
Interactive Exploration of Semantic Clusters

Mircea Lungu1, Adrian Kuhn2, Tudor Ĝırba3 and Michele Lanza4

1,4 Faculty of Informatics
University of Lugano, Switzerland

2,3 Software Composition Group
University of Berne, Switzerland

Abstract

Using visualization and exploration tools can be of great
use for the understanding of a software system when only its
source code is available. However, understanding a large
software system by visualizing only its lower level artifacts
(e.g., classes, methods) and the relations between them does
not scale for industrial-size systems. To address the scal-
ability issue, higher level hierarchical abstractions (e.g.,
package structure, clustered decompositions of the system)
should be used together with relations between them that
are usually aggregated from the lower level relations. In
this paper, we present the concepts behind Softwarenaut, a
tool aimed at exploring any kind of hierarchical decomposi-
tions of a system, and then we look at a specific exploration
of a system. In the experiment, the hierarchical decompo-
sition of the system is the result of applying a semantical
clustering to group classes that use similar terms.

Keywords: software exploration, visualization, cluster-
ing, LSI

1 Introduction

When only the source code is available, recovering the
architecture of a large software system is a difficult task be-
cause of its sheer size and complexity. Considering that
even in the presence of a well-thought initial design the
evolutionary processes, such as bug fixing and feature addi-
tions, lead to a decay of both the architecture and the source
code itself [3], the difficulty of understanding a legacy sys-
tem only by analyzing the code becomes obvious.

One approach to software reverse engineering is the use
of visualization techniques to represent the software entities
and their relationships [12, 11, 7]. However, understand-
ing a large software system by visualizing only its lower

level artefacts (e.g.,classes, files) and the relations between
them does not scale for industrial sized systems. To ad-
dress the scalability issue we use higher level hierarchical
abstractions (e.g.,package structure) and relations between
them. When there are no explicit relationships between ab-
stractions we aggregate them from the lower level relations.
Furthermore, we present the reverse engineer with several
integrated complementary views of the system: a view of
the current high-level focus, a map for showing the location
of the current focus and a detailed view of a selection.

Another widely used approach in reverse engineering is
clustering [5, 10]. The clustering techniques provide an
automatic way of separating a complex system in simpler
components. For example, in the case of hierarchical clus-
tering the system is decomposed into hierarchical decom-
positions that have to be manually inspected for the right
abstraction level to be detected.

In this article we present an approach to interactively ex-
plore the hierarchical clusters given by the classes that use
similar terms. The approach is based on Softwarenaut, an
environment for the interactive, visual exploration of any hi-
erarchical decomposition of a software system. In the par-
ticular case of the article, the hierarchical decomposition
that we will use will be provided by Hapax, our semantic
analysis framework. For the semantic clustering Hapax uses
an information retrieval technique called Latent Semantic
Indexing (LSI) [6]. The user can interact with, and navigate
the visualizations of the semantical clusters, aided by com-
plementary lower level information about the properties and
interconnections between the components of the clusters.

Structure of the paper. We start by presenting the
model for the hierarchical structures that can be explored
with the techniques presented in this article. In Section 3 we
describe the visualization and exploration techniques that
are employed in Softwarenaut. We continue in Section 4 on
how we did extract the semantic information using Hapax.
Section 5 shows how we applied the approach on a case

1



study while Section 7 concludes and presents future work.

2 The Underlying Model

Softwarenaut is meant to be used for the exploration of
any hierarchical decomposition of a system that conforms
to the model presented in the diagram from Figure 1.

*

*

2 *Abstract
Entity Relationship

Composite
Entity

Leaf
Entity

Figure 1. A decomposition of a system that
conforms to the model, can be explored using
Softwarenaut.

The three types of entities in the diagram are:

• Leaf Entities.The leaf entities are the basic program-
ming language blocks used for the structuring of the
software (e.g.,functions, classes or files).

• Relationships.These are the relations between two en-
tities. They can be relationships from the source code
like include relations for files, inheritance relations for
classes and function calls for methods and functions.

• Composite Entities.The composite entities are con-
tainers for other abstract entities that are not neces-
sarily supported by the programming language (e.g.,
packages, namespaces, clusters).

The model admits relationships between any abstract en-
tities. However, in software systems explicit relationships
usually exist only between the leaf entities. Therefore,
the relations between the composite entities are inferred
bottom-up from the relations existing between the leafs.

Although the techniques presented in this article can
work with any model of a system that conforms to the pre-
viously presented schema, for the remaining parts of the
article, we will limit the discussion to the specific case of
a clustered decomposition based on semantic analysis. In
this case, the leafs are classes in the system, the relations
are dependency relations between classes refined from the
method calls and the composites are the result of clustering
the classes by using hierarchical clustering based on LSI.

