Visually Localizing Design Problems with Disharmony Maps

Richard Wettel and Michele Lanzka

REVEAL @ Faculty of Informatics -

Abstract

Assessing the quality of software design is difficult, assiga”

is expressed through guidelines and heuristics, not rigorales.
One successful approach to assess design quality is basge-on
tection strategies, which are metrics-based composeddogpndi-
tions, by which design fragments with specific properties de-
tected in the source code. Such detection strategies, wken e
cuted on large software systems usually return large setstiof
facts, which potentially exhibit one or more “design dishanies”,
which are then inspected manually, a cumbersome activity.

In this article we present disharmony maps, a visualizabased
approach to locate such flawed software artifacts in largeesys.
We display the whole system using a 3D visualization tealmmiq
based on a city metaphor. We enrich such visualizations tlih
results returned by a number of detection strategies, arsdrémder
both the static structure and the design problems thattafaabject
system. We evaluate our approach on a number of open-savae J
systems and report on our findings.

CR Categories. H.5.1 [Information Interfaces and Presenta-
tions]: Multimedia Information Systems—Atrtificial, augmted,
and virtual realities; K.6.3 [Management of Computing amnd |
formation Systems]: Software Management—Software Mainte
nance; D.2.7 [Software Engineering]: Distribution, Manance,
and Enhancement—Restructuring, reverse engineeringgireser-

ing
Keywords: software visualization, software design anomalies

1 Introduction

Designing complex software systems is a difficult task, agss
which takes a long time to learn and a skill that must be pestec
constantly. Over the past two decades a number of desigre-guid
lines and recipes have been formulated, usually in the fdrpab
terns [Gamma et al. 1995] or heuristics [Riel 1996]. Nonlethe
due to external factors, namely a changing environmenthwnig-
gers new requirements on a system, even the best desigrddsgra
over time, leading to a phenomenon aptly termed as “ardhitaic
drift” [Pinzger 2005], “design erosion” [van Gurp and Bos002],

or “code decay” [Eick et al. 2001]. At a fine-grained level lsuc
a decline in quality appears in the form of “bad smells” [Fewl
et al. 1999]. In the light of this degradation process, itéswon-
der that maintenance and evolution claim 90% of the totahsog
costs [Erlikh 2000].

Reengineering [Chikofsky and Cross Il 1990] aims at impngvi

University of Lugano, Swesrland

bracing future changes [Beck 2000]. It is however not a slotg
with which one should targetll problematic artifacts, but must be
directed towards the artifacts where such an effort is mestiad.

To do so, we need a means to evaluate the design of a systera befo
taking an informed decision on which of its parts to reengine

One approach to assessing the quality of software desigséxton
detection strategies [Lanza and Marinescu 2006; Marin2664],
i.e., metrics-based composed logical conditions, by which aesig
fragments with specific properties are detected in the socode.
The approach defines the concept of “design disharmonydnstr
lating a set of design guidelines into detection strategiéh which
design disharmonies can be discovered.

Applying detection strategies on large systems usuallymstlarge
sets of candidate artifactsd., classes, methods) which potentially
exhibit one or more design problems. Manually analyzingrthe
sults is a cumbersome activity and it is easy to get lost inirthe
spection process. Moreover, design problems are not ézblaut
interlinked with each other, and a list of results does not/ioe
information about their distribution throughout a system.

The visual approaches aiming at detecting design anomadies
combinations of metrics and let the viewer correlate theiemst
which is prone to both false positives and false negativas td the
complex nature of high-level design problems. We preserdmn
proach to visualize the software entities affected by dedighar-
monies, in the context of the entire system. We build on top of
our previous approach to visualizing software systemsedas

a 3D city metaphor [Wettel and Lanza 2007b] and centerednarou
the concepts of software habitability and locality [Wetet Lanza
2007a]. Such visualizations provide an observation poinaftruc-
tural characterization of the entire system.

Using an approach inspired by geographical informatioresys,

we enrich the described visualizations with results regdrivy

a number of design anomaly detection strategies. The result
ing visualizations, calledlisharmony mapsfocus on the design
flaws [Marinescu 2004] while maintaining the system’s dincal
context. The main advantage of disharmony maps is that trey p
vide an overview of the system’s design and allow the viewer t
mentally map the disharmony-affected entities to locatiaithin

the city.

We apply our approach on several open-source medium to large
Java system, both at a coarse granularity which focusesasses

and on a finer granularity,e., at the method level. Some of our
case studies showed that correlating a set of metrics isnuotgh

the design of parts of the system to make it more capable of em-to detect higher-level design problems.

*e-mail: richard.wettel@Iu.unisi.ch
Te-mail: michele.lanza@unisi.ch

Structure of the paper. We present the design disharmonies in
Section 2 and the city metaphor, on which our approach isdhase
in Section 3. After describing the idea behind the approacheic-
tion 4, we apply it on several systems in Section 5. We briefiyor
duce our toolset in Section 6, present the related work iti&e¢,
then discuss our findings and conclude in Section 8.

