
White Coats: Web-Visualization of Evolving Software in 3D

Cédric Mesnage
Département d’informatique
Universit́e de Caen, France

Michele Lanza
Faculty of informatics

University of Lugano, Switzerland

Abstract

Versioning systems to store, handle, and retrieve the evo-
lution of software systems have become a common good
practice for both industrial and open-source software sys-
tems, currently exemplified by the wide usage of the CVS
system. The stored information can then be manually re-
trieved over a command line or looked at with a browser us-
ing the ViewCVS tool. However, the information contained
in the repository is difficult to navigate as ViewCVS pro-
vides only a textual view of single versions of the source
files. In this paper we present an approach to visualize a
CVS repository in 3D (using VRML) by means of a visual-
ization service calledWhite Coats. The viewer can easily
navigate and interact with the visualized information.

1. Introduction

The first software versioning systems appeared more
than thirty years ago. Since then, software industry has rec-
ognized the importance of versioning systems and is us-
ing them extensively since more than two decades now [12]
[16] [3], boosted by the emergence of open source software.
Recording the history of a software system during its de-
velopment has the advantage of allowing to reconstruct the
original design intentions of the developers, as well as their
subsequent variations in time. Versioning systems also al-
low efficient sharing of a project, and hence ease team soft-
ware development. The facilities given by versioning sys-
tems and the amount of data retrieved fostered the research
field of software evolution [10], whose goal is to analyze
the history of a software system and infer causes to its cur-
rent problems, and possibly predict its future.

One of the main difficulties in managing the complexity
of evolving software systems is to handle the large amounts
of data and present them to a software engineer in an in-
tuitive and easy-to-understand way. Currently used means
include textual representations by tools such as ViewCVS1

1 See http://viewcvs.sourceforge.net/ for more information.

and some graphical representations offered by tools such as
the Maven project2. The problem with those approaches is
that they are heavily based on CVS itself,i.e.,they only dis-
play the information provided by CVS without abstracting
or aggregating it. However, they both come with an intrin-
sic advantage: The information is rendered as web pages
and is thus easily accessible.

Other, more advanced tools have been implemented re-
cently in the area of mining software repositories ([17],
[11], [9] and [14]) but most of them are based on stand-
alone tools and only few of them use visualisation to present
the extracted information. We are convinced that providing
a solution which presents information on an easily acces-
sible platform,i.e., a web browser, is crucial for a widely
spread usage of such tools.

Our approach provides easy (web)access to versioning
information by rendering the information on web pages.
Moreover, by means of a VRML plugin the user can nav-
igate the 3D visualizations,e.g.,zoom, filter, fly through,
interact with, inspect, etc. any of the visualized entities.
Our approach is complementary to textual approaches,i.e.,
when the user has visualized and identified an entity of in-
terest he can quickly access the underlying information. In
this article we presentWhite Coats, a 3D web visualizer that
allows inspecting and navigating the repositories of soft-
ware systems.

Structure of the paper. In the next section we present
the overall architecture ofWhite Coatsand the visualiza-
tion and interaction means that it provides. We then present
example visualizations obtained from various case studies.
We conclude by discussing our findings, looking at related
work, and describing our future work in this domain.

2. White coats

The user interface ofWhite Coats(see Figure 1) is com-
posed of one central 3D viewport (navigable and interac-
tive) and many panels that provide complementary infor-
mation:

2 See http://maven.apache.org/ for more information.

1
2
3
4

5

6

7

8

9
11

10

12

Figure 1. The user interface of WhiteCoats.

1 Navigation History: This panel gives the user the abil-
ity to navigate to previously visualized entities. Diving into
an entity adds that entity to the history list.

2 Entities: When an entity is visualized, the user selects
the kind of entities related to it that he wants to display. For
example if a directory is the main entity, the contained sub-
directories or files can be displayed.

3 Predefined Visualizations:A set of applicable, prede-
fined visualizations (e.g.,”Evolution Matrix”). When one is
selected, the other panels are updated accordingly.

4 Settings: A visualization can be configured by set-
ting the associations between visual attributes (e.g.,width,
height, position,etc.) and metrics (e.g.,”Number of files”)
or by changing the size of the reference cube and the trans-
parency of the entities (useful when they overlap).

5 Load/Save:Saving a view stores its configuration,e.g.,
entities displayed, metrics settings,etc.. The saved view is
shared with other users exploring the same project. Load-
ing a view updates all panels.

6 View Details: A summary of the displayed data, such
as the name of the visualized entity, the type of entities dis-
played, and the number of entities in the visualization.

7 Query Engine: One can add queries to filter the dis-
played entities. By setting a lower and upper threshold on a
metric entities are selected on which an action is performed
(e.g.,”Do not show” or ”Highlight”).