3 The Three Perspectives

Our exploration environment approach is based on offer-
ing the reverse engineer several interactive complementary
visualization perspectives of the module structure of a sys-
tem, integrated in one window. The views corresponding to
the different perspectives are coupled, meaning that when
the user operates a modification in one view, the comple-
mentary views are also updated. Moreover, the visualiza-
tions are supported by complementary information in the
form of software metrics and other semantic information
about the currently inspected part of the system.

Figure 2 shows the Softwarenaut tool visualizing the se-
mantic clusters of an example software system. The win-
dow presents three views: Exploration View, Map View and
Detail View.

3.1 The Exploration View

The Exploration View presents a graph that can be in-
teractively navigated by expanding, collapsing and filter-
ing operations. The view uses nodes to represent the en-
tities and edges to represent the dependency relationships
between them. At any given moment, only a subset of
the composites in the system and the interdependencies be-
tween them are visible, subset that we will callthe working
set. The elements of the Exploration View are:

Thenodesare represented by square figures which have a
given metric mapped on their side and another on their
shade of gray. In Figure 2 the size of the square is
proportional to the number of lines of code defined in
the cluster while the shade of gray is an expression of
the semantic cohesiveness of the contained classes: the
darker the cluster, the more cohesive the contents.

Theedgesare aggregations of the invocations between the
contents of the corresponding composites. They have
metrics mapped on their width and shade. In Figure 2
the width is proportional to the number of methods ab-
stracted in the edge, while the shade of grey is propor-
tional to the percentage of accessor methods contained
in edge.

Interacting with the Exploration View. The Explo-
ration View provides operations for the filtering, expanding
and collapsing of the nodes in the working set. The expand-
ing operation replaces a composite with its direct descen-
dants while the collapse operation replaces several compos-
ites with their container. Filtering operations based on met-
rics and structural information are also available but they do
not represent the focus of this article.

2



Exploration View

Map View

Detail View

Figure 2. The Softwarenaut window to explore the semantic clusters. The top-left part of the window
is the Exploration View, the top-right is the Detail View and the bottom is the Map View.

3.2 The Map View

The Map View displays a map of the cluster hierarchy
and keeps the user oriented during the exploration by mark-
ing the visible nodes on the map. In the figures, the visible
nodes are marked in red on the map. Moreover, when a
node is selected in the main view, its descendants are col-
ored with shades of gray corresponding to the semantic co-
hesion of the contents.

There are several reasons why the information presented
in the exploration view needs to be seen in the context of the
entire system’s cluster containment tree (hereafter referred
to assystem’s tree map).

The different nesting levels of the displayed clusters.At a
given moment, as a result of the exploration, the clus-
ters in the exploration view will be at various depth
levels in the system’s tree map. This is not visible in
the exploration view, therefore, one responsibility of
the map view is to represent the system’s tree map and
to emphasize on it the composites that are currently
displayed in the exploration view. In Figure 2, on the
map view, the currently displayed composites are col-
ored in red.

The high abstraction levels of the edges.Each composite

in the exploration view represents the whole contain-
ment hierarchy under it, and each edge represents an
abstraction of the invocations between the containment
hierarchies of the two adjacent composites. While it
is valuable to know which specific descendants in the
hierarchies adjacent to an edge are involved in the in-
vocations abstracted by the edge, it is too expensive to
expand the corresponding nodes to determine this fact:
A better solution is to emphasize the descendants that
are implied by the edge on the system’s map when an
edge is selected.

The abstraction level of the composites.In the exploration
view, a composite encapsulates a whole hierarchy, hid-
ing therefore valuable information about its structure.
This information can be discovered by expanding the
composite, but when only an overview is needed, ex-
panding a whole subtree is an operation which costs
too much. Moreover, in the expanding process the
overview aspect is lost. A solution that takes advantage
of the fact that the map view already contains a repre-
sentation of the system’s tree map, is to highlight on
it the descendant tree corresponding to the composite
currently selected. Besides highlighting, more proper-
ties of the descendants can be displayed. In our case

3



for each descendant, we map its semantic cohesion on
its color in the map view.

3.3 The Detail View

The Detail View presents details for the entity that is se-
lected in the Exploration View or, alternatively, a map of
the whole system when no entity is selected. Because there
are many types of details that can be displayed for an en-
tity, they are implemented as plugins. The system searches
for the available list of plugins for the type of the selected
entity and displays all the available plugins in separate tab
panels. Figure 3 presents the contents of such a tab panel
that shows the semantic terms in a cluster ordered by their
relevance.

