
Multi-level Method Understanding Using Microprints

Stéphane Ducasse
LSE-LISTIC

Université de Savoie, France
SCG

University of Bern, Switzerland

Michele Lanza
Faculty of Informatics

University of Lugano, Switzerland

Romain Robbes
Faculty of Informatics

University of Lugano, Switzerland

Abstract

Understanding classes and methods is a key activity in
object-oriented programming, since classes represent the
primary abstractions from which applications are built,
while methods contain the actual program logic. The main
problem of this task is to quickly grasp the purpose and
inner structure of a class. To achieve this goal, one must
be able to overview multiple methods at once. In this pa-
per, we present microprints, pixel-based representations of
methods enriched with semantical information. We present
three specialized microprints each dealing with a specific
aspect we want to understand of methods: (1) state access,
(2) control flow, and (3) invocation relationship1.

1 Introduction

In object-oriented applications, classes describe the state
of objects and define their behavior. However, objects be-
ing behavioral entities, understanding methods is crucial
for the comprehension of object-oriented applications [15].
In addition to traditional control flow analysis, there is a
large variety of information that can be used to understand
a method: how the state of an object is accessed, if and how
ancestor state is used, how an object uses its own methods
or the methods defined in its superclasses [3], and how an
object communicates with other objects.

This topic has already been partly addressed by prior
work. Cross et al. defined and validated the effective-
ness of Control Structure Diagrams (CSD) [1] [5] which
depict the control-structure and module-level organization

1Note: This paper makes heavy use of colors and should thus be either
printed using a color printer or be read online.

of a program. Even though CSDs are applied to Ada and
Java code, they do not support OOP concepts such as inher-
itance, overridden methods . . . , but only control flow con-
structs. SeeSoft [4] can visualize large amount of code but
it associates a color to a complete line and does not intro-
duce a specific visualization for method semantics. More-
over, it does not provide object-oriented specific informa-
tion. sv3D, developed by Marcus et al., presents lines as
dots and each dot can be associated with different informa-
tion such as the nesting level or the control flow [7]. How-
ever, sv3D is more a general visualization approach than a
fine-grained one specialized to convey important aspects of
object-oriented code.

Our approach is based on microprints, pixel-based
character-to-pixel representations of methods enriched with
semantical information mapped on nominal colors.

The paper is structured as follows: First, we highlight
the key constraints of the work presented and then present
microprints and the three instances we defined. The next
section shows how microprints are integrated with the Visu-
alWorks Smalltalk development environment. We conclude
with a discussion and a comparison of our approach with
related works.

2 Microprints

When working on method understanding and visualiza-
tion we have to consider the following constraints: (1) We
want to avoid context switches as much as possible as they
induce latency. (2) Limited space: screens are still too small
and as extra information should not clutter the code, visual-
izations must be effective in a limited amount of space. (3)
As the human brain is not capable of simultaneously pro-
cessing more than ten distinct colors, a diverse but small
number of colors should be used [14]. (4) The information

should be clear and interpretable at a glance. In particular
color conventions have to be consistent.

colorAt: index
 ^ (mapper isInsideComment: index)

ifTrue: [self commentColor]
ifFalse: [self colorForNode: (mapper nodeForIndex: index)]

a method

its microprint

Figure 1. The principle of a microprint.

A microprint is a character to pixel mapping of a method
annotated with semantical elements. Figure 1 shows how
each character of the method body is represented as a pixel
in a microprint. Although Smalltalk is used in examples
throughout this paper, Microprints can be applied to any
object-oriented language.

Description Color
Microprint - State Changes and Accesses

Instance variables Cyan
Accessor method to an instance variable (read) Cyan
Local variables and arguments Purple
Self pseudo-variable (this) Blue
Super pseudo-variable Orange
Reference to a class or global variable Yellow
Assignment operator Red
Accessor method to an instance variable (write) Red

Microprint - Control Flow
Return Red
Use of exceptions Red
Conditional control structures Blue
Iterating control structures Green
Blocks of code (varies with nesting level) Purple

Microprint - Object Interaction
Message to self Blue
Message to super Orange
Message to other Purple
Message to classes Yellow

Table 1. Microprint color mappings.

We decided to use distinct nominal colors to ease the in-
terpretation of the microprints. In Table 1 we see the color
mapping schema we consistently apply throughout this pa-
per. Microprints keep code familiarity by preserving the in-
dentation of the code, as this is an important information for
programmers. In addition, this creates a one-to-one map-
ping between the code and its representation forms to avoid
programmers getting “lost in translation”.