8 Comments Panel:Users can read and write comments
associated to an entity. The comments are displayed with a
date and the comment’s author user name.

9 Selected Entity Details:When a user clicks on an en-
tity, it displays related information, such as its name, the
metrics associations,etc.. A ”Dive in” link makes the se-
lected entity become the main entity,i.e., the internals of
that entity are displayed.

10 A visualized entity: An entity is displayed as a box
in the visualization, its position, size and colors depending
on the associated metrics.

11 The reference cube:A transparent wireframe con-
taining all displayed entities. The reference cube eases 3D
navigation. By setting the size of the cube, it scales the con-
tained boxes.

12 A highlighted entity: When an entity is highlighted
because if matches a query it displays a wireframe box
around it. The wireframe color can be set.

2.1. Handling Evolution Information

The internet

Postgres
Database

log file
parser
script

CVS server

CVS server

CVS server

populating
script

computing
metrics
script

Vrml
Framework

Seaside
Framework

White Coats

postgres
bridge

Figure 2. The overall Architecture of White
Coats.

To visualize evolution information, White Coats uses a
set of scripts to populate a database which is then the source
of information for the visualizations. The populating pro-
cess (Figure 2) is done as follows:

1. The user indicates the URL of a CVS repository.

2. A set of scripts is executed that connect to the reposi-
tory and download all log files which contain informa-
tion about every revision of every file. The log files are
parsed and a database is populated with the retrieved
information (see Figure 3 for the DB schema we use).
A set of directly retrievable metrics (e.g.,number of
added lines) and other information (e.g.,id of the au-
thor) is also stored into the DB.

3. A second set of scripts computes information that can-
not be retrieved directly (see Table 1) and stores them
into the DB too.

In case we have already done this for a certain reposi-
tory, our service checks and updates the information.

Retrieved and computed metrics.Some metrics are re-
trieved from the CVS logs (such as the number added or re-
moved lines), while others are computed in a second phase.
In Figure 1, we list some of the metrics. The metrics are
computed in a preprocessing step; we considered comput-
ing them on-the-fly but did not due to scalability problems
(a project like mozilla has approx. half a million revisions).

Database model.The database model (3) is inspired
from the RHDB (Release History Database) [2]. The main
difference between the RHDB and our model is that we
store metrics in the database.

Property Name Entity types
Retrieved from CVS Log Files

Added/Removed lines Revision
Author Revision
File Revision
Revision Date Revision
Simultaneous Revisions Revision

Computed

Depth File, Directory
First/Last Revision File, Directory, Author
Added/Removed lines File, Author
Active period File, Author
Number of Authors File, Directory(?)
Number of Revisions File, Directory(?), Author
Number of Files Directory, Author
Parent Directory Directory

Table 1. Entity Properties.

User
name
password

Project
name
address
mainModule
user
password
status

Directory
depth

Revision
number
date

File
depth
content

1*1*
Author

0..1*

Metric
name
type
value
relativeValue

*

1

1
*

Entity
name

1

*

1*

Comment
date
text

1 * 1*

Figure 3. The Database model.

2.2. Visualizing Evolution Information

The retrieved evolution information is visualized in 3D
using VRML. Extending the concept of polymetric views
[8] to 3D the user can set a number of metrics which influ-
ence the position and shape of the visualized entities (see
Figure 4). Currently we can map up to 6 metrics (3 for the
position, 3 for the shape) and additionally represent more
information on texture and transparency of the visualized
entities. As we have seen with 2D polymetric views, the
point is not to display as much information as possible, but
to discover views whose combinations of metrics convey
certain types of (useful) information to the viewer. In the
next section we present some example visualizations.

Reference Cube.As we see in Figure 1, the displayed
entities are displayed within a surrounding wireframe cube.
This referencecube gives an idea of the orientation to the
user. We can also set the size the cube, giving the user the
ability to spread the entities if they overlap.

X

Y

Z

width

height

depth

Position (x,y,z)

Figure 4. 3D Polymetric view principles.

Horizon. As a supplemental navigation aid we also pro-
vide a ”sky” and a ”ground” background to let the viewer
know into which direction he is looking.

Normalizing metrics. We use metrics in the visualiza-
tions to assign values to the dimensions of the entities to
be displayed. The distribution of the values of the metrics
would however lead to unreadable visualizations. The rela-
tive value of a metric is a number between 0 and 100 which
we use in the rendering process so that the dimensions asso-
ciated with metrics always have values between 0 and 100.
We normalize metrics to make them fit within the reference
cube,i.e., the reference cube has a side length of 100.

Interactivity. White Coats uses VRML for the visualiza-
tions, whereas navigation and interactivity are given by the
used VRML browser plugin3 we use. This plugin allows to
navigate in the view by rotating around the objects or fly-
ing into it. We defined a set of viewpoints (front, back, bot-
tom, right side, left side) which can be chosen during the
navigation.