4 Semantic Clustering in a Nutshell

To provide a hierarchical decomposition of a system for
the exploration system, we have implemented the following
steps in Hapax:

1. First, we preprocess the source code to obtain a term-
document matrix. The input data is the source code,
broken into pieces at an arbitrary level of granularity
(e.g.,modules, classes, methodsetc.) to define the doc-
uments used by LSI. The terms are all words found in
the source, except keywords of the programming lan-
guage.

2. LSI is then applied to the term-document matrix to
build an index with semantic relationships. From this
index we can compute the semantic similarity between
both software artifacts and terms. More in-depth infor-
mation on using LSI is given in [2].

3. To better understand this semantic correlations, we
group the software artifacts with a hierarchical cluster-
ing algorithm. This algorithm creates a dendrogram:
A hierarchical tree with clusters as its nodes and the
documents as its leaves [4]. Thus we get a hierachy of
nested semantic concepts, ranging - from root to leaves
- from general concepts to more specific concepts. The
deeper a cluster is nested in the tree, the more seman-
tical similar are the software artifacts it contains.

4. Finally we use the LSI index to provide automaticaly
retrieved labels, describing the clusters and concepts.
More on using LSI to perform search queries, see [1].

5 Experiment

To show how we use the approach, we present here a first
experiment we have carried out to study the Hapax tool. Ha-
pax is the semantic analysis tool we have built. It is written

in Smalltalk and has 100 classes and 1300 methods. The
experiment was carried out by one of the authors that did
not know the code and then the lessons learnt were cross-
checked with the author of the code. In the followings we
report on the steps of the analysis.

Step 1: Discovering the UI. Figure 2 presents the first
view we get on the system: a small cluster using in a very in-
tensive way a much bigger one. Looking at the detail panel
which presents the significant terms in the small cluster we
see “mouse click sensor active open . . . view . . . ”. We infer
that we have detected a UI cluster which uses intensively the
model classes in the big cluster. By looking at the classes in
the cluster the supposition is validated.

Figure 3. The terms in the detail panel show
the fact that the selected cluster is related to
mathematical notions

Step 2: Discovering the Mathematical Extensions. We
expand the big cluster and observe that it contains an-
other two clusters out of which again a small and a big
one. We inspect the terms in the small cluster and dis-
cover mathematical-like terms (see Figure 3): “complex,
overflow, natural, carries”. From the detail panel contain-
ing the classes in the cluster we go to the source code of
the classes and see that they are just extensions to some
Smalltalk classes1. We delete the cluster as non-relevant
for the overall architecture.

1In Smalltalk, extensions to the existing classes can be defined, which,
while loaded in the system, add functionality to the original classes

4



Step 3: Intermediary View. Because the big cluster in
the view has a low semantic cohesion (i.e., the node appears
light grey) we expand it again (see the result in Figure 4).
The next clusters are comparable in size. We look at the
first and see the terms “matrix decompose . . . algorithm ”
that look related but are interwoven with some other like:
“SVD, svlib” which do not fit, so we will expand this node
to obtain more cohesive clusters.

Figure 4. An intermediary view.

Step 4: Discovering the SVD Computation. Expanding
gives two other clusters, out of which one is very cohesive
around the terms “SVD exe lib win libSvd”. Because the
occurrence of OS-related terms is unexpected we inspect
the classes that are contained in the cluster and find out that
the algorithms that compute the Singular Value Decompo-
sition (SVD) are in an external program.

The other cluster in the view is not very cohesive, as can
be seen from its light color, but the terms are strongly re-
lated: “matrix row . . . column triangle . . . ”. Inspecting the
contained classes in the detail panel, we see that most of the
classes are part of the same module. Considering that the se-
mantic cohesion (seen in the color of the node) is also high,
we conclude that the cluster is self-contained and should not
be explored further, and direct our attention towards the big
remaining cluster.

Step 5: Finalizing the Analysis. One of the two resulting
clusters is very cohesive around the terms: “term semantic
latent space . . . ”. We infer the cluster captures the entities
that model the LSI concepts. Looking in the map view, the
colors of the descendants show that there is not any gain in
cohesiveness if we explore this cluster any further; so we
focus our attention on the other cluster. After expanding it
we observe two very cohesive clusters.

The first is grouped around the terms ”java token parser
stem”. Inspecting the edges that come and go from the clus-

Figure 5. The Detail Panel shows the classes
contained in the cluster which computes the
Single Value Decomposition

ter (see Figure 6) we see that it uses a lot of string process-
ing which when correlated with the term “stem” makes us
believe that the classes in the cluster are responsible with
preprocessing the terms for suffix removal.

After inspecting the second cluster we observe that it
contains a collection of utilities and some extensions.

Figure 6. The main components of the Hapax
system are visible in the Main View

The relations in the view need to be inspected and some
might need to be filtered as they might not be representative
for the interactions between the detected clueters. However,
this is beyond the scope of the article.

