
Visualizing Developer Interactions
Roberto Minelli, Andrea Mocci, Michele Lanza and Lorenzo Baracchi

REVEAL @ Faculty of Informatics — University of Lugano, Switzerland

Abstract—Integrated Development Environments (IDEs) have
become the de facto standard vehicle to develop software systems.
The user interface (UI) of an IDE offers a staggering amount of
facilities to manipulate source code, such as inspectors, debuggers,
recommenders, alternative viewers, etc.

It is unclear how developers use the UI of an IDE and whether
such UIs actually give appropriate support to the developers.

We present a visual approach to understand and characterize
development sessions from the UI perspective. The tool support-
ing our approach mines and processes the finest-grained UI-
level events making up development sessions and presents them
visually. We have collected, visualized, and analyzed hundreds of
development sessions and report on our findings.

I. Introduction
Integrated Development Environments (IDEs) are the most

widely used tools to develop software systems [1], [2]. Ecplise1,
IntelliJIDEA2, and the Pharo IDE3 are just a few examples.
In essence, IDEs are collections of tools and facilities to ease
the manipulation of source code [3], [4]. Ecplise, for example,
offers a number of perspectives (i.e., visual containers for a
set of views and editor) customized for different tasks such
as developing, debugging, or running test suites. Murphy et
al. studied how developers use these perspectives: They found
that programmers use most perspectives offered by the IDE to
varying degrees and that they often use keyboard shortcuts to
perform activities [5]. Besides this study, it remains unclear
how developers use the UI of IDEs and whether these UIs
actually give appropriate support to the developers.

In this paper we present a visual approach to answer the
question: “How do developers use an IDE with respect to
the user interface it offers?”. Our approach leverages IDE
interaction data recorded by our tool DFlow to produce an
interactive visualization that i) describes how developers
structure their work by exploiting the IDE UI and ii) synthesizes
how UI elements and UI events relate to development activities.

DFlow silently intercepts and records developer interactions
while the developer is programming. DFlow considers two
kinds of interactions: development events and UI interactions.
Development events are actions that involve source code to
different extents: We classified such interactions as i) naviga-
tion events, used to browse code entities, ii) inspection events,
used to inspect the state of objects at runtime, and iii) edit
events, that constitute actual modifications of source code. In
addition, we extended DFlow to observe how developers use UI
elements. In our target environment, the Pharo Smalltalk IDE,
windows are the main UI building blocks. For each window,

1See http://www.eclipse.org
2See http://www.jetbrains.com/idea/
3See http://pharo.org

our tool records the opening and closing timestamp, as well
as events such as move, resize, and minimize.

We recorded more than 170 development sessions, lasting
from a few minutes to several hours, coming from 7 developers.
Each development session has a type explicitly assigned by the
developer, e.g., bug-fixing and enhancement. In total DFlow
recorded more than 110,000 development activities and about
80,000 interactions related to the usage of windows. To make
sense of this data, DFlow first pre-processes it and then uses
interactive visualizations to present it. Pre-processing includes
for example the automatic detection and removal of idle times.

The visualization we propose has two main purposes. On
the one hand it shows how developers interact with UIs, and
how the work is essentially organized in development tracks,
with each track led by a main window. The visualization
also depicts how developers alternate between such different
tracks during activities, and how the environment grows and
shrinks from a UI point of view, giving a visual representation
of the environment’s “entropy”. At the same time, the view
synthesizes how development activities relate to UI usage,
enabling the understanding of the UI structure at important
development events like source code edits and commits. This
combined view helps to gather a better understanding of the
data being visualized. For example, it is interesting to see what
happens to the source code when the developer spawns multiple
windows and how the number of active windows influences
the navigation between source code elements.

Our visual analysis led to the development of a pattern
language to characterize both developers and session types.
For example, we identified “conservatives” developers that
use to use a limited number of windows and, on the other side,

“frenetic” developers that continuously spawn windows, most
likely due to a complete immersion in the development, i.e.,
a state of mental focus so intense that awareness of the real
world is lost [6], also known as “flow” [7].

This paper makes the following contributions:

• A novel visualization of development sessions that depicts
how developers use the UI of the IDE;

• A catalogue of types of development sessions (and
developers) based on the visualization;

• A presentation of DFlow, the tool used to collect interac-
tion data silently while the developer is programming.

Structure of the Paper. Section II illustrates our approach
and presents the principles of our visualizations. Section III
presents our findings. Section IV presents and discusses the
related work and Section V concludes our work.



Fig. 1: A Typical Pharo Environment.

10:20 20:12

3:00 6:00 18:35 21:00 23:00 45:43 48:00 51:00 54:00 56:33

Fig. 2: A visualization of a development session.

II. Visualizing Developer Interactions

This section introduces DFlow, the tool we use to collect
interaction data, and highlights the principles behind our
visualizations of development sessions.