The visualized entities can be selected using the mouse
pointer. When clicked, the user can dive into the entity, in-
spect it,etc.. In case of a diving, a new visualization is cre-
ated,i.e., a new VRML document is created on the fly and
displayed.

3. Selected Examples

The following selected examples have been made on the
bittorrent project Azureus4 which at the time of writing of
this paper was tje most active project on sourceforge. Due to

3 In our case, we use the Cortona plugin. Accessible at:
http://www.parallelgraphics.com/products/cortona/

4 See http://azureus.sourceforge.net/

space limitations we focus on some views to show the pos-
sibilities of White Coats.

x

z

y

parg
gauss

Figure 5. The Author’s activity of the Azureus
project.

Authors view. In this view (see Figure 5), the position
on the y axis is the first revision date of the author and
the height corresponds to the active period. The position on
the x and z axis are respectively the number of revisions
and number of files, the width and depth are also the num-
ber of revisions and the number of files. The color repre-
sents the number of lines added by the author. We can see
that one author worked on most files and did most revisions
(named “parg”), this may be the one to contact. Another au-
thor (named “gouss”) did not work on so many files but
added a lot of lines (his color is red).

Evolution Matrix view. In Figure 6, we show the Evo-
lution Matrix ([6]) of the project Azureus which represents
over 15’000 revisions. On this visualization the x axis cor-
responds to the date of the revision, the y axis to the au-
thor and the z axis to the file. The width, height and depth
are not used here (every box has the same size). The color
is the number of revisions which appeared at the same time
and we added to this a query which highlights in blue the re-
visions of more than 300 added lines. We can see that one
particular file suffered of many revisions of more than 300
added lines by the same author. This file may be an inter-
esting candidate to refactoring. This example shows also
the limits of the paper media to explain the possibilities of
White Coats: the user would now navigate (”fly through”)
to this file history and have a closer look.

x

z

y

Figure 6. The Evolution matrix of the Azureus
project.

x

z

y

Figure 7. The Files Activity view of the
Azureus project.

Files Activity view. In Figure 7, we show all the files of
the Azureus project (over 3500 files). The x axis is the date
of the first revision on that file, the y axis is the depth of
the file in the directory and the z axis the date of the last re-
vision. The width is the number of authors, the height the
number of revisions. The depth and color are the number of
removed lines and the number of added lines. We see that

the most active files (most number of revisions) have been
revised recently but are not necessarily the files with the
most number of added/removed lines.

4. Discussion

Our goal with this research is to obtain an integrated, in-
teractive view of CVS repositories which is easily accessi-
ble, i.e., over a web browser. White Coats allows the user
to easily select entities of interest and inspect them. More-
over, the fully automated information extraction could make
White Coats become a central point of approach for CVS
repositories, instead of going over ViewCVS. We are work-
ing currently on publishing White Coats as a publicly avail-
able ”web service”.

Still, the approach has some limits:
Scalability. Using 3D visualization can be useful to dis-

play several metrics in the same view. However, when sev-
eral entities are displayed, it becomes less readable. Navi-
gating through the view by rotating, and the use of the ref-
erence cube helps the user, but the view can still be confus-
ing. We plan to add 2D visualization to White Coats so that
the user can choose between 2D or 3D visualizations.

Usability. A major drawback of White Coats (although
not due to White Coats!) is the 3D navigation itself given by
the VRML plugin. The user can indeed fly through the 3D
space, but not with the ease that would make it the preferred
way of navigation. Instead we found ourselves often apply-
ing queries to filter out irrelevant details and only when few
entities remained in focus we would actually start 3D navi-
gation.

5. Related Work

Software evolution has established itself as a research
field in the past few years, leading to many publications in
this area.

Lanza’s Evolution Matrix [7] visualizes the system’s his-
tory in a matrix in which each row is the history of a class.
A cell in the Evolution Matrix represents a class and the
dimensions of the cell are given by evolutionary measure-
ments computed on subsequent versions. However, the Evo-
lution Matrix has been implemented in a stand-alone tool
(CodeCrawler) and uses only two-dimensional visualiza-
tions.

Jazayeri analyzed the stability of the architecture [5] by
using colors to depict the changes.

Taylor and Munro [15] visualized CVS data with a tech-
nique calledrevision towers. Ball and Eick [1] developed vi-
sualizations for showing changes that appear in the source
code.

Gulla [4] proposes multiple visualization of C code, but
to our knowledge there was no implementation. Collberget

al. used graph-based visualizations to display the changes
authors make to class hierarchies. However, they do not give
any representation of the dimension of the effort and of the
removals of entities.