In this article we make use of color pictures. Please readnit o
screen or as a color-printed paper version.

2 Design Harmony

One aspect of particular interest when analyzing a softegstem
is the quality of its design, which influences both its conmgre
sibility and the required amount of maintenance over itstilifie.
One approach to assessing design is centered around theptoic
design harmony and its opposite, design disharmony.

2.1 Detecting Disharmonies

Design disharmonies are formalized design shortcomingdeto
note pieces of a system that exhibit design problems [Landa a
Marinescu 2006]. Informal design rules and guidelines [Re96;
Fowler et al. 1999] are transformed into detection stratef\iari-
nescu 2004] which are metrics-based logical conditionsdbgect
violations against design guidelines. The antonym of daedighar-
mony is design harmony: a software artifact is found to benloar
nious when it is implemented in an “appropriate” way. Thippeo-
priateness” is composed of three distinct harmonies thaterm
every software artifact:

1. Identity harmony which translates to the question “How do
| define myself?”. Every entity in a software system must
justify its existence: does it implement a specific conceypt a
how does it do that? Is it doing too many things or nothing
at all? In the context of this paper we focus on the following
identity disharmonies:

God Classis a class that performs too much on its own and

does not collaborate much with other classes, but uses data

from other classes.

Brain Classis a class that accumulates an excessive amount
of intelligence, usually in the form of sevefdtain Methods

Data Classis a “dumb” data holder class without complex
functionality and on which other classes rely on.

Brain Methodis a method that tends to centralize the function-
ality of a class.

Feature Envyrefers to methods that seem more interested in
the data of other classes than in their own data.

. Collaboration harmony which translates to the question
“How do | interact with others?”. Every entity collaborates
with others to fulfill its tasks. Does it do that all on its ovan,

Example: The God Class Disharmony. This design flaw, first
described by Riel [Riel 1996], refers to classes that tenith¢or-
porate an overly large amount of intelligence and whoseazhar
teristics are described by the following rules: (1) Theyilgaac-
cess data of simpler classes, either directly or using aoceseth-
ods; (2) They are large and complex; (3) They have a lot of non-
communicative behavior,e., there is a low cohesion between the
methods belonging to that class.

Class uses directly more than
a few attributes of other classes

ATFD > FEW
———/

Functional complexity of
the class is very high

————————————— U

Class cohesion is low

Tcc< 1
3
)

Figure 1: TheGod Class Detection Strategy

These informal rules can be transformed into the detectiaegy
depicted in Figure 1. The filtering conditions are expresse¢erms
of the following metrics (the left part of the expressionsjl aelated
to thresholds (the right part of the expressions):

e Access To Foreign DatgATFD) represents the number of ex-
ternal classes whose any subset of attributes are accegsed b
the given class.

e Weighted Method Courfi’WVMC) is the sum of the statistical
complexity in a class [Chidamber and Kemerer 1994], using
McCabe'’s cyclomatic complexity metric [McCabe 1976].

Tight Class Cohesio(iTCC) is the relative number of meth-
ods connected via attribute accesses [Bieman and Kang 1995;
Briand et al. 1998].

3 Code Cities in a Nutshell

In the context of the EvoSpadegroject, which aims at exploiting
multi-dimensional navigation spaces to visualize evaj\sonftware
systems, several metaphors were tried [Boccuzzo and Gai]20

does it use other entities? How does it use them? Does it useto provide some tangibility to the abstract nature of sofeyan-

too many? We focus on the following collaboration dishar-
monies:

Intensive Couplingefers to a method that is tied to many
other operations located in only a few classes within the sys
tem.

Dispersed Couplings complementary to thintensive Cou-
pling and it refers to a method which is tied to many opera-
tions dispersed among many classes throughout the system.

Shotgun Surgeryrefers to the fact that a change in a
method implies many changes of different methods and
classes [Fowler et al. 1999].

. Classification harmony which translates to the question
“How do | define myself with respect to my ancestors and
descendants?”.
monies in the context of inheritance. For example, does a
subclass use all the inherited services, or does it ignareso

cluding ourcity metaphor [Wettel and Lanza 2007b]. The main
advantages of our metaphor are clear notions of localityheauw-
ability [Wettel and Lanza 2007a], which support the viewerien-
tation, as well as a structural complexity which cannot bersivn-
plified. As a consequence, our city metaphor has been adapted
the project’s supporting tool [Alam and Dugerdil 2007].

Since we focus on object-oriented programs, we depictesstich

as packages, classes, methods, attributes, and relagisrssith as
inheritance, invocation, and access. We represent classisild-
ings located in city districts which in turn represent pags be-
cause a city, with its downtown area and its suburbs, is ali@mi
notion with a clear concept of orientation. Large cities iatansi-

cally complex constructs which can be only incrementallyiesed,

in the same way that the understanding of a complex system in-
creases step by step. The city artifacts with their visuaperties

This harmony combines the two other har-(e.g.,dimensions, position, color) depict a set of propertieshef t

software elements they represent, chosen according t@asheat
hand. Essentially, our aim is to represent systems as tiealises

of them? Due to space reasons we omit the presentation of that can be navigated and interacted with.

these disharmonies, and refer the interested reader t@glan
and Marinescu 2006].

