
Visualizing Feature Interaction in 3-D

Orla Greevy1, Michele Lanza2 and Christoph Wysseier1

1 Software Composition Group - University of Berne - Switzerland
2 Faculty of Informatics, University of Lugano - Switzerland

Abstract

Without a clear understanding of how features of a soft-
ware system are implemented, a maintenance change in one
part of the code may risk adversely affecting other features.
Feature implementation and relationships between features
are not explicit in the code. To address this problem, we pro-
pose an interactive 3D visualization technique based on a
combination of static and dynamic analysis which enables
the software developer to step through visual representa-
tions of execution traces. We visualize dynamic behaviors
of execution traces in terms of object creations and inter-
actions and represent this in the context of a static class-
hierarchy view of a system. We describe how we apply our
approach to a case study to visualize and identify common
parts of the code that are active during feature execution.

1 Introduction

Many reverse engineering approaches to software analy-
sis focus on static source code entities of a system, such as
classes and methods [3, 13, 15]. A static perspective consid-
ers only the structure and implementation details of a sys-
tem. Using static analysis alone we are unable to easily de-
termine the roles of software entities play in the features of a
system and how these features interact. Without explicit re-
lationships between features and the entities that implement
their functionality, it is difficult for software developers to
determine if their maintenance changes cause undesirable
side effects in other parts of the system.

Several works have shown that exercising the features of
a system is a reliable means of correlating features and code
[7, 20]. In previous works [9, 10], we described a feature-
driven approach based on dynamic analysis, in which we
extract execution traces to achieve an explicit mapping be-
tween features and software entities like classes and meth-
ods. Our definition of a feature is a unit of behavior of a
system.

In this paper we concentrate on describing and under-
standing relationships between features. We define feature

interaction relationships in terms of classes they share.
Dynamic analysis implies a vast amount of information,

which makes interpretation difficult. We introduce an ap-
proach which we refer to ascontrolled dynamic visualiza-
tion. Using our technique the software developer can selec-
tively step through execution traces and drive a visualiza-
tion engine which represents the events of the traces in a 3-
D visualization. By selecting execution traces collected by
executing the feature or features that require maintenance,
we limit the amount of information to be processed to the
relevant parts of the code.

Furthermore, ourcontrolled dynamic visualizationsare
useful to observe which parts of the system are being used
by more than one feature of the system. This information
is useful to determine which other features may be affected
by a change to the code during a maintenance activity.

Structure of the paper. We start by introducing the
terminology we use to describe and interpret dynamic in-
formation. In Section 3 we then outline the visualization
mechanisms of our technique and the trace generation pro-
cess (Section 4). We discuss the advantages of our 3-D ap-
proach. In Section 5 we report on the case study conducted
using our approach. Subsequently, in Section 6 we discuss
our results. We summarize related work in Section 7. Sec-
tion 8 outlines our conclusions and future work.

2 Feature Terminology

We establish the relationship between the features and
software entites by exercising the features orusage sce-
narios and capturing their execution traces, which we re-
fer to asfeature-traces. A feature-traceis a sequence of
runtime events (e.g.,object creation/deletion, method invo-
cation) that describes the dynamic behavior of a feature.

We define the measurementsNOFRC to compute the
feature-traces that reference a class andFC to compute
a characterization of a class in terms of how many features
reference it and how many features are currently modeled.

• Not Covered (NC) is a class that does not partici-
pate to any of the features-traces of our current feature

model.

(NOFC = 0)→ FC = 0

• Single-Feature (SF) is a class that participates in only
one feature-trace.

(NOFC = 1)→ FC = 1

• Group-Feature (GF) is a class that participates in less
than half of the features of a feature model. In other
words, group-feature classes/methods provide func-
tionality to a group of features, but not to all features.

(NOFC > 1) ∧ (NOFC < NOF/2)→ FC = 2

• Infrastructural (I) is a class that participates in more
than half of the features of a feature model.