However, problems may occur if this approach is applied
naively:

• Important information such as returns or conditionals
are sometimes not visible enough. For example, in

Smalltalk, method returns are expressed using the caret
character ˆ and not with a keyword such as return.

• When the code is composed of nested structures such
as nested conditionals and loops, identifying the scope
of a given structure is crucial. Representing characters
directly does not provide enough visual feedback and
produces aliasing effects.

To solve these problems the mapping of the color is not
direct but propagated to the nested elements. In Figure 2,
the entire expression returned (last line of the method) is
also colored in red. Each new nesting element however
takes precedence over the color of its parent: a return ex-
pression contained in a conditional one will not have the
blue color of the conditional expression but the red of the
return expression, as shown by the end of the lines 4 and 5
in Figure 2. This solution does not adress the problem of
the identification of the scope of a construct but provides a
better visual feedback.

3 Dedicated MicroPrints

When reading object-oriented code, the key information
that the programmer is looking for can be classified into the
following categories : (1) state changes and accesses, (2)
method control flow and (3) method invocations or object
interactions. Putting all this information into a single mi-
croprint would lead to an unreadable picture, since far too
much information would be displayed (the same applies for
code highlighting). Since for humans it is easier to com-
bine information rather than to extract it, we propose three
microprints specialized on each of these aspects. These mi-
croprints can be displayed alongside a method body. Since
they are significantly smaller than the method itself, we can
display at least 3 of them in the same space without having
scrolling problems, as shown on the right of Figure 8.

3.1 Microprint - State Changes and Accesses

The intention of this microprint is to convey how vari-
ables of different scopes are manipulated. This microprint
focuses on state accesses and changes. It distinguishes vari-
able scope and assignments.

Color Mapping. Assignments are displayed in red. Dif-
ferent kinds of variables are distinguished: method argu-
ments (purple), the self variable (Corresponds to this in
Java) (blue), instance variables (cyan), temporary variables
(purple) and global variables such as classes (yellow). The
super pseudo-variable is shown in orange as it refers to an-
other class higher in the hierarchy. Some extra analysis is
performed to use the same color for accessor methods and
direct accesses. Figure 3 presents an example of microprint
with state changes and accesses.

addMetric: metric displayUsing: colorOrSymbol
 self metrics add: metric.
 colorOrSymbol isSymbol ifTrue: [
 ((colorOrSymbol = self xAxis) | (colorOrSymbol = self yAxis)) ifFalse: [^ ColorValue yellow].
 (currentMarkerColors anySatisfy: [:c | c = colorOrSymbol]) ifTrue: [^ ColorValue black]].
 ^ self colorInfo at: metric put: colorOrSymbol.

a return construct

the returned expression

Figure 2. A control flow microprint of the method addMetric:displayUsing:.

colorForNode: aNode metric: m value: value
 | color |
 color := configuration colorInfo at: m.
 oldNode := aNode.
 oldColor := color.
 ^ ColorValue
 red: color red * value
 green: color green * value
 blue: color blue * value

Figure 3. A visualization of the method color-
ForNode:metric:value: using a dedicated micro-
print for state changes and accesses.

Spotting patterns. Glancing at the microprints, one
can immediately see some interesting sequences of colors.
Cyan-red means that instance variables are set. Purple-red
means that local variables are assigned. Yellow spots reveal
references to other classes and in general creation of objects
of these other classes.

Figure 4 shows two microprints of a lazily initialized ac-
cessor method named comboAspect. This method tests if
the value of the variable is nil; if this is the case the value is
set before being returned. The order of the colors in the mi-
croprints allows us to spot this pattern easily. The cyan-red-
yellow sequence in the state microprint (a variable is set to
an external reference, probably a new instance of the class)

comboAspect

 ^combo isNil
 ifTrue: [combo := String new asValue]
 ifFalse: [combo]

Control flowState access

Figure 4. Microprints of an accessor method
following the lazy initialization pattern

and the red-blue sequence in the control flow (returning the
result of a conditional expression) is a strong characteristic.

3.2 Microprint - Control Flow

This microprint focuses on method control flow. It high-
lights the following types of information: loops, conditional
statements, conditional loops, return statements, and excep-
tions.

Color Mapping. Conditional statements are marked as
blue, loops as green and exceptions or return statements as
red, since they both end the execution of the method. Blocks
of code are shown in purple.