Ihtt p: //www. i nf. unisi.ch/projects/evospaces

Component
NOA 88, NOM 280

NOA 25, NOM 89

PageAttributes$MediaType
NOA 223, NOM 1

KeyEvent
NOA 205, NOM 18

Bits
NOA 10, NOM 115

Arrays
NOA 1, NOM 115

Calendar
NOA 81, NOM 71

Container
NOA 21, NOM 127

java.awt.event

Figure 2: Code city of JDK1.5 core (160+ KLOC)

The user can interact with any artifact of the visualizatign (1)

hovering over a figure to see information about the figure &odia
the model behind it, (2) opening a context-sensitive popepumor
(3) using queries (both predefined and user-defined).

To provide a structural overview of the entire visualizestseyn, we
strive for an efficient use of the available space. A widedgdilay-
out for hierarchical structures is the treemap [Shneiderd@02],
which incrementally splits the space into areas propoatigrio a
particular measure of the elements. Our layout is consddly the
fixed element dimensiong €., as the result of the metric mapping),
which boils down to solving a rectangle-packing probleme Fier-
archical layout we implemented is basedkortrees [Bentley 1975]
and aims at minimizing the amount of wasted space.

Example. Figure 2 depicts the core of JDK 1.6¢,the entirgava
namespace). The buildings represent classes and interfaleeed
on top of tiles representing their containing packages. Adight
of a building represents the number of methods (NOM) of thes;|
the width and length represent its number of attributes (NOAe
increasing saturation of the tiles denotes the nesting levéhe
packages. JDK is a fairly large system with a shallow packeagpt-
ing level (we count at most 4 stacked district platforms). tde
also see outliers in terms of the mapped metrics. The widdland
buildings are classes with many attributes and few mettgats) as
PageAttributes$MediaType andKeyEvent. The thin and tall towers,
represent classes with NOM> NOA, such aBits. There are also
classes with high values for both NOM and NOA, suclCaspo-
nent or Calendar. Besides various outliers, we also see how func-
tionality is distributed within packages, for examjdea.awt.event
contains classes with a similar amount of functionality (M)CGand
state (NOA), with the exception #feyEvent, which has many more
attributes (the events for each key are saved as constahtitgs).

4 Disharmony Maps

To address the complexity of the results returned by thectete
strategies, we integrate the information about desigradisbnies,

by drawing inspiration from the geographical informatigistems
(GIS) domain. The information we are interested in is a fofm o
multivariate datai(e.,there are usually several design disharmonies
affecting a system at any moment), which is similar in manysva
to a number of theme map types. One such example is the disease
map, in which the regions of a world map are colored accorting
the diseases which affected them. Such a disease map alhews o
see which are the dominating diseases in the world for acpdatti
period of time and also how they are distributed around tbbel

Similarly, we assign vivid colors to the design harmony keza
and shades of gray to the unaffected ones. This enables os to f
cus on the design disharmonies in the presence of a nordtisiy
context. We incorporate this idea into our city metaphorjcivh
provides the concept of locality to the software elements sants
well the geographical context. The analogy to disease ngjrs i
tuitive, since the design anomalies are “diseases” affgqiarticu-
lar elements inside a system’s software artifact “popatdti The
resulting visualization, calledisharmony mapprovides a quick
overview of the problems affecting the software system imgeof
proportion, distribution and dominant types of design disfonies.

In the absence of design anomaly data, conventional appesaad-
low us to observe outliers in terms of the mapped metrics éasd ¢
sify them as potential design anomalies. For example, a ek a
high NOM is a potentiaGod Classor a class with many attributes
and few methods is a potentiahta Class One advantage of dishar-
mony maps is that they encode the disharmony informatiooliorc
allowing us to further map structural information (NOA, NQ®h
the rest of the visual properties.

Figure 3: City of JDK with focus orisod Classes. isometric view (left) and top view (right)

4.1 Design Anomalies in Context

By combining the results of design disharmony detectiom wiir
visual city metaphor, we obtain the big picture of the sysseue-
sign problems, which can hardly be imagined using a nona¥isu
text-based approach. To illustrate this aspect, we funinesent
the same set of results using both a textual representatidmar

visualization.
All classes [4715 Classes) [+] Group (81 Classes)
Name i) Name:
javasawt:CompositeContext '!ll javarnet:PlainSocketimpl
Javaawt:RenderingHints L | javainet:ServerSocket

avaawizAtiributealue =

avaiawt:AWT Permission
avaiawt: BasicStroke

avaiawt:Stroke

J
javarawt:Shape

Javarawt:insets

javarnet:Socket
javanet:URISParser
javarnet:URLStreamHandler
javauutil:ResourceBundle
javanutil:WeakHashiap
javasutil:Hashiap
javacutil:Treshap
javaruti:Calendar
java:util:Scanner

javarawt: AWTEvent
javasawt:Component
javarawtAWTK eyStroke
javarawt:BorderLayout
javatawt:Container
javatawt:CardLayout
javatawt:Menultem
javarawt:Font

javarawt: Tookit

javasawt Window

javarawt: LightweightDispatcher
javarawt:EventDispatchThread
javarawt:KeyboardFocushanager