(NOFC >= NOF/2)→ FC = 3

A feature-fingerprint(FP) is a set of sets of character-
ized software entities. In this paper we focus on feature-
fingerprints of classes to determine feature-interaction in
terms of how features share classes:

FPi = {{NC(classes)}, {SF (classes)}, {GF (classes)},
{I(classes)}}
Figure 1 shows the relationships between features and
classes.

3 Visualization of Dynamic Behavior

We use visualization to understand the dynamic behav-
ior of features. The visualization we propose is based on
polymetric views as described by [16] but extended to 3D.
The visualizations we propose are (1) a feature interaction
view and (2) a dynamic feature-trace view.

Feature Interaction View. In this view we display the
class hierarchies of a system. The classes are displayed as
3-D nodes and the inheritance relationships are displayed
as connecting edges. We map theFC (a class character-
ization in terms of feature participation) measurement to
the color of the node. In previous work [10] we described
simple views that show the distribution of class character-
izations in terms of features based on Figure 1. Thefea-
ture interaction viewis more detailed, as it shows the ac-
tual classes that participate in features in the context of a
class hierarchy. In Figure 5 we see a feature interaction
view we generated for a small example system. The col-
ors of the nodes indicate the feature characterization of the
classes(FC). We see from this view, where thesingle-
feature(medium gray),group-feature(dark gray) andinf-
trastructuralclasses (black nodes) are located in the system.
The light gray classes arenot-covered. This view presents a
summary of the relationships between features terms of the

«single feature»
ClassB

F1

F2

F3

F4

F5

«group feature»
ClassC

«infrastructural»
ClassD

«infrastructural»
ClassD

Group classes

Single classes

Infrastructural
classes number of

 classes = 2

«single feature»
ClassA

«not covered»
ClassX

Feature-fingerprintsClasses

Figure 1. Feature-Fingerprints and Classes
Relationships

classes that they share. We query the nodes to obtain the
details of the represented classes.

Dynamic Feature-trace View.This view is a represen-
tation of a system behavior during the execution of a fea-
ture in terms of classes, object-instantiations and message
sends. In Figure 3 we see a schematic display of such a
view. It is a 3D visualization which displays the static struc-
ture of the system on a plane ”floating” above the ground
(the gray boxes are the classes connected by inheritance
edges). When the trace is interpreted each instantiation of a
class (the creation of an object) generates a blue box (like a
”floor” in a building) above the ground level. The more
blue boxes are above a class, the more instances of this
class have been created. The currently active objects are
displayed in green,i.e., each time an object sends a mes-
sage to another object, a message edge is draw between the
two object boxes.

The tool which implements these dynamic feature-trace
views is called TraceCrawler, an extension of the Code-
Crawler tool [14]. TraceCrawler permits the user to step
through the traces and at each point in time of the trace to
see the current state of the trace and also to backward and
forward within the trace: In Figure 4 we see a small sce-
nario generated from a simple test system,i.e., three differ-
ent points in time of the same trace. On the lefthand side

2

Figure 2. Example Feature-Interaction View.

we see the 3-D visualization and on the righthand side we
see the corresponding position in the trace that is currently
being processed. This allows for an in-depth and detailed
inspection of the trace. The visualizations are interactive
(the user can click on the nodes and edges and inspect them)
and navigable (the user can ”fly through” the 3D space and
position the point of view wherever he wants. This allows
to observe certain parts of the visualization closely.

4 Extracting and Visualizing Feature Traces

We outline how we apply our technique to obtain and
visualize feature-traces from a software system.

1. We apply static analysis and abstract a static model of
the source code entities of the application (e.g.,classes,
methods and hierarchy relationships).

2. We identify the features to include in our analysis. We
do not require complete coverage of the system’s func-
tionality (as discussed in Section 6). Our approach al-
lows the developer to focus on a subset of features of
interest.

3. Our dynamic analysis toolTraceScraperbuilds on
method wrappers [2] to instrument the code. Our
traces are extracted as a tree of method invocation

Root Class

Subclass 1

Subclass 2

Instances of
Root Class

Inheritance
Relationships

Active Instances

Active message

Figure 3. The Dynamic Feature-trace View

calls. The unit of observable behavior that we iden-
tify as being a feature should be defined as small as
possible [8]. This limits the volume of data generated
by the feature capture. We implement a test case that
interacts with the application to trigger the feature be-
havior. The behavior is traced in a controlled environ-
ment. This means that no other system activity occurs
at the time of capture. We abstract feature-traces for a
set of features using dynamic analysis. To achieve this
we instrument the code and execute the features.