Figure 1 shows a screenshot of the Pharo IDE during
a typical development session. It is composed of multiple
windows of different types: Each type of window supports
specialized development tasks, like code browsing and editing,
object inspection, and access to the version control system. The
development paradigm induced by many IDEs, including Pharo,
supports the presence of a growing number of windows, and
for this reason, development activities can lead to the so-called
window plague [8]. This plague is also present in tab-based
IDE, i.e., Eclipse. The lifetime of windows is also very different:
some windows are central to a particular development task
and support it throughout a session, while windows supporting
debugging and inspection can be very short-lived.

Figure 2 provides a sneak peek of the visualization we
propose: It is composed of an upper part, the UI View, that
depicts of the developer with the UI of the IDE, and a lower
part, the Activity Timeline, that portrays development activities.
Essentially, the UI View visualizes how the development
session is organized and how the developer distributes her
work in different windows. At the bottom, the Activity Timeline
outlines the distribution of development activities over time,
like navigation (white), inspection (blue), edit (red), and
understanding (yellow). Finally, vertical lines depict idle times
in the session (red), explicit termination of a sub-session by
the developer (gray) or commits to the version control system
(blue). Both parts of the view are aligned on the same timescale.

We briefly describe the interaction data collected by DFlow
(Section II-A), we illustrate how data is pre-processed (Sec-
tion II-B), and then we discuss our proposed visualization and
its properties (Section II-C).



A. DFlow: A Tool to Record Developer Interactions

Table I lists the development and window events recorded
by DFlow with an identifier and a short description. The
initial character of each identifier represents the event type:
Navigation, Inspection, Editing, and Window. At the current
state, DFlow records a timestamp for each event without a
proper duration. Event information also contains the entity that
a particular event concerns: program entities (e.g., classes) for
development events and window identifiers for window events.

TABLE I: Events recorded by DFlow.

Development Events
ID Description
N1 Opening a Finder UI
N2,3,4 Selecting a package, method, or class in the system browser
N5,6 Opening a system browser on a method or a class
N7 Selecting a method in the Finder UI
N8 Starting a search in the Finder UI
I1 Inspecting an object
I2 Browsing a compiled method
I3,4 Do-it/Print-it on a piece of code (e.g., workspace)
I5,6,7 Stepping into/Stepping Over/Proceeding in a debugger
I8 Run to selection in a debugger
I9,10 Entering/exiting from an active debugger
I11,12 Browsing full stack/stack trace in a debugger
I13,14,15 Browsing hierarchy, implementors or senders of a class
I16 Browsing the version control system
I17 Browse versions of a method
E1,2 Creating/removing a class
E3,4 Adding/removing instance variables from a class
E5,6 Adding/removing a method from a class
E7 Automatically creating accessors for a class

Window events
ID Description
W1,2 Opening/closing a window
W3 Activating a window, i.e., window in focus
W4,5 Resizing/moving a window
W6,7 Collapsing/expanding a window, (i.e., minimize/maximize)

Each session is composed of one or more sub-sessions. A
sub-session can be triggered explicitly by the developer using
the minimalistic UI of DFlow, depicted as a state machine in
Figure 3. When a session is not running (3.a) the user can start
a new session; DFlow asks her to insert a brief description
of her intentions and a type describing the intended purpose,
e.g., refactoring or debugging. When a session is running (3.b)
she can Pause or Stop the session. The former action ends the
current sub-session that can be further resumed, while the latter
also finalizes the session. By iterating between the two states
in Figure 3.b and 3.c the user can split her session in different
sub-sessions. DFlow session meta-data includes author and
timing information (e.g., sub-session start and end times).

At present, we collected around 170 development sessions,
totaling more than 110,000 development events and 80,000
interactions on windows. Table II illustrates basic statistics
for the recorded sessions, aggregated by developer. The table
includes average pause time (i.e., the average interval between
two explicit sub-sessions) and idle time per session. Table III
outlines statistics about development events, and Table IV
outlines statistics about window events. In particular, window

a

b c

Start

Stop
Pause

Resume

Stop

Fig. 3: The UI of DFlow and its possible states.

events suggest that developers may exploit UI in different ways:
D4, D6, and D7 use on average a reduced number of windows.
Our visualization, described in Section II-C, aims to highlight
further insights on how development sessions are structured.

TABLE II: Sessions Statistics Grouped by Developer.

Dev. Sessions
Sub-sessions
(Avg.)