With a non-visual approach, the results can be presentéea fiotm
of two lists: the result list (Figure 4, right) and the list aif the
classes in the system (Figure 4, left), which serves as xbrifbe
shortcomings of such a representation are: (1) it lacksvbevaew,
since it is impossible to look at the results as a whole anallgty

through the listinduces context loss, (2) to localize@wel Classes
one has to process the list by clustering it based on the paska
which the classes are defined and then sort the clusters baskd
number of occurrences, and (3) it is completely unfeasibleot-
relate several disharmony types, even in the case of maretivt
textual representations.g. trees).

Given the complexity of the software systems we analyze veur
sual approach aims at localizing the detected disharmensber
ments and present them concisely in their context, i.e. ethige
system. A disharmony map depicting only Bed Classproblem

in JDK is presented in Figure 3, which shows a birds-eye (en th
right) and an isometric (on the left) view. Based on it, we e
the suffering classes are dispersed in many of the packéggesan
also observe that not all the large classeszwd Classeand some

of the apparently less harmful ones hide their disharmongxtN
we apply our approach on a number of open-source systems and
explore observing several design disharmonies in corelat

5 Application

We applied our approach on 4 open-source Java systems: 3 (J
Development Kit), ArgoUML (UML modeling tool), Jmol (viewe
for chemical structures in 3D), and iText (PDF library). lable 1

we present the version for each system and their magnitudes i
terms of lines of code, number of packages, number of claasds
number of methods.

Figure4: God Classes in JDK core

Running theGod Clasdetection strategy on the core of JDK (Java
Development Kit) returns a list of 81 affected classes outhef

system’s almost 5,000 classes.

= System version | Lines Packages Classes Methods
JDK v.1.5 160287 137 4'715 19’379
ArgoUML v.0.24 | 144’523 142 2'468 14692
Jmol r. 8065 | 84984 105 1'032 7751
iText r.2892 | 80'389 149 1'250 7182

Table 1: Systems under study

BigDecimal
NOA 18, NOM 96

Biginteger
(NOA 28, NOM 103)

Class
NOA 27, NOM 107

String
NOA 7, NOM 81

Component
NOA 88, NOM 280

.

S

:' ' \\\

java.awt.geom

Event
NOA 84, NOM 14

InputEvent
NOA 21, NOM 14

KeyEvent
NOA 205, NOM 18

java.awt.event

Security Logger
NOA 3, NOM 30 NOA 18, NOM 53
Calendar LogRecord
NOA 81, NOM 71 NOA 17, NOM 28
Jjava.util.logging

Java.util.regex

Matcher
NOA 17, NOM 38

Pattern
NOA 29, NOM 66

AbstractQueuedSynchronizer
NOA 9, NOM 54

Jjava.util.concurrent.locks

NOA 34, NOM 78

Frame
(NOA 33, NOM 38)

IV Pure Brain Class
Il ¥ Fure God Class
B ™ God + Brain Class

B ¥ DataClass

12
Container

NOA 21, NOM 127 5

16
108

Figure5: Class-level disharmonies in JDK

5.1 Class-Level Disharmonies

We encode each disharmony in a different color: yellowBaain
Class blue forGod Classred forBrain & God Class and green
for Data Class For better visibility, in the case of large buildings
obstructing other buildings relevant to the discussionnveaually
set their transparency (user-modifiable) to 40 %. Each liation
shows a legend, presenting the targeted disharmoniespaprddh
of them the assigned color and the number of affected esntitie

JDK. Before diving into details, the first impression we get by
looking at the overview of JDK (Figure 5) is that the systemmki®
well-organized, in spite of the numerous disharmoniousaats:
we see green districts, where modilgita Classesre localized and
districts of increased complexity, in which seve@id Classeand
Brain Classesre defined.

An interesting district igava.awt.event, made of one wide and flat
building, representing the claggyEvent and many small classes,
all representing other events.g./nputEvent). Although by look-
ing at the properties of the classes one would be temptedeg@a
rize KeyEvent as aData Classdue to its 205 attributes and only 18
methods, it actually is one of the few classes in this packageh

is not affected by the disharmony. This is due to the fact that not
only there are non-accessors among the 18 methods of tlsis, cla
but some of them are quite complex.

The “green” district (to the right of the large red buildingpresent-
ing packaggava.awt.geom seems to have grouped a fair number of
the 109Data Classe$n JDK. The superclass of all these classes is
the largeData ClassEvent (84 attributes, 14 methods), defined in
the parent packageva.awt.