4. We model the feature-traces as first class entities and
incorporate them into the static model of the source
code. By doing so we establish the relationships be-
tween the methods calls of the feature traces and the
static model class and method entities. We compute
the feature characterizations of the classes as described
in Section 2

5. Our TraceCrawlertool generates a static view of the
application in terms of class hierarchies. It then pro-
cesses the feature-traces and converts the events into
the previously presented visual representations.

5 Validation: Moose Case Study

In this section we present the results of applying our ap-
proach to theMoosecase study, a language-independent
environment for reengineering object-oriented systems [5].
It provides features for storing models derived from souce
code, navigating, querying and applying metrics to the
model entites. The version we use for this experiment
(3.0.25) consists of 782 classes.

3

Figure 4. TraceCrawler allows the user to step
through the traces.

For our feature analysis ofMoosewe focus on 3 features,
which represent typical user interactions with the applica-
tion (the numbers are the associated class characterization
values):
1-Loading a model from source code (SF=0, GF=0, I=156)
2-Loading a model from a file (SF = 0, GF = 0, I = 156)
3-Saving a model to a file (SF = 24, GF = 0, I = 175)

In Figure 5 we show a part of the feature interaction view
we generated for Moose based on the a class characteriza-
tion in terms of feature participation (FC) measurment de-
scribed in Section 2.

From the point of view of feature interaction, we are in-
terested in the classes that are shared by all 3 features we
traced (i.e., the classes that are characterized asinfrastruc-
tural). These are shown in black in Figure 5. We query the
view to obtain names of the classes. For example we obtain
that the classesPropertyOperatorFactoryandFAMIXClass

Figure 5. The Feature-Interaction View for
Moose.

Figure 6. A Visualization of the Feature-Trace
’Load a Model From Source Code’.

are characterized as infrastructural.

4

Figure 6 is a visualization that results from stepping
though the feature-trace generated for the feature ’Load
a Model from Source Code’. As Moose loads a model
from source code, it instantiates the entities of the model
it abstracts from the source code. This visualization shows
which classes are active during the execution of the feature.
We see instantiations and message sends between objects.
By inspecting the class nodes of this view we see that the
Moose classesEntityType, MOFExtendedClass, MOFPack-
age MOFImportare instantiated a large number of times.
We validated this behavior makes sense in the context of
this feature with the developers of Moose.

6 Discussion

The large volume of information and complexity of dy-
namic information makes it hard to infer higher level of in-
formation about the system. Our approach is based on vi-
sualizations to reveal key semantic information about the
relationships features of a system.

In our Moose case study, we chose three conceptually re-
lated features - the functionality that deals with abstracting
and modelling entities from source code. Ourfeature inter-
action viewreveals, which classes participate in all the three
features, and which classes are specific to just one feature.
We use developer knowledge to validate our results.

Ourdynamic feature interaction viewsprovide us with an
insight into how the classes and methods behave at runtime.
We see which parts of the system are stressed during the
execution of a feature.

Feature definition. Not all features of a system satisfy
our definition of a feature as a user-triggerable unit of ob-
servable behavior. System internal housekeeping tasks, for
example, are not triggered directly by user interaction. For
the identification of features we limit the scope of our in-
vestigation to user-initiated features.

Coverage.We limit the scope of our investigation to fo-
cus on a set of features. Our feature model does not achieve
100% coverage of the system. We argue that for the purpose
of feature location, complete coverage is not necessary. We
use our feature model to focus on a specific set of features.
The model is extensible and the approach to analysis is ex-
tensible to include more features if required.

Garbage Collection.Currently our traces are generated
by instrumenting the code of the application. We do not
instrument low level calls. Therefore for languages rely on
garbage collection, we currently have no event in the trace.

