces is depicted in
purple, the linear blend between the color of IDE interactions
(i.e., blue) and stack traces (i.e., red). Figure 4 shows examples
of the different linear color blends on the triadic color scheme
adopted by our visualization. In this work we only considered
the linear blending of colors. It is part of our future work the
investigation of different techniques to combine the colors, i.e.,
color-weaving.

Source Code
Changes (SC)

 Stack
Traces (ST)

Interaction
 Events (IE)

SC+STSC+IE

IE+ST

SC+ST+IE

Fig. 4. Linear Color Blend on Triadic Color Scheme

Aging Mechanism. When the user selects a timespan
to visualize, the tool pre-loads and displays also the data
happening in the immediately preceding interval (of the same
length). This enables the user to draw conclusions from the
visualization having also in mind what happened immediately
before. To show this data, the tool uses an aging mechanism
that linearly reduces the color saturation as the age of the
datapoint grows, i.e., the older the more intense fading towards
the default color of nodes (i.e., gray). Figure 5 shows how
colors fade with such mechanism in a timeline.

SC+ST
SC+IE

IE+ST
SC+ST+IE

Selected
Interval

Past
Interval

SC
IE
ST

Fig. 5. Aging Process: Example in the Timeline

In the “present” interval (i.e., the one selected by the user),
colors are at their default saturation. In the “past” interval,
instead, the color saturation fades. At the end of this interval,
the nodes have the default color, i.e., light gray.

Fig. 6. View of the City With All the Activities

D. Under the Hood

The tool deals with a large volume of entries coming from
heterogeneous data sources. To conveniently manage them we
standardized their format, using different data pre-processors,
and store them in a central place. We use MongoDB5 databases
to conveniently store the data.

When the user selects a timespan to visualize (Fig. 7.1),
the tool loads the data through optimized MongoDB queries
(Fig. 7.2) and builds the blended model of the data (Fig. 7.3).
Later it computes the city layout, applies the blended color
scheme, and presents the view to the user (Fig. 7.4). The user
can then use the toolbar to refine the visualization (Fig. 7.5).

5See http://mongodb.org/

“Blended” Model

Vie
w

MongoDB

2

31

5

4

Fig. 7. The Architecture of the Blended City

V. TELLING EVOLUTIONARY STORIES

This section presents four stories, supported by our blended
view, that narrate the evolution of the PHARO system.

A. Those Awkward Neighbors

By selecting the full available timespan of the data we obtain
a visualization that displays all the activities that involved the
PHARO system over a period of five months. This enables
to obtain a comprehensive view of the system evolution and
derive long-term considerations and properties. Figure 6 shows
the overall view of the available data. One interesting example
is represented by what we call the awkward neighbors, i.e.,
big but silent packages that have little or no activity.

In the lower part of Figure 6, we can spot two big packages
that contain entities that are mostly colored with grey, meaning
that they had almost no activity in the whole timeframe.
Moreover, they present almost no change in the entities they
are composed of, and since the color of the changes is blended,
those are all antecedent to the selected start date. This means
that in the last release they have been mostly ignored. These
two districts are the packages Graphics-Files and Compiler,
whose details are shown in Figure 8.

Fig. 8. Details of the Packages Graphics-Files and Compiler

A further investigation of the package Graphics-Files re-
veals that it contains 10 classes. These classes are dedicated to
exporting graphics and writing them in different file formats.
Since PHARO stores the dates of the changes of a method,
we can determine when the changes took place. We can see
that there are three main batches of changes: A small update
in 2014, regarding a small refactoring of an error message,
one in 2001 and one in 1997. This is interesting, because it
indicates that the package has been part of the system for a
long time, it had little changes and is by now a solid foundation
of the system. Similarly, the package Compiler contains 46
classes, and apart from some recent modification in 2013 to the
structure of the compiler, many of the methods are unmodified
since 2006, 2003, or 1998.

One might wonder how it is possible that some parts are
older than the PHARO project itself. The reason is that PHARO
was born as a fork of the SQUEAK project6, which in turn is
a re-implementation of the original SMALLTALK-80 system,
which was evolved from the SMALLTALK-72 system. This
means that some of the methods and classes in these packages
might very well be 40+ years old.

6See http://www.squeak.org

B. Market Districts

While examining some of the packages with the most
activities, we found districts with many interactions from all
three data sources, and we call them market districts. Figure 9
shows an example of market districts corresponding to the
packages of Spec and Morphic. Morphic is the core graphic
library of PHARO, while Spec is a framework to build user
interfaces, built on top of Morphic.

Fig. 9. Spec and Morphic Market Districts

Many classes are involved in exceptions, they were recently
changed or they were subject to developer interactions. This
reveals a long known problem in the community, that is, the
fact that the code of Morphic is old and have been ported
through various platforms. The case of Spec is similar: since
Spec is a framework built on top of Morphic, it shares its
weakness and part of its complexities.