Many of the classes that are ba#od andBrain Classeqi.e., de-
picted by red buildings) are defined in tjaga.awt package, which
handles the core graphics part in Jav@omponent (the domi-
nating building in the city, due to the class’s 88 attributex
280 methods)Container, or Font. Moreover, some of the core
classes belonging to Java’s type system are einain Classes
(e.g.,String), God Classege.g., Biginteger, Class, Calendar), or
both (.g.,BigDecimal).

Some of theGod Classesre easy to overlook in the absence of
disharmony dateg.g.,classSecurity with its only 3 attributes and
30 methods, which obviously encodes some complex encrygtio
gorithms. The same holds for claabstractQueuedSynchronizer
residing in packaggava.util.concurrent.locks, whose complexity is
suggested by its very name. Our approach allows us to conepiem
the structural information of the elements with the actuahadr-
mony data, revealing even the subtle design anomalies.

An interesting package java.util.regex with its share of complex-
ity in the form of God ClassMatcher and God & Brain Class
Parser, which practically accumulate the entire intelligence laf t
package, used for the processing of regular expressioris.isTif
lustrated by a district containing two rather large “cogdet build-
ings surrounded by small houses.

Packaggava.util.logging illustrates another pattern@od Clasgo-
gether with theData Classit misuses:Logger (18 attributes, 53
methods), andogRecord (17 attributes, 28 methods)Data Class

in spite of its many methods. To verify this hypothesis, we in
spected the relations of the involved classes, which redetiat
more than one half (48 out of 86) of the statically-deterrdiime
vocations of claskogRecord’s methods (most of which are getters
and setters) are performed by clasgger.

PdfReader
NOA 42, NOM

IV Pure Brain Class 8

PdfDocument PdfContentByte

ArabicLigaturizer
NOA 46, NOM 85 NOA 26, NOM 170

B PueGodCiss 32 NOA39, NOM 11

com.lowagie.text.rtf

B PicodeBrantiss 20 ponner RtfWriter
B ¥ DataClass 41 NOA 120, NOM 139 NOA 148, NOM 55 RtfCell
- NOA 14, NOM 25
ame

RtfList
NOA 40, NOM 19

NOA 510, NOM 7

(T

BaseFont \
NOA 66, NOM 63

PdfSignatureAppearance
NOA 56, NOM 69

Cell
NOA 15, NOM 73

Table

NOA 17, NOM 83
List

NOA 17, NOM 42

Phrase
NOA 3, NOM 33

Document
NOA 19, NOM 49
Paragraph
NOA 10, NOM 37

com.lowagie.text.pdf
com.lowagie.text.html

com.lowagie.text.xml|

Image
NOA 62, NOM 123

Figure 6: Class-level disharmonies in iText

iText. The first impression given by the overview of iText is one In packagecom.lowagie.text.rtf, we see some examples of “hered-
of a rather bulky system, with a large number of outlying stss itary” disharmony, illustrated byBrain & God ClassRtfWriter,
The system seems to lack organization and the disharmorges a and God ClasseRtfCell and RtfList, all disharmonious like their

chaotically spread all over it. The dominating colors in tlighar- superclasses. The most striking harmony breakers resideein
mony map reveal many problems: 2ain Classes 52 God com.lowagie.text.pdf package, in which the red color dominates,
Classedq20 of which affected by both disharmonies), andRdta due to the large number &frain & God Classessuch agdfWriter
Classes (120 attributes, 133 methodsydfReader (42 attributes and 133

. . . methods), oPdfDocument (46 attributes, 85 methods).
The lower-left part of Figure 6 shows a birds-eye view of tiis-s

tem, composed of 3 library packages (right part of the viéhg, Another remarkable phenomenon comes in the form of the appar
examples packageom.lowagie.examples (lower part of the view) ently tiny buildings affected by design disharmonies thaply an

and the core packagmm.lowagie.text (the central part, delimited jncreased complexityi.€., God Clas®r Brain Clasd. Inspecting

by the perimeter). one of these classes, calletirase reveals that its scale is reduced

: only in the context of the iText system, as NOM=33 is a value-co
This core package also appears as a detailed isometric VIWsidered very large for a Java class [Lanza and Marinescu 2006

In the center of Figure 6 with annotated entities. ~The pack- disharmony map indicates it a&ad Classand thus does not allow
age contains several subpackages, one for each file format:the ma'ntaynerspof the svstem to overlook this potential m-
com.lowagie.text.xml, com.lowagie.text.html, com.lowagie.text.rtf, Intai Y v ISp iadtyoe

andcom.lowagie.text.pdf. atic class.

The com.lowagie.text.pdf package is vast, with 239 classes (out of During our experiments we noticed that there is no eviderhtftie-
which 61 affected by at least one class-level disharmongt)caty tween the simple metric values, such as the NOA and NOM nsetric
8 subpackages, each with just a few defined classes. Witmtmat for a class and the disharmonies affecting it. The first

classes defined in it, this single package has grown into aifeod
which is difficult to understand and manage, a fact reflectethe
over one quarter of disharmonious classes.