Spotting patterns. Figure 5 shows the microprint of the
method colorForNode:. We see there the simple control flow
of a method with a guard clause, i.e., one conditional and

colorForNode: aNode
 | color |
 aNode = oldNode ifTrue: [^oldColor].
 color := self uncachedColorForNode: aNode topLevel: true.
 oldNode := aNode.
 oldColor := color.
 ^ color

Figure 5. The microprint of the method color-
ForNode: reveals it contains a conditional ex-
pression with only one branch (also called a
guard clause).

a return, followed by several statements and a final return
statement. Figure 2 shows a typical control flow microprint
of a method with a complex logic. On it we can spot a
conditional (blue), conditional loops (green), and explicit
control flow returns (red).

The absence of patterns in a method is another source of
information. Such methods do not exhibit any non-linear
control flow. This allows one to easily tell apart meth-
ods performing some initialization, forwarding messages to
other objects, or performing a series of subtasks. Methods
with a linear control flow are either totally gray or they only
have a single red return spot as their last statement.

3.3 Microprint - Object Interactions

The third dedicated microprint focuses on the different
types of method calls, i.e., if a message is sent to another
object or is invoked via super or self/this. In such a case,
the microprint also indicates whether the method is locally
defined or inherited by a superclass.

Color Mapping. Messages sent to self are shown in
blue, and messages sent to super, or sent to self but imple-
mented in the superclasses, are displayed in orange. Inter-
actions with other objects are also considered, and are dis-
played in purple, as we can see on Figure 6. Thus the color
choice is consistent with the one used in the state changes
and accesses microprints, as shown in Table 1. This consis-
tency allows the user to interpret microprints faster.

Spotting patterns. This microprint allows one to eas-
ily discover the type of interaction a given class has with
other classes: whether it is auto-sufficient, relying on its
superclass for certain behaviors, or interacts with “foreign
classes”. Categorizing classes or sets of methods in such
a way can help the programmer to pick an area of a class

Object interactions

Figure 6. Object interaction microprint. self
in blue, super in orange, other in purple

which is easier to understand according to his current needs
(like understanding the internal implementation of a class,
or its relations with its superclass). This microprint also al-
lows one to detect areas where helper methods are used (lots
of self or super message sends).

The exceptional cases are also interesting: A method
with absolutely no interaction is either an accessor to an
instance variable or to a constant. A method with only for-
eign interactions, is really a utility method, and probably
never accesses the state of the object. It could come from a
previous refactoring.

or its relations with its superclass). This microprint also al-

lows one to detect areas where helper methods are used (lots

of self or super message sends).

The exceptional cases are also interesting: A method

with absolutely no interaction is either an accessor to an in-

stance variable or to a constant. A method with only foreign

interactions, such as the one displayed in Figure ??, is re-

ally a utility method, and probably never accesses the state

of the object. It could come from a previous refactoring.

eval:

evalBlock:withArguments:

newEvaluatorFor:

perform:receiver:arguments:superSend:

performMethod:receiver:arguments:

valueWithReceiver:arguments

Figure 7. An overview of a set of methods
using microprints. In Smalltalk these sets are

called method protocols.

5 Microprints at Work

Microprints have been introduced in the professional

IDE of VisualWorks Smalltalk and in CodeCrawler in the

context of class blueprints [12].

5.1 In a Programming Environment

We extended the VisualWorks Smalltalk class browser to

display microprints when it displays methods or groups of

methods (called method protocols in Smalltalk). When the

browser displays a method, several dedicated microprints

are displayed for the method (Figure 8). When the browser

displays the various protocols of a class, all the methods in

that protocol (such as “accessing”, “testing”, etc.) are dis-

played using the same but changeable microprint, as shown

in Figure 7.

The microprints can be chosen by the programmer ac-

cording to the information he needs. The programmer

can also define other dedicated microprints, by creating a

new mapping of Markers (objects used to detect and mark

elements of a method) to Colors, such as displaying the

“assignment to variable” marker in red, the “conditional

marker” in green, The programmer can also use the

framework to define his own kind of microprints. We took

care of having an easily extensible framework for the micro-

prints so someone willing to define new microprints has just

to create a new subclass of Marker. It can then be included

in all microprints with a color using the same procedure.

6 Discussion

Microprints have the following properties: they take a

small amount of space while providing a lot of information,

they are non-intrusive and do not modify the source code.