Avg. Session
Duration
[hh:mm:ss]

Avg.
Pause / Idle Time
[hh:mm:ss]

D1 12 73 (6.08) 3:01:24 0:01:26 / 28:42:55
D2 3 3 (1.00) 0:16:27 0:00:00 / 00:00:00
D3 65 97 (1.49) 0:52:32 0:18:12 / 00:29:20
D4 6 11 (1.83) 0:48:13 0:18:26 / 00:58:43
D5 72 202 (2.81) 0:54:56 3:42:45 / 00:15:52
D6 7 30 (4.29) 1:25:18 2:11:36 / 01:05:37
D7 12 80 (6.67) 1:34:25 1:41:18 / 17:29:52

ALL 177 496 (3.45) 1:16:11 1:10:32 / 07:00:20

TABLE III: Development Events Grouped by Developer.
Dev. Navigation Inspect Edit Total
D1 21,617 183 2,458 24,258
D2 393 157 24 574
D3 20,468 2,157 2,091 24,716
D4 2,183 353 1,196 3,732
D5 35,801 2,962 3,316 42,079
D6 6,862 337 472 7,671
D7 7,234 486 526 8,246

ALL 94,558 6,635 10,083 111,276

TABLE IV: Window Information Grouped by Developer.

Dev. W
in

do
w

s

O
pe

n

A
ct

iv
at

io
n

R
es

iz
e

M
ov

e

C
ol

la
ps

e
E

xp
an

d

C
lo

se

Tot.
D1 3,144 2,255 2,488 4,114 143 3,711 12,711
D2 71 63 59 275 0 51 448
D3 3,183 2,518 2,355 4,841 52 2,807 12,573
D4 608 609 134 978 5 710 2,436
D5 7,365 6,088 4,792 28,805 175 7,211 47,071
D6 555 525 549 468 0 580 2,122
D7 769 773 392 3,512 3 691 5,371

ALL 15,695 12,831 10,769 42,993 378 15,761 82,732



a

b

Fig. 4: The same development session visualized (a) including idle time and (b) after idle time removal.

B. Data Pre-Processing

Due to significant amounts of noise, the raw data collected
by DFlow needs to be cleaned before visualization.

We apply three pre-processing phases: i) cleanup of windows
events; ii) automatic detection and removal of idle times; and
iii) estimation of the duration of development activities from
interaction histories.

An example of information noise in windows events is
generated when the user resizes or moves a window. During a
resize, the IDE triggers a large number of small resize events,
i.e., one event each time the size of the window changes by
one pixel. However, in essence the user resized the window
just once: For this reason we compress all resize chains into
single resize events with a duration that spans from the first to
the last resize event triggered by the IDE.

A non-trivial pre-processing concerns the automatic detection
and removal of idle times. It might happen that when a user is
programming, with DFlow recording her development session,
she leaves her desk for a pause. The best case is when the user
explicitly pauses DFlow, using the UI depicted in Figure 3. If
this is not the case, DFlow remains “idle”, i.e., it does not
record anything but it is not aware of the pause. We devised
a mechanism to automatically detect idle times a posteriori.
When DFlow mines interaction data it searches for pairs of
events between which the time elapsed is more than a defined
“minumum idle time”, that by default is set to 10 minutes.
When it finds a pair of such events, say (evn, evn+1), it ends the
current sub-session at the timestamp of event evn plus some
“awake time” (default: 15 seconds). DFlow then creates a new
sub-session starting from the timestamp of evn+1 minus the
“awake time”, that models the moment when the developer
comes back to the IDE. In this way we introduce implicit
sub-sessions and we compress data to produce better, and more
useful, visualizations.

Figure 4 shows a view of a session before (a) and after (b)
the removal of idle time, where it becomes evident that idle
times indeed can have a deforming impact on the recorded
information: The session in Figure 4 seemingly lasted a bit
more than 2 hours, but in reality the actual time spent by the
developer is less than half, i.e., about 40 minutes (due to two
idle times lasting, in total, for more than one hour).

The last pre-processing of the data assigns a duration to
both windows and development interactions. Window events
have a timestamp. We assign a fixed conventional duration of
1 second to open, close, minimize, and expand window events.
Instead, the duration of resize/move and activation events is
computed. In raw interaction data, resize and move events
often appear in chains, one event for each movement or resize
of 1 pixel. The duration of a resize/move activity is the time
difference between the last and the first resize/move event in
such chains. In the Pharo IDE, only one window at the time
is active, i.e., in focus. An activation event represents when
the user activates (i.e., clicks) on a window. The duration of
an activation event is the time elapsed between the activation
itself and the next event. Similarly, development events are
sequences of events with their timestamp. To compute their
duration we interpolate the time from one event to the next.

C. Visualization Principles & Proportions

Figure 5 explains the proposed visualization. The view is
composed of two parts: an UI View and an Activity Timeline.

UI View: The UI View (Figure 5.a) depicts the interactions
of the developer with the UI of the IDE, that is composed of
multiple windows. This part of the visualization identifies and
summarizes the different tracks of windows that the developer
follows while working. A track is a composition of a main
window with a set of associated short-lived windows.

Tracks of windows, essentially, represent where and how
the developer used the UI elements of the IDE. There are
developers that concentrate their work on a single track and
developers that are more proficient when spreading their
work on multiple parallel tracks. Each track of windows is
“dominated” by one window, i.e., the main window of the track
(e.g., Figure 5.c for track 2). In turn the main window might
have a number of short-lived windows associated to it, the short-
windows (e.g., Figure 5.d for track 2). These short-windows
are windows with a lifespan (i.e., the time that spans from
their open to their close time) shorter than a given threshold
(default: 1 minute). To determine which is the main window
originating a small-window, say WS , we search, among main
windows, which one was last active before the birth of WS

and is still open during its lifetime.