One example that confirms this is given by two classes withemor
or less the same magnitude in terms of the NOM and NOA metrics,
yet which are total opposites: WhiBaseFont (66 attributes and 63
The system contains hierarchies spreading over the filegbspe- methods) appears as a healthy class with respect to thelelats
cialized packaged.€.xml, html, rtf, andpdf), whose base classes harmony,PdfSignatureAppearance (56 attributes, 69 methods) is a
are defined in the main packagem.lowagie.text. Among these God & Brain Class due to the complexity of its methods and the
base classes there are maBgpd Classeqe.g.Cell, Table, List, way it collaborates with other classes. Another examplassara-
Phrase, Document, Paragraph), all annotated on Figure 6 (right bicLigaturizer, (39 attributes, 11 methods) which contains enough
part). complexity in its few methods to qualify as@od & Brain Class

Facade ——»

NOA 1, NOM 337

UmlFactoryMDRImpl
NOA 9, NOM 22

org.argouml.uml.notation.uml

org.argouml.language.java.generator
JavaRecognizer

NOA 24, NOM 91
GeneratorJava

NOA 11, NOM 66

JavalLexer
NOA 9, NOM 72

FigEdgeModelElement
NOA 13, NOM 76

FigAssociation
(NOA 8, NOM 17)

FigNodeModelElement
NOA 39, NOM 98
org.argouml.diagram.ui
SimpleByteLexer$GeneratorPHP4

NOA 4, NOM 33

SimpleByteLexer$GeneratorCPP
NOA 34, NOM 100

SimpleByteLexer$CPPParser
NOA 85, NOM 204

IV Pure Brain Class 8
B v Pure God Class 24
[¥ God+Brain Class 9
B WV Data Class 17

FacadeMDRImpl
NOA 3, NOM 349

CoreHelperMDRImpl
NOA 2, NOM 154

~
/

org.argouml.model.mdr

JavaRecognizer
NOA 79, NOM 176

Modeller

(NOA 15, NOM 52)
JavaTokenTypes
(NOA 173, NOM 0)

org.argouml.reveng.classfile org.argouml.reveng.java

Figure 7: Class-level disharmonies in ArgoUML

ArgoUML. ArgoUML has 17Brain Classesand 33God Classes
(of which 9 classes affected by both disharmonies), an®ata
Classes which are not distributed all over the system, but rather
sparsely, as Figure 7 shows.

Our attention is drawn to 3 similar formations, each comgasfe

1 wide, flat building and 2-3 massive neighbor buildings. Tirst
one resides in therg.argouml.reveng.java district, and is made of
the huge red buildingi.e., Brain & God ClasslavaRecognizer),

a smaller red buildingife., classModeller), and a wide and flat
building which looks like a parking lot.€., classJavaTokenTypes
with 173 attributes and no methods). Although we would ekpec
the latter to be @ata Classit is not, because all its attributes are
declared adinal public, i.e.,they are pure Java constants.

The second similar package asg.argouml.reveng.classfile, with

two Brain Classesthe city’s dominating building, clagsPPParser

with 85 attributes and 204 methods and the smaller affected o
classGeneratorCPP (34 attributes and 100 methods), which are
both inner classes defined 8impleByteLexer. An inner class of
the same class is the “parking lot” representing cBEBCToken-
Types with 152 attributes and no methods, which serves as the
repository for constants for the C++ parsing. Another exeng
elusiveBrain Class revealed only due to the disharmony data, is
GeneratorPHP4 with its only 4 attributes and 33 methods.

The third similar package isrg.argouml.language.java.generator,
on the left of the picture. It contains thr8eain ClassesJavaRec-
ognizer (24 attributes, 91 methodsgeneratorJava (11 attributes,
66 methods), andavaLexer (9 attributes, 72 methods). As in the
first package, the constants repository is also call@@nTypes
(146 attributes). As reported in [Wettel and Lanza 2007al-h

ing the same code twice (the twavaTokenTypes have almost 150
identical constants) is questionable, yet less harmfuhéndase of
generated classes, which are not manually maintained.