They support the identification of visual patterns such as

red fragments indicating returns or exception handling, or

green fragments indicating loops. They also preserve code

indentation, keeping code familiarity and allowing the pro-

grammer to map the microprint to the method with better

ease.

When looking at a single method, the advantage of mi-

croprints over simple code coloring comes from the fact that

code coloring cannot display all the available information

due to the limited amount of colors we can use. With mi-

croprints several facets of the code can be displayed at once.

One drawback of microprints is that the programmer has

to navigate between the code and its microprints. How-

ever, microprints being smaller than the methods, scrolling

is very rarely needed as said above. Thus the navigation

does not involve physical movements. While microprints

are really effective when used in combination with class

blueprints or for entire class hierarchies (or even lists of

methods), it is not sure that they are useful for the under-

standing of a single method. Smalltalk code is generally

less verbose than other languages such as Java or C++ (The

average length of methods in Smalltalk is 7 lines [11], one-

liners being common). We think that in those languages

the microprints will prove even more useful, as their utility

5

Figure 7. An overview of a set of methods
using microprints. In Smalltalk these sets are
called method protocols.

Method definition Method microprints

Classes Packages Methods Method protocols

Figure 8. Microprints integration in a development environment.

4 Microprints at Work

We extended the VisualWorks Smalltalk class browser to
display microprints when it displays methods or groups of
methods (called method protocols in Smalltalk). When the
browser displays a method, several dedicated microprints
are displayed for the method (Figure 8). When it displays a
method protocol of a class, all the methods in that protocol
(such as “accessing”, “testing”, etc.) are displayed using the
same configurable microprint, as shown in Figure 7.

The microprints can be chosen by the programmer ac-
cording to the information he needs. The programmer
can also define other dedicated microprints, by creating a
new mapping of Markers (objects used to detect and mark
elements of a method) to Colors, such as displaying the
“assignment to variable” marker in red, the “conditional
marker” in green, etc.

5 Discussion and Related Work

Microprints have the following properties: They take a
small amount of space while providing a lot of information,
they are non-intrusive and do not modify the source code.
They support the identification of visual patterns such as
red fragments indicating returns or exception handling, or
green fragments indicating loops. They also preserve code
indentation, keeping code familiarity and allowing the pro-
grammer to map the microprint to the method with ease.

When looking at a single method, the advantage of mi-
croprints over simple code coloring comes from the fact that
code coloring cannot display all the available information
due to the limited amount of colors we can use. With mi-
croprints several facets of the code can be displayed at once.

One drawback of microprints is that the programmer has
to navigate between the code and its microprints. How-
ever, microprints being smaller than the methods, scrolling
is very rarely needed as said above. Thus the navigation
does not involve physical movements. While microprints
are effective when used in combination with class blueprints
or for entire class hierarchies (or even lists of methods), it
is not sure that they are useful for the understanding of a
single method. Moreover, Smalltalk code is generally less
verbose than other languages such as Java or C++. We think
that in those languages the microprints will prove even more
useful, as their utility scale with the quantity of code to un-
derstand at once. We plan to conduct an evaluation with
programmers to assess if they find microprints valuable and
under which circumstances.

A similar approach has been implemented in SeeSoft [4],
which provides a much higer level view of the code, (entire
programs of up to 50000 lines of code). Microprints on the
contrary are used in smaller-scale views, and provide much
more details from the method level up to the class hierarchy.
Hence microprints provide several complimentary views of
the same code piece, whereas Seesoft provides a single view
of all the source code. Moreover, Seesoft associates a color

to a complete line and does not introduce specific visualiza-
tion for method semantics or finer-grained entities.

Nassi and Shneiderman proposed flowcharts to represent
the code of procedures with greater information density[9].
Warnier/Orr-diagrams describe the organization of data and
procedures [6]. Both approaches only deal with procedural
code and control-flow. Cross et al. defined and validated
the effectiveness of Control Structure Diagrams (CSD) [1],
which depict the control-structure and module-level organi-
zation of a program. Integrated programming environments
provide code coloring which directly affects the method text
itself. The limits of code coloring is that we cannot have
simultaneously different views on the same piece of code.
Text coloring does not scale with several methods, since the
reader has to scroll or open and switch between different
windows.

Many tools make use of static information to visualize
software, such as Rigi [13], Hy+ [8], ShrimpViews [12],
TANGO [11], the FIELD programming environment [10]
as well as commercial tools like Imagix to name but a few.
Most publications and tools treat classes or methods as the
smallest unit in their visualizations. There are some tools
that visualize the internals of classes, but usually they limit
themselves to showing method names, attributes, etc. with-
out added semantic information.