10:20 20:12

3:00 6:00 18:35 21:00 23:00 45:43 48:00 51:00 54:00 56:33

Duration of
pause between two

sub-sessions
[d.hh:mm:ss]

Commit
Session

End
Session

Start

UI View

Same edit event on
the UI view and 
on the activity timeline

A track of windows
(container)

Main window

Short-windows

Window backboneWindows
Interactions

Development 
activities

a

c

d

Activity 
Timeline

Minimization

Track 1

b

Track 2

Track 3
Track 4

Explicit pause
(sub-sessions)

Implicit pause
(idle time)

Color Legend
UI View

Open
Activate

Minimize / ExpandResize / Move
Close Minimized backbone

Activity Timeline
Navigation
Inspection

Edit
Understanding

Vertical Lines
Explicit pause (sub-session)
Implicit pause (idle)

Commit

Fig. 5: Our visualization explained.

Once we created all the associations between main and
small-windows, we apply the time-based horizontal layout:
The horizontal coordinate of each container, or track, represent
the open time of the main window that dominates it. The
width of the container is proportional to the lifespan of the
main window. The height of the container varies according
to the number, and position, of short-windows. In the general
case all short-windows of a track are positioned at the same y-
coordinate. However, in case of two overlapping small-windows
(i.e., their lifespans overlaps), the layout pushes the second
small-window down. The layout considers the windows in order
of appearance, i.e., sorted by open time. The y-coordinate of
containers is used only to avoid overlapping between them.

A window is represented by a line, the window backbone.
The length of this line is proportional to the lifespan of the
window that represents. Window interactions, i.e., events, are
positioned on this line. Each event is a box with fixed height.
Its length is proportional to the duration of the event. The
x-position of the event on the window backbone represents
time, i.e., time difference between the timestamp of the event
and the open time of the window. The color identifies the type
of the event: open (blue), activate (green), resize/move (yellow),
collapse/expand (orange), and close (red). When the window
backbone is visible, i.e., not covered by boxes representing
events, it means that the window is currently open but not

in focus. In addition to window events, on each window, the
visualization shows a red dot when a source code edit event
happens. This visual clue helps to identify which windows
were used to perform source code changes.

The UI View in Practice: The visualization in Figure 5.a
depicts 4 tracks of windows. The main window of tracks 1, 3,
and 4 remain open after the session end, i.e., there is no close
event and the window backbone continues until the session
end. On track 1 there are 2 small-windows, on the second
track there is only one. The remaining tracks only have main
windows. Towards the end of track 1 we can see that the main
window gets minimized and remains collapsed for the rest of
the session, i.e., light orange window backbone. On track 2,
magnified in the figure, the main window is opened, then active
for some time and resized (or moved). Afterwards, it remains
active for another time interval and is then quickly resized or
moved again. Then an edit event happens on this window, i.e.,
red dot. After some time the window is resized again and then
a small-window is opened that remains open for a little time
before giving control back to the main window. After this time,
the main window remains active until the focus is given to
another window (i.e., the main window of track 1). When the
focus is back to this track another edit event happens and after
some time the window, and the track, terminate.



tr1

tr2

tr3

tr4

Inspect
valley

Fig. 6: Developer Story for D5: The Inspection Valley.

Activity Timeline: The Activity Timeline (Figure 5.b)
portrays development activities such as navigation, inspection,
edit, and understanding. Using this timeline one can have
a clue of when and for how long the developer performed
different kinds of activities. Each activity is a box with fixed
height. Its length is proportional to the duration of the activity.
Navigation activities are white ticks, since the navigation per
se lasts for a short amount of time, e.g., 1 second. Other types
of events, instead, have a duration that we estimated from the
raw interaction histories of DFlow. The color identifies the
type of activity: navigation (white), inspection (blue), editing
(red), and understanding (yellow).

Pause Times and Commits: The last visual elements on
the visualization are vertical lines that span both visualizations.
There are four types of such lines. Two gray lines without
labels indicate the start and the end time of the session. Blue
lines without label indicate the timestamp of commits in the
version control system. Gray and red lines with label depict
pause times. The label of these lines represents the pause time.
Gray lines depict the “explicit” pause time, i.e., when the
developer paused DFlow. Red lines identifies “implicit” pause
time, or “idle” time.

III. Discussion

We used the approach described in Section II to visualize
the corpus of development sessions collected with DFlow.
We discuss example development stories extracted from our
visualizations (Section III-A) and delineate a preliminary
characterization of both sessions and developers (Section III-B).