By contrast, th&God Classe&igNodeModelElement (39 attributes,
98 methods), FigEdgeModelElement (13 attributes, 76 meth-
ods) andFigAssociation (8 attributes, 17 methods), located in
org.argouml.uml.diagram.ui, are core classes and thus, very likely
to be subject to continuous maintenance and change recgrtsm

Another disharmonious agglomeration is a district chammtd by

a “forest” of very thin and extremely tall buildings (few @liutes
and many methods), representing packageargouml.model.mdr.
Out of its 35 classes, 8 a®od Classesand 2 areGod & Brain
Classes The doubly-affected classes dvenlFactoryMDRImpl (9
attributes, 22 methods) arwbreHelperMDRImpl (2 attributes, 154
methods). The largest affected class of this package, tepiy a
building that literally touches the sky, is tli&od ClassFacadeM-
DRImpl (3 attributes, 349 methods). All these classes are the only
implementations of the interfacésnlFactory, CoreHelper, andFa-
cade, respectively. In spite of their large number of methods, th
interfaces are not affected by disharmonies due to thekrdécle-
fined functionality. However, perceived through their iemplent-
ing classes, these apparently harmless interfaces qaalifgecha-
nisms for buildingGod ClassesndBrain Classes By analyzing
ArgoUML’s history (not in the scope of this paper), we leairniat
the Facade interface (and by analogy the other interfaces in the hi-
erarchy) had two concrete implementations in one of theimess
of the system. Some versions later, one of the implementatics-
appeared, leaving the MDR implementations as the only otie un
these days. This problematic package is also one of the taties
for the method-level disharmony maps, presented next.

Finally, we observed other hardly visible colored buildirig dis-
trict org.argouml.uml.notation.uml, representing th&od & Brain
Classes\otationUtilityUML (NOA 6 , NOM 24),MessageNotation-
UML (NOA 2, NOM 29), AttributeNotationUML (NOA 2, NOM 8),
and OperationNotationUML (NOA 0, NOM 9). Since both dishar-
monies require high complexity, it was unexpected to finds¢he
apparently low-functional classeise(, reduced height) among the
affected. To our surprise, these classes privately heldaifew-

ing amounts of code expressed in LOC: 1240, 1538, 432, and 450

respectively. These classes were not programmed in thetebje
oriented spirit and should be reviewed by ArgoUML's main&as.

5.2 Method-Level Disharmonies

To visualize method-level disharmonies, we use a finemgdarep-
resentation which extends the previous one by explicitlyicteng
the methods, combined with a specific layout. Stepping away f
the monolithic block representation, we now depict a classre
base platform on top of which we stack up vertically, in layef
4, the set of “bricks” representing its methods (See clgsaler
tail in Figure 8). Besides the increased level of detail davides,
this representation allows for user interaction down tortteghod
level. The height of the class representation is still propoal to
the number of methods. Due to the fact that looking at theenti
system using this granularity is impracticag(,too many depicted
entities), we focus on specific parts of the systems.

Figure 8: Yellow-coloredFeature Envy in Jmol and a close-up
detail of class with 7 methods laid out as bricks (top right)

Visualizing Jmol using thericks view(see Figure 8) reveals the fact
that more than one quarter of the methods in Jraaj.(1'555 out
of 5'968) exhibits tha~eature Envydisharmony. Our visualization
depicts the Feature Envy “epidemic” in a suggestive way &ed t
picture says it all: the system needs to be quarantined aigaly
for a serious session of reengineering.

However, classes with an extremely high number of metheds,(
hundreds) are represented as overly tall buildings, whighah
overview pushes the viewer far away in order to compriseyever
entity and starting with certain distances, the detailstaoesmall
to be useful. To address this issue, we devised an adaptiieale
layout calledProgressive Bricksby considering théricks layout
as a particular case in which the walls of the buildings abzi@ks
wide, and then generalizing it. The width of the wall (in nianf
bricks) is adapted to the number of bricks of the buildingrithes to
obtain reasonable heights. The magnitude of the classr(imstef
the NOM metric) is expressed this time by the building’s vo&u

%« FacadeMDRImpl
NOM 349 Model

(NOM 44)

Facade

PseudostateKind
(NOM 7)

AggregationKind

(NOM 3)
VisibilityKind
(NOM 4)

Figure 9: Red-coloredshotgun Surgery in org.argouml.model

Figure 9 shows a visualization of packagyg.argouml.model using

the Progressive Brickadaptive layout. This package, which was
subject to discussions also during the class-level arsglgentains

in this representation the two most massive buildings ircttyeof
ArgoUML (i.e., the highest number of methods), representing the
interfaceFacade and a class that implements this interface, called
FacadeMDRImpl. Displaying all the method-level disharmonies of
this package reveals the fact that the dominating dishayrabar-
acterizing this package Shotgun Surgerydepicted by the many
buildings “tainted” with the dark red color. Moreover, weeshat

a large amount of the dark red “bricks” (representing mesidet-
long to only a reduced set of classes. The largest buildifegtafd

by this disharmony is thEacade interface. In contrast to the class-
level disharmonies discovered in this package, the meleagal-
disharmonies are detected on the interface and not on teseda
implementing it, due to the fact that the calls are done upiviy-
morphism,i.e., they are targeting a reference to the interface. Out
of the 337 methods defined iFacade, 140 exhibit theShotgun
Surgerydisharmony. Apart from this interface, tivodel interface
has many methods with Shotgun Surgery (28 out of 44) and 3 smal
classes have only methods with Shotgun Surg&ggregationKind

(3), VisibilityKind (4), andPseudostateKind (7), respectively. This
disharmony is somewhat expectable in this package, sine@art

of the system’s model and all the other modules depend on it. A
class with an increased number of methods affecte&lhgtgun
Surgeryis fairly difficult to change, since any change is likely to
require many changes throughout the system.