Class blueprints [2] provide a call-flow based represen-
tation of classes. Although they are enriched with semanti-
cal information extracted from method analysis, they do not
provide fine-grained method-based information.

6 Conclusion and Future Work

We presented microprints, pixel-based representations of
the methods and their bodies. We presented three dedi-
cated microprints that target different understanding goals.
We have also shown how the microprints have been in-
tegrated in a commercially available development envi-
ronment. Even if microprints have been developed for
Smalltalk code, our belief is that the technique is easily
adaptable to other languages, given a parser for the target
language, and given some dedicated code markers.

In the future we would like to display run-time informa-
tion such as which parts of the methods have been executed
and the frequency of this execution. We currently have al-
ready an implementation using the following scheme: A
dedicated Smalltalk interpreter broadcasts execution events
(variable accesses, message sends, exceptions being thrown
and caught), and special Markers can mark the code of the
method being run. The program code is then exercised by
running its test suite with this interpreter. The implementa-
tion is hovewer not mature enough, and consistent coloring
has yet to be found. In addition, this kind of microprint is
less portable than the ones described here. Another use of

dynamic information we envision is to display when excep-
tions are raised and caught at run-time by the interpreted
code.

We also want to validate microprints in an industrial con-
text by releasing the software to the Smalltalk community
and evaluate feedback to ameliorate the microprints.

References

[1] J. H. Cross II, S. Maghsoodloo, and D. Hendrix. Control
Structure Diagrams: Overview and Evaluation. Journal of
Empirical Software Engineering, 3(2):131–158, 1998.

[2] S. Ducasse and M. Lanza. The class blueprint: Visually
supporting the understanding of classes. IEEE Transactions
on Software Engineering, 31(1):75–90, 2005.

[3] A. Dunsmore, M. Roper, and M. Wood. Object-Oriented
Inspection in the Face of Delocalisation. In Proceedings of
ICSE ’00 (22nd International Conference on Software Engi-
neering), pages 467–476. ACM Press, 2000.

[4] S. G. Eick, J. L. Steffen, and S. Eric E., Jr. SeeSoft—
A Tool for Visualizing Line Oriented Software Statistics.
IEEE Transactions on Software Engineering, 18(11):957–
968, Nov. 1992.

[5] D. Hendrix, J. H. Cross II, and S. Maghsoodloo. The Ef-
fectiveness of Control Structure Diagrams in Source Code
Comprehension Activities. IEEE Transactions on Software
Engineering, 28(5):463–477, May 2002.

[6] D. A. Higgins and N. Zvegintzov. Data Structured Software
Maintenance: The Warnier/Orr Approach. Dorset House,
Jan. 1987.

[7] A. Marcus, L. Feng, and J. Maletic. Source viewer 3d (sv3d)
- a system for visualizing multi dimensional software anal-
ysis data. In Proceedings of VISSOFT 2003 (2nd IEEE In-
ternational Workshop on Visualizing Software for Under-
standing and Analysis), pages 57–58, 2003.

[8] A. Mendelzon and J. Sametinger. Reverse engineering by
visualizing and querying. Software — Concepts and Tools,
16:170–182, 1995.

[9] I. Nassi and B. Shneiderman. Flowchart techniques for
structured programming. SIGPLAN Notices, 8(8), Aug.
1973.

[10] S. P. Reiss. Interacting with the field environment. Software
— Practice and Experience, 20:89–115, 1990.

[11] J. T. Stasko. Tango: A framework and system for algorithm
animation. IEEE Computer, 23(9):27–39, Sept. 1990.

[12] M.-A. D. Storey and H. A. Müller. Manipulating and Docu-
menting Software Structures using SHriMP Views. In Pro-
ceedings of ICSM ’95 (International Conference on Soft-
ware Maintenance), pages 275 – 284. IEEE Computer Soci-
ety Press, 1995.

[13] S. R. Tilley, K. Wong, M.-A. D. Storey, and H. A. Müller.
Programmable reverse enginnering. International Jour-
nal of Software Engineering and Knowledge Engineering,
4(4):501–520, 1994.

[14] E. R. Tufte. Envisioning Information. Graphics Press, 1990.
[15] N. Wilde and R. Huitt. Maintenance Support for Object-

Oriented Programs. IEEE Transactions on Software Engi-
neering, SE-18(12):1038–1044, Dec. 1992.