Rysselberghe and Demeyer [13] propose a simple visu-
alization of a system history from a CVS repository by cre-
ating a matrix where the columns represent files ordered
by names and lines represent the time. Wu, Holt and Has-
san [18] introduce a spectrograph visualization to render
software evolution. These approaches offer visualizations
of software repositories, but no interaction with the visual-
izations are possible.

A major drawback of the above mentioned and many
other approaches is that many of them are either imple-
mented in stand-alone tools (thus hindering widespread us-
age) or in IDEs like eclipse (thus being targeted towards
a specialized audience,i.e., developers). One of the advan-
tages of our approach is that the visualizations are displayed
within a web browser, thus being accessible by anyone (e.g.,
developers, managers ...).

6. Conclusion

In this paper we presented the 3D web visualizer White
Coats, which gives the ability to the developer to visualize
the evolution of a software repository in a web-site. We pre-
sented some visualizations of the project Azureus. We dis-
cussed our work, and related it to other tools.

We plan to add a 2D visualization using the same poly-
metric views. It will make the visualization process easier
for large projects where rendering half a million boxes be-
gin to be difficult for the VRML plugin. In fact a 2D visual-
ization will make the web user interface easier to navigate.
We are currently also planning to apply data mining tech-
niques to mine the relevant entities.

Acknowledgments

We would like to thank Romain Robbes for his com-
ments on this paper. We also thank CHOOSE (Swiss Group
for Object-Oriented Systems and Environments) for their fi-
nancial support.

References

[1] T. Ball and S. Eick. Software visualization in the large.IEEE
Computer, pages 33–43, 1996.

[2] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking sys-
tems. InICSM ’03: Proceedings of the International Con-
ference on Software Maintenance, page 23, Washington, DC,
USA, 2003. IEEE Computer Society.

[3] D. Grune. Concurrent Versions system, a method for in-
dependent cooperation. Technical report, Vrije Universiteit,
Amsterdam, Netherlands, 1986.

[4] B. Gulla. Improved maintenance support by multi-version
visualizations. InProceedings of the 8th International Con-
ference on Software Maintenance (ICSM 1992), pages 376–
383. IEEE Computer Society Press, Nov. 1992.

[5] M. Jazayeri. On architectural stability and evolution. InRe-
liable Software Technlogies-Ada-Europe 2002, pages 13–23.
Springer Verlag, 2002.

[6] M. Lanza. The evolution matrix: Recovering software evo-
lution using software visualization techniques. InProceed-
ings of IWPSE 2001 (International Workshop on Principles
of Software Evolution), page to be published, 2001.

[7] M. Lanza and S. Ducasse. Understanding software evolution
using a combination of software visualization and software
metrics. InProceedings of LMO 2002 (Langages et Modèles
à Objets, pages 135–149, 2002.

[8] M. Lanza and S. Ducasse. Polymetric views — a lightweight
visual approach to reverse engineering.IEEE Transactions
on Software Engineering, 29(9):782–795, Sept. 2003.

[9] K. M. K. Laven, S. Roweis, and G. Wilson. Mining stu-
dent cvs repositories for performance indicators. InMSR
2005: International Workshop on Mining Software Reposi-
tories, 2005.

[10] M. M. Lehman and L. Belady.Program Evolution – Pro-
cesses of Software Change. London Academic Press, 1985.

[11] I. Neamtiu, J. S. Foster, and M. Hicks. Understanding source
code evolution using abstract syntax tree matching. InMSR
2005: International Workshop on Mining Software Reposito-
ries, 2005.

[12] M. J. Rochkind. The Source Code Control System.Trans-
actions on Software Engineering, 1(4):364–370, 1975.

[13] F. V. Rysselberghe and S. Demeyer. Studying software evo-
lution information by visualizing the change history. In
ICSM ’04: Proceedings of the 20th IEEE International Con-
ference on Software Maintenance (ICSM’04), pages 328–
337, Washington, DC, USA, 2004. IEEE Computer Society.

[14] J. Spacco, J. Strecker, D. Hovemeyer, and W. Pugh. Software
repository mining with marmoset: An automated program-
ming project snapshot and testing system. InMSR 2005:
International Workshop on Mining Software Repositories,
2005.

[15] C. M. B. Taylor and M. Munro. Revision towers. InProceed-
ings of the 1st International Workshop on Visualizing Soft-
ware for Understanding and Analysis, pages 43–50. IEEE
Computer Society, 2002.

[16] W. F. Tichy. RCS — a system for version control.Software
— Practice and Experience, 15(7):637–654, 1985.

[17] C. C. Williams and J. K. Hollingworth. recovering system
rules from software repositories. InMSR 2005: International
Workshop on Mining Software Repositories, 2005.

[18] J. Wu, R. C. Holt, and A. E. Hassan. Exploring software evo-
lution using spectrographs. In11th Working Conference on
Reverse Engineering (WCRE’04), pages 80–89, November
2004.