A. Telling Development Stories

The aim of our visualization is to understand how developers
use the Pharo IDE while performing their daily programming
tasks. In this section we examine and discuss 4 development
stories about specific sessions in our corpus.

The Inspection Valley: Figure 6 shows part of a session
recorded by developer D5. The session, excluding pauses, lasted
for 49 minutes and 18 seconds.

The Figure shows the first sub-session lasting 34 minutes.
There are 4 subsequent main tracks of windows, denoted as
tr1-tr4 in the Figure. The session started with tr1 where the user
mainly performed navigation, understanding, and some edits
(see the Activity Timeline). Then she moved to a new track and
performed additional edit operations while triggering a number
of small-windows for navigation purposes. The interesting
part starts when she moved to tr4. At the beginning waters
are calm: The developer remained for about 8 minutes on
the main window of the track. Then she performed a short
but convoluted sequence of activities on tr3 spawning more
than 5 small-windows and then she happened to get lost in
the “Inspection Valley”. Starting from minute 27, in fact, she
abandoned all the main tracks to drill down in a series of
inspection and understanding activities that led to a series of
edit events on different windows. Finally, 6 minutes later, she
cleaned up the IDE (i.e., closing most of the windows) and
terminates her trip into the inspection valley. These drill downs
in “valleys” are a recurrent pattern in a number of sessions. We
believe that this practice is encouraged by the multi-window
nature of the Pharo IDE. It remains to be investigated if this
pattern can lead to confusion and whether developers prefer
alternative means to perform, for example, chains of inspections
on object instances.

Implement First, Verify Later: Developers are often
in a rush so they first jump here and there to understand
where and what to modify and then start performing changes.
Then they run their code, encounter some problems, and spend
considerable amounts of time with debugging activities.

Figure 7 shows a session of developer D3 (the image is
divided in two to fit the page). This session lasts for more
than one hour and a half, removing pause times. The session
counts three explicit sub-sessions, i.e., vertical gray bars in the
visualization, and involves 57 windows. The Activity Timeline
reveals two distinct development phases. In the first two sub-
sessions the developer mainly acquires knowledge of the system,
through navigations (white) and understanding phases (yellow),



Fig. 7: Developer Story for D3: Implement First. Verify Later.

The mechanics of commit

Fig. 8: Developer Story for D3: Home Sweet Home.

and performs a number of source code modifications (red).
After this, the developer took a break of 8 minutes (i.e., the
idle time between the second and third sub-session) and then
started to exercise her code. From the Activity Timeline we
can infer that she was not really satisfied with her changes. The
third sub-session, in fact, is full of inspections (blue) that are
often related to debugging activities. In Smalltalk, developers
use inspections to observe instances of objects at runtime
mostly to verify the values of their fields. In this sub-session
inspections are interleaved with a high number of edit activities
(red), symptom of the fact that the changes performed in the
first two sub-sessions were not really successful.

Home Sweet Home: The story is about a session of
developer D3, depicted in Figure 8. The session lasts for about
an hour and features 45 edit events. The visualization exposes
a single main track of windows, i.e., the first one. This track
starts at the beginning of the session, lasts for almost its entire
duration and it is intensively occupied by the main window.
When this main window is not active (i.e., the window backbone
is visible) the developer transfers the focus for a small amount
of time to other windows (i.e., maximum 1.5 minutes). She
wiggles around, navigates code, reads code, and finally she
gets back to the main track. The interesting pattern is that she
only performs changes on the first track, more precisely, on its

main window (i.e., all but one red dots are in the main track).
It is clear that this window is a “pillar” for this session since
the flow of development always returns to it.

Another peculiarity of this session is that, almost after every
edit event, the developer opens a small-window, closes it and get
back to the main track. It seems that the developer uses small
windows as verification means for her changes. An example
of this fact is magnified on the left part of Figure 8.

The last interesting thing, common to several sessions of
different developers, is the visual cluster appearing towards the
end of the session, near the blue commit line. This last track of
windows, in fact, represents the “mechanics of commit”, i.e.,
the sequence of user interface actions needed to commit source
code to the versioning system. The main window of that track
is the browser for Monticello, i.e., the version control system
used by the Pharo IDE. The small-windows originated from it
are: i) the change browser, that lets the user browse for the
changes before commit; ii) the commit message box, that lets
the user enter a commit message for the current version; and
iii) the confirmation dialogs that acknowledge every commit.