5



6 Related Work

Our work expands over two active fields: Semantic anal-
ysis and interactive visualization. A first attempt to combine
the two fields was done by Wong who took into account the
prefixes of the files when clustering them into subsystems
that were visualized by Rigi [13]. Maletic and Marcus were
the first to apply LSI for software reverse engineering [8].
They used LSI to analyze the semantic clusters of the files of
Mosaic. Even if they only considered files, they showed the
usefulness of information retrieval techniques in reverse en-
gineering. The relation between the structure of the system
and the semantical information was explored in a follow-
up work by the same authors when they analyzed the same
case study, only at the level of procedures [9]. Tools that use
structural exploration are Rigi [12] and SHriMP [11]. Rigi
differs from our approach by using a bottom-up approach to
the architecture recovery and multiple windows for present-
ing different perspectives on the system. SHriMP supports
a top-down approach to software exploration while employ-
ing a nested-graph visualization technique. The difference
between SHriMP and our tool is that we use polymetric vi-
sualizations and use the Detail View for presenting the con-
tents of the composites instead of representing the contents
inside them.

7 Conclusions

When only the source code is available, reverse engineer-
ing a large software system is a difficult task because of its
sheer size and complexity. Two of the methods used are
interactive software exploration and clustering.

In this work we propose the use of an interactive naviga-
tion through the a hierarchical clustering of a software sys-
tem based on semantical information. At any point in time,
the reverse engineer is presented with a clustering structure
that she can expand, delete or inspect. We also show the
structural relationships (i.e., invocations) between the clus-
ters, thus providing the reverse engineer with more infor-
mation to support the decision of navigation and inspection.

As a validation, we presented an initial result of apply-
ing the approach on a case study. We focused on the inter-
active nature of the process and showed for each step how
the information presented guide the reverse engineering de-
cisions.

Acknowledgments. Gı̂rba gratefully acknowledge the finan-
cial support of the Swiss National Science Foundation for the
project “RECAST: Evolution of Object-Oriented Applications”
(SNF Project No. 620-066077, Sept. 2002 - Aug. 2006).

References

[1] M. W. Berry, S. T. Dumais, and G. W. O’Brien. Using lin-
ear algebra for intelligent information retrieval. Technical
Report UT-CS-94-270, 1994.

[2] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Fur-
nas, and R. A. Harshman. Indexing by latent semantic analy-
sis. Journal of the American Society of Information Science,
41(6):391–407, 1990.

[3] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and
A. Mockus. Does code decay? assessing the evidence from
change management data.IEEE Transactions on Software
Engineering, 27(1):1–12, 2001.

[4] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering:
A review. ACM Computing Surveys, 31(3):264–323, Sept.
1999.

[5] R. Koschke. An incremental semi-automatic method for
component recovery. InWorking Conference on Reverse En-
gineering, pages 256–, 1999.

[6] A. Kuhn, S. Ducasse, and T. Gı̂rba. Enriching reverse engi-
neering with semantic clustering. InProceedings of Working
Conference On Reverse Engineering (WCRE 2005), pages
??–??, Nov. 2005. to appear.

[7] M. Lanza and S. Ducasse. Polymetric views — a lightweight
visual approach to reverse engineering.IEEE Transactions
on Software Engineering, 29(9):782–795, Sept. 2003.

[8] J. I. Maletic and A. Marcus. Using latent semantic analysis
to identify similarities in source code to support program un-
derstanding. InProceedings of the 12th International Con-
ference on Tools with Artificial Intelligences (ICTAI 2000),
pages 46–53. IEEE Computer Society, Nov. 2000.

[9] J. I. Maletic and A. Marcus. Supporting program compre-
hension using semantic and structural information. InPro-
ceedings of the International Conference on Software Engi-
neering (ICSE 2001), pages 103–112, 2001.

[10] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner.
Bunch: A Clustering Tool for the Recovery and Maintenance
of Software System Structures. InProceedings of ICSM ’99
(International Conference on Software Maintenance), Ox-
ford, England, 1999. IEEE Computer Society Press.

[11] J. Michaud, M.-A. Storey, and H. Muller. Integrating infor-
mation sources for visualizing Java programs. InProceed-
ings of IEEE International Conference on Software Mainte-
nance (ICSM’01), pages 250–259. IEEE, Nov. 2001.

[12] H. A. Müller and K. Klashinsky. Rigi – a system for
programming-in-the-large. InICSE ’88: Proceedings of
the 10th international conference on Software engineering,
pages 80–86. IEEE Computer Society Press, 1988.

[13] K. Wong, S. R. Tilley, H. A. M̈uller, and M.-A. D. Storey.
Structural redocumentation: A case study.IEEE Software,
12(1):46–54, Jan. 1995.

6