Language IndependenceObtaining the traces from the
running application requires code instrumentation. The
means of instrumenting the application is language depen-
dent. We abstract a feature model of the traces which is the
same for every language. Our analysis is performed on the
feature model.

7 Related Work

Many researchers have identified the potential of feature-
centric approaches in software engineering and in particular
as a basis for reverse-engineering [7, 19, 20]. Our work is
directly related to the field of dynamic analysis [1, 11, 21]
and user-driven approaches [12] . Our main focus with this
work is to use 3-D visualizations of feature-traces to analyze
the dynamic behavior of features and how they interact in
terms of the parts of the code that they share.

Feature location techniques such asSoftware Recon-
naissencedescribed by Wilde and Scully [19] , and that of
Eisenbarth et al. [7] are closely related to our feature lo-
cation approach. In contrast, our main focus is applying
feature-driven analysis to object-oriented applications.

Salah and Mancoridis [18] describe a hierarchy of dy-
namic views that is constructed using tools that analyze
program execution traces and the environment used to con-
struct these views.

De Pauwet al. present two visualization techniques.
In their tool Jinsight, they focused on interaction diagrams
[17]. Thus all interactions between objects are visualized.

Ducasseet al. [6] present visualizations of dynamic be-
havior of a system based on metrics calculated for the num-
ber of invocations, number of object creations and the num-
ber of used classes/methods.

The main focus of our approach is to visualize of the
dynamic behavior of features and how they interact. Our
approach complements approaches [17] in that we by al-
lowing the developer to interact with the visualization and
and control the display of events in a feature trace. Our visu-
alizations add semantic information to the software entities
by showing how they participate in features. We use this
semantic information to reason about the functional roles of
software entities of a system in terms its features.

8 Conclusions and Future Work

Reverse engineering approaches that focus only on the
implementation details and static structure of a system over-
look its dynamic behavior at runtime. Our feature perspec-
tive establishes the semantic purpose of the individual soft-
ware entities of a system. Our visualizations combine both
a static view of a system in terms of class hierarchies with a
dynamic information obtained from feature-traces. We cope
with large amounts of dynamic data as the visualization tool
steps sequentially through the trace and converts each event
of the trace into a visual representation.

Our goal is to analyze the functional roles of classes from
a feature perspective and to use visualization of dynamic
behavior to gain an understanding of how software entities
participate in features.

5

We applied our approach to the Moose case study and
showed how ourfeature interaction viewis useful for in-
terpreting the functional roles of classes from a feature per-
spective. This view reveals valuable information about the
interaction between features in terms of classes they share.
This information supports the maintainer of a system by
presenting visually which parts of the system are affected
by changes to features.

Our dynamic feature-traceviews provide us with in-
depth views at the level of object interaction.

In the future, we would like to consider applying filter-
ing mechanisms to the traces to improve the scalability of
the approach and to reduce the volume of data without loss
of information about the relationships between features and
code. We intend to consider variations in how we present
the dynamic behavior in the context of the static entities in
the system. Furthermore, we plan to extend our feature rep-
resentation within to include multiple paths of execution of
a feature. We expect that as a result we achieve a higher
coverage of classes and methods and increase the accuracy
of our approach.

Acknowledgments: We gratefully acknowledge the fi-
nancial support of the Swiss National Science Founda-
tion for the project “The Achievement and Validation of
Evolution-Oriented Software Systems” (SNF Project No.
PMCD2-102511).

References

[1] T. Ball. The Concept of Dynamic Analysis. InProceed-
ings of ESEC/FSE ’99 (7th European Software Engineering
Conference and 7th ACM SIGSOFT International Sympo-
sium on the Foundations of Software Engineering, number
1687 in LNCS, pages 216–234, sep 1999.

[2] J. Brant, B. Foote, R. Johnson, and D. Roberts. Wrappers
to the Rescue. InProceedings ECOOP ’98, volume 1445 of
LNCS, pages 396–417. Springer-Verlag, 1998.

[3] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refac-
torings via change metrics. InProceedings of OOPSLA
’2000 (International Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications), pages
166–178, 2000.