Curing the Window Plague: Figure 9 shows a distinctive
feature of developer D5. Researchers called Window Plague the
fact that to reveal relationships between code entities developers
are forced to open a high number of windows on different



Fig. 9: Developer Story for D5: Curing the Window Plague.

artifacts [8]. The window plague leads to a crowded workspace
with many opened windows (or tabs in case of tab-based
IDEs). Naı̈vely the IDE does not come to the rescue of the
developer in case of a crowded workspace. Some developers
ignore this issue but others like to cleanup their environment
from time to time. Developer D5, for example, is a developer
that systematically cleans up her environment. Figure 9 depicts
one of her sessions lasting for more than 4 hours (note that the
view has been compressed to fit the page by eliding parts of
the session from the visualization). At regular intervals (about
every hour and a half) she triggers “cleaning stages” where
she closes almost all windows to refresh her environment. The
UI View shows that the number of windows continuously grow
until the entropy level of the environment becomes unbearable
for her and she decides to decrease it. There are two possible
interpretations for this: Either the developer has accomplished
her task and starts a new fresh task, or the environment has
become so convoluted and disordered that she decides to start
over even though the task is not finished. It remains to be
investigated how frequent this phenomenon is and if and how
the IDE can automatically come to the aid of developers in
such cases.

B. Categorizing Developers and Development Sessions

We use the visualization presented in Section II-C to derive a
classification of the development sessions. The ground element
for our classification is the number and behavior of tracks of
windows. We discarded 13 sessions that were either too short
or lacked a significant number of events.

We use two dimensions for the classification: 1) the presence
of dominant tracks of windows, and 2) the flow between the
different tracks.

Dominant Tracks: We define a dominant track as a
track with a privileged role in the development session. In
other words, dominant tracks are the tracks with a predominant
focus time and concentration of edit events. We devise three
categories based on Dominant Tracks:

• Single-Track: There is a only a single track of windows
that is predominant over all the others, if any.

• Multi-Track: There are two or more tracks of windows
that are predominant over all the others, if any.

• Fragmented: There are no real dominant tracks of win-
dows. The development flow and the focus of development
are strongly fragmented, i.e., the developer continuously
shifts her focus from one window to another and perform
edits with no apparent strategy.
Track Flow: Track flow describes the way the developer

alternates from different window tracks. We devise two
additional categories based on Track Flow:
• Sequential Flow (S): The development flow follows a

sequential trend, i.e., from one track the focus moves to
the next and so on. On this type of sessions the focus
rarely goes back to a previous track. These are the sessions
that might suffer from the window plague [8], and in such
cases often there are no dominant windows.

• Ping-Pong Flow (PP): The development flow and the
focus of development continue to zig-zag between two
or more tracks. If the fragmentation is heavy, there can
be no dominant track and the visualized session appears
frenetic and chaotic.

Consider the developer stories we described in Section III-A.
Figure 6 is mostly fragmented since there are no dominant
windows that characterize the whole development session. It
also has a dominant sequential flow, because the developer
starts a development track, and when another one is created
the developer has either closed the previous one or leaves it
out of focus. There is also minimal ping-pong behavior.

The session in Figure 7 is single-track in the implementation
phase, while in the verification phase it becomes fragmented
with a mixed sequential and ping-pong flow.

Consider instead Figure 8, corresponding to the “Home
Sweet Home” developer story. The session has a main track
where most of the edits happen, and that the rest of development
activities happen in other window tracks. The session has



TABLE V: Track and Flow Characterization of Developer Session.

Single-Track Multi-Track Fragmented All
Dev S % PP % S % PP % S % PP % S % PP % NC % Total
D1 0 0% 1 8.3% 1 8.3% 0 0% 8 66.7% 0 0% 9 75.0% 1 8.3% 2 16.7% 12
D2 2 66.7% 0 0% 0 0% 0 0% 1 33.3% 0 0% 3 100.0% 0 0% 0 0% 3
D3 32 49.2% 13 20.0% 6 9.2% 4 6.2% 7 10.8% 1 1.5% 45 69.2% 18 27.7% 2 3.1% 65
D4 0 0% 0 0% 0 0% 0 0% 5 83.3% 1 16.7% 5 83.3% 1 16.7% 0 0% 6
D5 10 13.7% 3 4.1% 9 12.3% 1 1.4% 41 56.2% 0 0% 60 82.2% 4 5.5% 9 12.3% 71
D6 1 14.3% 1 14.3% 1 14.3% 1 14.3% 2 28.6% 1 14.3% 4 57.1% 3 42.9% 0 0% 7
D7 5 45.5% 1 9.1% 1 9.1% 1 9.1% 3 27.3% 0 0% 9 81.8% 2 18.2% 0 0% 11
ALL 50 28.2% 19 10.7% 18 10.2% 7 4.0% 67 37.9% 3 1.7% 135 76.3% 29 16.4% 13 7.3% 177

a typical ping-pong flow. In fact, the developer frequently
alternates between the main track and other tracks, with a
minimal privilege towards the second track.

Finally, the session in Figure 9 shows instead a fragmented
session with sequential flow. Edits and focus are spread to
many tracks, and no track dominates in the whole session. A
lot of old tracks are simply out of focus and never closed,
laying in the background (window plague [8]). Tracks grow
almost monotonically.