Differently from the awkward neighbors (shown in Fig-
ure 8), the market districts for Morphic and Spec are not
settled and solid: Instead, they are often causes of bugs and
issues. The view also shows that many classes that act as entry
points received frequent developer interactions, meaning that
they likely have an unclear public interface.

Moreover, we can see that the Morphic packages are still
frequently changed, showing that the community is constantly
trying to fix the codebase. Finally, the high number of classes
involved in the stack traces suggests that the code modification,
together with the difficulty of understanding the API, is likely
a cause of many programming errors. In particular, there are
some hotspots, i.e., packages where classes are mostly colored
in red only. These classes are involved in failures, but they are
rarely modified or involved in interaction data.

These theses are confirmed by the fact that the community
is trying to replace the code of Morphic with a new, polished
and easy-to-use replacement called Bloc, to address issues that
we can be spot in Figure 9. However, as the complexity of the
picture suggests, replacing this code is not an easy task, and
has been work-in-progress for more than a year now.

Fig. 10. Changes in the Pharo System

C. New in Town

During the development of Pharo 4, many classes got
updated and some new components were added. We want to
analyze the progressive introduction of these changes, and how
they impacted the system after the integration. We then use the
sliders in Fig. 1.B to remove all the data sources, except for the
changes. Figure 10 shows in full yellow the entities touched
by a change in the last five months, and in blended yellow the
changes in the previous five months. We can verify that there
are elements that remained untouched, while some others were
subject to intense development.

By moving the slider we can select a timespan to restrict
the changes to a given moment of the story of the components
and inspect the status of the system during time. We can
notice that from a certain point on there was the appearance of
packages related to the GT-Tools, a set of tools to improve the
interaction with the objects in the system. By restricting the
timespan to the beginning of January (i.e., the first appearance
of activities), to determine the moment of integration.

Figure 11 visualizes the blended city for the GT-Tools
packages. Some classes are involved in all three data sources,
i.e., they are colored in dark brown. This can be explained
by the fact that the first phases of integration usually require
adaptation, refinement, and debugging, thus generating (other
than changes) frequent exceptions and developer interactions.

Fig. 11. The Changes of GT-Tools Packages

The other interesting observation that we can derive from
the visualization is that the classes involved in user activities
are also the biggest. This can be explained by considering that
those classes act as main entry points to the package, a starting
point for developers who want to use or inspect the code.

Fig. 12. A View of the System Highlighting Stack Traces and Developer Interactions Only

D. The Purple Buildings

A benefit of our blended city approach is that a data source
can be removed to spot behaviors that are independent from
it. Figure 12 shows the blended city for PHARO with only
stack traces and developer interactions. While the stories we
presented so far try to consider the code entities at a package
level, the blended city without changes reveals the interesting
role of some classes.

Scattered across the system, there are some big and medium
classes colored of purple without apparent correlation with
the color of its neighbors. By inspecting their names, we
find examples like DateAndTime, Float, Job, SmalltalkImage,
Socket, SocketStream, SystemWindow, TestRunner, and many
others related to rendering of graphics, that we covered in the
previous stories. These classes are not problematic per se, but
represent an interesting area of the system that we could define
as Advanced APIs. These classes appear in many stack traces

and in many development interactions, an information that
suggests that they occour near the source of the exceptions,
when these exceptions are not directly generated from them.
This context could signify that the user is trying to understand
a class that has a name suggesting a behavior, but that she
needs some further understanding to learn how to use the
objects of the class by trying the various methods.

The use of this information could be used by the maintainer
of the system to prioritize the areas of that could need more
public documentation, to ease the learning process of those
entities and their API.

Note that the same information, blended with the addition
of code changes and applied to classes that are not part of the
core system, could signify that a developer is applying a Test
Driven Development approach, by implementing incomplete
methods and completing them whenever the system tries to
execute a method that is not yet implemented.

VI. CONCLUSIONS

Software visualization and analysis usually focus on giving
a detailed representation of a single aspect of the examined
entities. We presented an approach where we visualize data
from three different data sources and contexts, blending them
to produce multi-dimensional information about a system, its
code and how developers interact with it. We considered a
combination of system changes during the development phase
of a system, the interaction data generated by users and the
stack traces of the exceptions triggered during the daily usage
of the platform.

We presented a tool that visualizes our blended information
on a city view of PHARO, a dynamic, flexible and active
programming ecosystem. We showed how our tool allows to
select different timespans and weigh the diverse components,
to enable a fine grained inspection of each entity during its
recent evolution.

We think that our approach has a real potential to be
successfully applied in a development context to allow for
multi-dimensional incremental and interactive analysis of a
system, supporting a deeper understanding of the code entities
by highlighting the synergies among its recorded activities,
and the relations and interesting behaviors otherwise hidden
or harder to detect.