[4] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 —
The FAMOOS Information Exchange Model. Technical re-
port, University of Bern, 2001.

[5] S. Ducasse, T. Ĝırba, M. Lanza, and S. Demeyer. Moose:
a Collaborative and Extensible Reengineering Environment.
In Tools for Software Maintenance and Reengineering,
RCOST / Software Technology Series, pages 55 – 71.
Franco Angeli, 2005.

[6] S. Ducasse, M. Lanza, and R. Bertuli. High-level polymetric
views of condensed run-time information. InProceedings
of CSMR 2004 (Conference on Software Maintenance and
Reengineering), pages 309 – 318, 2004.

[7] T. Eisenbarth, R. Koschke, and D. Simon. Locating Fea-
tures in Source Code.IEEE Computer, 29(3):210–224, Mar.
2003.

[8] E.Pulverm̈uller, A. Speck, J.O.Coplien, M. D’Hondt, and
W.DeMeuter. Position paper: Feature interaction in com-
posed systems. InProceedings of the European Conference
on Object-Oriented Programming, ECOOP 2001, pages 1–
6, 2001.

[9] O. Greevy and S. Ducasse. Correlating features and code
using a compact two-sided trace analysis approach. InPro-
ceedings of CSMR 2005 (9th European Conference on Soft-
ware Maintenance and Reengineering. IEEE Computer So-
ciety Press, 2005.

[10] O. Greevy, S. Ducasse, and T. Gı̂rba. Analyzing feature
traces to incorporate the semantics of change in software
evolution analysis. InProceedings of ICSM 2005 (21th
International Conference on Software Maintenance), Sept.
2005. to appear.

[11] A. Hamou-Lhadj, E. Braun, D. Amyot, and T. Lethbridge.
Recovering behavioral design models from execution traces.
In Proceedings of CSMR 2005 (9th European Conference on
Software Maintenance and Reengineering. IEEE Computer
Society Press, 2005.

[12] I. Jacobson. Use cases and aspects—working seamlessly to-
gether.Journal of Object Technology, 2(4):7–28, July 2003.

[13] J. Krajewski. QCR - A methodology for software evolu-
tion analysis. Master’s thesis, Information Systems Institute,
Distributed Systems Group, Technical University of Vienna,
Apr. 2003.

[14] M. Lanza. Codecrawler — lessons learned in building a
software visualization tool. InProceedings of CSMR 2003,
pages 409–418. IEEE Press, 2003.

[15] M. Lanza and S. Ducasse. A Categorization of Classes
based on the Visualization of their Internal Structure: the
Class Blueprint. InProceedings of OOPSLA ’01 (Inter-
national Conference on Object-Oriented Programming Sys-
tems, Languages and Applications), pages 300–311. ACM
Press, 2001.

[16] M. Lanza and S. Ducasse. Polymetric views — a lightweight
visual approach to reverse engineering.IEEE Transactions
on Software Engineering, 29(9):782–795, Sept. 2003.

[17] W. D. Pauw, R. Helm, D. Kimelman, and J. Vlissides. Visu-
alizing the behavior of object-oriented systems. InProceed-
ings OOPSLA ’93, pages 326–337, Oct. 1993.

[18] M. Salah and S. Mancoridis. A hierarchy of dynamic soft-
ware views: from object-interactions to feature-interacions.
In Proceedings of The 20th IEEE International Conference
on Software Maintenance (ICSM 2004), 2004.

[19] N. Wilde and M. C. Scully. Software reconnaisance: Map-
ping program features to code.Software Maintenance: Re-
search and Practice, 7(1):49–62, 1995.

[20] W. E. Wong, S. S. Gokhale, and J. R. Horgan. Quantifying
the closeness between program components and features.J.
Syst. Softw., 54(2):87–98, 2000.

[21] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens. Ap-
plying webmining techniques to execution traces to sup-
port the program comprehension process. InProceedings of
CSMR 2005 (9th European Conference on Software Main-
tenance and Reengineering. IEEE Computer Society Press,
2005.

6