Table V illustrates the characterization of our corpus of
development sessions, aggregated by developer. In general,
we observe that Multiple-Tracks are less common (14.2%
of the total), and that the remaining sessions are uniformly
distributed among the other two categories: Single-Track and
Fragmented (around 40% of each type). We also observe that
Sequential Flow (S) is relatively more frequent than Ping-Pong
(PP), 76.3% versus 16.4%. These numbers again support the
fact that developers may frequently experience the window
plague. Another interesting general observation is that Ping-
Pong behavior is mostly correlated with Single-Track and
Multi-Track sessions: This means that Ping-Pong Flow happens
between a single dominant track and minor tracks, or between
multiple dominant tracks.

The results of our classification also suggest differences
between the development style of different developers. Three
out of seven developers (D2, D3 and D7) exhibit a strongly
dominant preference for Single-Track sessions: For them such
sessions account for more than 50% of the total. Developers D1
and D4, instead, tend to work in a more Fragmented fashion
(66.7% and 83.3% respectively). All developers strongly prefer
Sequential Flows; this result can be debated for developer D6,
for which we did not collect enough sessions to observe a
significant difference. Developer D6 is the subject that more
frequently exhibits Ping-Pong Flow in her sessions (42.9%).
Developer D3 is the subject with the higher number of sessions
with Ping-Pong Flow but, in percentage, has a smaller number
than D6 (27.7%).

Considering developer styles in isolation, we observe that
sessions of developer D5 are almost only Sequential (82.2%
of the sessions) and frequently Fragmented (56.2%). Instead,
sessions of developer D3 are still mostly Sequential (69.2% of
the times) but mostly exhibit a Single-Track of development
(69.2% of the sessions).

IV. RelatedWork

Related work can be classified in approaches that study
recording of IDE interactions and software visualization.

Recording IDE Interactions. One approach to understand
how developers interact with IDEs is to record IDE events,
like invoked IDE API methods and keystrokes.

Yoon and Myers developed Fluorite, a tool that records low-
level development events in the Eclipse IDE [9]. By analyzing
the recorded data, they concluded that editing source code is
different than editing documentation artifacts. For example, one
of the most used keystrokes by programmers is the backspace.

Murphy et al. tried to establish the relevance of plugin usage
in the Eclipse IDE [5]. To this aim, they collected data using
the Mylar framework. Analyzing the collected data, authors
found that a large percentage of frequently used commands is
invoked by developers using key bindings.

Robbes and Lanza proposed an approach to record fine-
grained source code changes in the IDE [10]. With this data,
they defined a “development session” as the time in which
a developer actively modifies a software system. Using the
information about development sessions, it is possible to depict
a software system as the results of multiple changes operation
rather than a sequence of versions. They asserted that a session
follows an incremental logic of changes, i.e., a developer
starts by introducing basic concepts that are then progressively
extended during a session.

Our tool, DFlow, integrates the collection of fine-grained
development and window events generated by the IDE. At
the current state, editing events are coarse grained and do not
include fine-grained source code changes.

Singer et al. performed different studies on the time and
practice of software developers, mainly using questionnaires
(e.g., [11]). Although they did not use a precise measure for
the time taken by developer activities, they noticed that the
time spent on writing source code is less than the time spent
on other activities, like debugging or searching.

Software Visualization. Researchers visualized interaction
histories. For example, Yoon et al. developed Azurite, an
Eclipse plug-in that visualizes fine-grained code change histo-
ries [12]. The tool provides a “timeline” that lets developers
navigate through the history of changes and quickly reach the
needed information. Azurite offers also a “code history diff”
to inspect the changes of particular code fragments.



Servant and Jones developed Chronos, an Eclipse plug-in that
lets developers query, explore, and discover historical source
code change events [13]. The authors provide a motivating
example to show how developers can benefits from the
visualization to understand how two methods co-evolved.

Researchers also mined versioning systems to study how
developers collaborate to build software. Gı̂rba et al. visualize
code ownership [1]. They first define a measure of code
ownership and then build the “Ownership Map”, i.e., a view to
understand when and how different developers interacted with a
system. They found that the evolution of a software system can
presents behavioral patterns on how developers contribute to it.
They identified i) monologue periods, in which a developer
makes most of the changes; ii) teamwork periods, where many
developers frequently commit changes, and iii) silence periods.

Similarly, Greevy et al. visualized code ownership in a
structural view [2]. The view depicts packages and classes of
a system and colors each node according to its owner.

Telea & Auber developed Code Flows, a tool that uses a
tubes visualization to show changes between revisions of files
and highlights important events such as drift and merges [14].

Ogawa & Ma propose two visualizations of source code
and developers: code swarm, a tool that produces animated
software histories from data coming from version control sys-
tems [15] and a historical visualization to show the interactions
between developers in the evolution of software projects [16].

Our visualization borrows visual elements from related
works, but it is inherently different. Related work focuses
on fine-grained source code changes, code ownership, and
other data coming from version control systems. Instead, our
visualization describes single-developer sessions, and depicts
fine-grained interaction data collected with our DFlow tool.