We illustrated four stories where we extract and analyze
some real-world issues by looking at the blending of the data
and identifying some existing problems, or finding suggestions
for problems that could be addressed by the maintainers of the
platform to improve the system.

We believe that the knowledge highlighted by our approach
can help in presenting and tackling existing problems and
provide a deeper understanding of a system.

Future Work

Developing out approach we became aware of many details
that are hard to grasp in terms of how the users interact with
the code entities. We believe that an important next step for
this analysis would be to improve the system by providing
updated information on fresh data mined in real-time.

Our visualization considers activity data, but maps this
information on the static entities of the system. However,
in Object Oriented Programming, the main focus lays on
how these entities communicate among them, rather that how
these objects are structured internally. We want to deepen
this perspective, and produce more refined views that could
represent the true dynamic nature of a software and present
a system as a network of messages correlated with the user
interactions.

Finally, from the user stories we saw how to retrieve
information about the evolution of the system by looking
at the way users interact with it. We think that a similar
approach of combining data can be effectively put into use
when analyzing old code, to understand and maintain legacy
systems and support software archaeology.

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support of the
Swiss National Science foundation for the project “HI-SEA”
(SNF Project No. 146734).

REFERENCES

[1] R. Minelli, A. Mocci, and M. Lanza, “I know what you did last
summer – an investigation of how developers spend their time,” in
Proceedings of ICPC 2015 (23rd IEEE International Conference on
Program Comprehension), 2015, p. to appear.

[2] T. Dal Sasso, A. Mocci, and M. Lanza, “Misery loves company - crowd-
stacking traces to aid problem detection,” in Proceedings of SANER 2015
(22nd IEEE International Conference on Software Analysis, Evolution,
and Reengineering). IEEE CS Press, 2015, p. to be published.

[3] J. Sillito, G. C. Murphy, and K. De Volder, “Asking and answering ques-
tions during a programming change task,” IEEE TSE 2008 (Transactions
on Software Engineering), vol. 34, no. 4, pp. 434–451, 2008.

[4] R. Wettel and M. Lanza, “Program comprehension through software
habitability,” in Proceedings of ICPC 2007 (15th IEEE International
Conference on Program Comprehension), 2007, pp. 231–240.

[5] A. Bacchelli, M. Lanza, and V. Humpa, “RTFM (Read The Factual
Mails) –augmenting program comprehension with remail,” in Proceed-
ings of CSMR 2011, 2011, pp. 15–24.

[6] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining version
histories to guide software changes,” in Proceedings of ICSE 2004 (26th
International Conference on Software Engineering). IEEE CS Press,
2004, pp. 563–572.

[7] E. Segel and J. Heer, “Narrative visualization: Telling stories with data,”
Visualization and Computer Graphics, IEEE Transactions on, vol. 16,
no. 6, pp. 1139–1148, 2010.

[8] R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities: A
controlled experiment,” in Proceedings of ICSE 2011 (33rd International
Conference on Software Engineeering). ACM Press, 2011, pp. 551 –
560.

[9] T. Panas, R. Berrigan, and J. Grundy, “A 3d metaphor for software
production visualization,” in 2013 17th International Conference on
Information Visualisation. IEEE Computer Society, 2003, pp. 314–
314.

[10] M. Fischer and H. C. Gall, “Evograph: A lightweight approach to
evolutionary and structural analysis of large software systems,” in
Proceedings of the 13th Working Conference on Reverse Engineering
(WCRE). IEEE Computer Society, 2006, pp. 179–188.

[11] T. Gı̂rba, M. Lanza, and S. Ducasse, “Characterizing the evolution
of class hierarchies,” in Proceedings of CSMR 2005 (9th European
Conference on Software Maintenance and Reengineering). IEEE CS
Press, 2005, pp. 2–11.

[12] L. Voinea and A. Telea, “Multiscale and multivariate visualizations of
software evolution,” in Proceedings of the 2006 ACM symposium on
Software Visualization. IEEE Computer Society, 2006, pp. 115–124.

[13] J. Ratzinger, M. Fischer, and H. Gall, “Evolens: lens-view visualizations
of evolution data,” in International Workshop on Principles of Software
Evolution, 2005, pp. 103–112.

[14] M. Kersten and G. C. Murphy, “Mylar: a degree-of-interest model for
IDEs,” in Proceedings of AOSD 2005 (4th International Conference on
Aspect-Oriented Software Development). IEEE, 2005, pp. 159–168.

[15] G. C. Murphy, M. Kersten, and L. Findlater, “How are java software
developers using the eclipse IDE?” IEEE Software, vol. 23, no. 4, pp.
76–83, 2006.

[16] M. Lanza and S. Ducasse, “Polymetric views-a lightweight visual
approach to reverse engineering,” IEEE Trans. Softw. Eng., vol. 29, no. 9,
pp. 782–795, Sep. 2003.