V. Conclusion

We presented a novel approach to visualize how developers
use the UI of their IDE and when and how they perform
different development activities such as navigating, writing,
and understanding source code. Our visualization enables the
identification of main development tracks in terms of usage
of IDE UI components like windows, and relates such usages
with development activities like edit events, inspection events,
and commits. To gather data we used DFlow, our tool that
silently records all fine-grained interactions with the IDE.

We discussed several developer stories from the visualized
sessions, that identified both peculiar developer behaviors
emerging from the usage of the IDE and their activities, and
well known phenomena like the window plague. We proposed
a simple classification of the visual features of development
sessions in terms of dominant window tracks (Single-Track,
Multi-Track, and Fragmented sessions) and Flow between
tracks (Sequential or Ping-Pong). By using such a classification,
we found that different developers exhibit different behaviors
and usages of the UI of the IDE. For example, most developers
either work with a Single or no dominant window track, with
a strong prevalence of Sequential Flows that may lead to
cluttered environments. We want to use the insights gained

from our visualizations to reflect on ways to support developers
in becoming more proficient in terms of IDE user interface
usage. We envision the construction of a recommender system
that on-the-fly suggests alternative ways to use the IDE.

Acknowledgements. We gratefully acknowledge the finan-
cial support of the Swiss National Science foundation for the
project “HI-SEA” (SNF Project No. 146734). We thank all the
developers that helped us gathering their data.

References

[1] T. Gı̂rba, A. Kuhn, M. Seeberger, and S. Ducasse, “How developers drive
software evolution,” in Proceedings of IWPSE 2005 (8th International
Workshop on Principles on Software Evolution). IEEE, 2005, pp. 113–
122.

[2] O. Greevy, T. Gı̂rba, and S. Ducasse, “How developers develop features,”
in Proceedings of CSMR 2007 (11th European Conference on Software
Maintenance and Reengineering). IEEE, 2007, pp. 265–274.

[3] A. Ko, B. Myers, M. Coblenz, and H. Aung, “An exploratory study
of how developers seek, relate, and collect relevant information during
software maintenance tasks,” IEEE TSE 2006 (Transactions on Software
Engineering), vol. 32, no. 12, pp. 971–987, 2006.

[4] J. Sillito, G. C. Murphy, and K. De Volder, “Asking and answering ques-
tions during a programming change task,” IEEE TSE 2008 (Transactions
on Software Engineering), vol. 34, no. 4, pp. 434–451, 2008.

[5] G. C. Murphy, M. Kersten, and L. Findlater, “How are java software
developers using the eclipse IDE?” IEEE Software, vol. 23, no. 4, pp.
76–83, 2006.

[6] W. Lidwell, K. Holden, and J. Butler, Universal Principles of Design.
Rockport, 2003.

[7] M. Csikszentmihalyi, Flow - The Psychology of Optimal Experience.
Harper Perennial, 1990.

[8] D. Roethlisberger, O. Nierstrasz, and S. Ducasse, “Autumn leaves: Curing
the window plague in IDEs,” in Proceedings of WCRE 2009 (16th Working
Conference on Reverse Engineering). IEEE, 2009, pp. 237–246.

[9] Y. Yoon and B. A. Myers, “Capturing and analyzing low-level events
from the code editor,” in Proceedings of PLATEAU 2011 (3rd Workshop
on Evaluation and Usability of Programming Languages and Tools).
ACM, 2011, pp. 25–30.

[10] R. Robbes and M. Lanza, “Characterizing and understanding development
sessions,” in Proceedings of ICPC 2007 (15th International Conference
on Program Comprehension). IEEE, 2007, pp. 155–166.

[11] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, “An examination of
software engineering work practices,” in Proceedings of CASCON 1997
(8th Conference of the Centre for Advanced Studies on Collaborative
Research). IBM Press, 1997, pp. 21–36.

[12] Y. Yoon, B. Myers, and S. Koo, “Visualization of fine-grained code
change history,” in Proceedings of VL/HCC 2013 (IEEE Symposium on
Visual Languages and Human-Centric Computing), 2013, pp. 119–126.

[13] F. Servant and J. Jones, “Chronos: Visualizing slices of source-code
history,” in Proceedings of VISSOFT 2013 (1st IEEE Working Conference
on Software Visualization), 2013, pp. 1–4.

[14] A. Telea and D. Auber, “Code flows: Visualizing structural evolution of
source code,” in Proceedings of EuroVis 2008 (10th Joint Eurographics /

IEEE - VGTC Conference on Visualization). Eurographics Association,
2008, pp. 831–838.

[15] M. Ogawa and K.-L. Ma, “code swarm: A design study in organic soft-
ware visualization,” IEEE Transactions on Visualization and Computer
Graphics, vol. 15, no. 6, pp. 1097–1104, Nov 2009.

[16] ——, “Software evolution storylines,” in Proceedings of SOFTVIS 2010
(5th International Symposium on Software Visualization). ACM, 2010,

pp. 35–42.