6 Tool Support

We built our tool called CodeCity on top of the Moose [Ducasse
et al. 2005] framework which provides, among others, anémgan-
tation of the FAMIX [Demeyer et al. 2001] language-inde pemid
meta-model for object-oriented software. For the parsihjava
systems we use iPlasma [Marinescu et al. 2005].

CodeCity is written in Smalltalk and uses OpenGL for reratgri
the visualizations. Besides configuring the view in termglgphs,
property mappings, and layouts, the user can spawn segondar
views, or interact with the artifacte (g.,querying, color tagging).

CodeCity can visualize systems written in different largps=€.g.,
Java, Smalltalk, C++), runs on any major platforenxy, Windows,
Mac OS X, Linux), and is freely available for download at:
http://wwmv. i nf. unisi.ch/phd/ wettel/codecity.htm.

7 Related Work

Since the early days of software visualization, software Ibaen
visualized at various levels of detail, from the module gitarity
seen in Rigi [Muller and Klashinsky 1988] to the individualds of
code depicted in SeeSoft [Eick et al. 1992].

Besides our metaphor, most software visualizations whachet
the quality of software depict the software artifacts imisrof a set
of software metrics. In the polymetric views [Lanza and Dasea
2003], software elements are visualized as rectangles mvét
rics mapped on their position, dimensions and color. Kidiai-
grams [Pinzger et al. 2005] depict evolving software eggitbver
several versions in terms of large sets of software metrics.

Apart from the metrics aspect, our visual representaticelasted
to a number of previous works in 3D, detailed in the following

The increase in computing power over the last 2 decadesehabl
the use of 3D metric-based visualizations, which provides t
means to explore more realistic metaphors for softwareessr-
tation. One such approach is poly cylinders [Marcus et &320
which makes use of the third dimension to map more metrics. As
opposed to this approach in which the representations ofdfie
ware artifacts can be manipulateice(, moved around), our code
cities imply a clear sense of locality which helps in vieweien-
tation. Moreover, our approach provides an overview of fiseain-
chical (.e.,package) structure of the systems.

The value of a city metaphor for information visualizatisrproven
by papers which proposed the idea, even without having afeimp
mentation. [Santos et al. 2000] proposed this idea for Vidng
information for network monitoring and later [Panas et &032]
proposed a similar idea for software production. Among the r
searchers who actually implemented the city metaphor dktrand
Munro 2000; Charters et al. 2002] represented classes strectdi
and the methods are buildings. Apart from the loss of package
formation {.e.,the big picture), this approach does not scale to the
magnitude of today’s software systems, because of its faatyu
We owe the scalability of our approach to a more appropriap-m
ping between the software world and the city environmenrd,don-
figurable granularity, and to the computing power availabtay.

Other 3D geographically-inspired visualizations inclutie soft-
ware landscapes [Balzer et al. 2004], which reduces theMsum-
plexity through an incremental level of detaik(, the transparency
of the container artifacts is adjusted to the distance ofvibev-
point). The approach lacks system overview capabilitiesabse
the loose, navigation-targeted layout does not scale favén in
the presence of complete transparency of the containerd Ap3
proach, which produces layouts similar to ours, is foundfarima-
tion pyramids [Andrews et al. 1997], applied to file systems.

As for the visualization of design anomalies, to our bestiedge,

all the previous work depicts software artifacts in terma céduced
set of low-level metrics and does not address the visuaksepita-
tion of such high-level design problems. Although one camezo
late the outliersi(e., extreme values) for a particular metric set to
revealpotential candidates for a particular design anomaly, these
oftentimes include false positives and false negativesoase of
our examples in Section 5 illustrate.

The 3D visual approach closest in focus to ours is [Langeliex.
2005], which uses boxes to depict classes and maps softwetre m
rics on their height, color and twist. The classes’ box repnta-
tions are laid out using either a modified treemap layout aire: s
burst layout, which split the space according to the paclsiges-
ture of the system. The authors address the detection ofrdesi
principles violations or anti-patterns by visually coatiéhg outly-

ing properties of the representatiorsy.,a twisted and tall box rep-
resents a class for which the two mapped metrics have ameaiye
high value. Besides false positives and negatives, the ldeks
of this approach is that one needs different sets of metoicedch
design anomaly and the number of metrics needed for thetaatec
oftentimes exceeds the mapping limit of the representdtien 3).

The detection strategies [Marinescu 2004] were introdueed
mechanism to formulate complex rules using the composition
metrics-based filters, and extended later [Lanza and Mstine
2006] by formalizing the detection strategies and progdamd in
recovering from detected problems. The 2D polymetric vipws
vided as means to visualize the systems do not explicithgtithte
the disharmonious artifacts, nor do they provide an ovenaaed
distribution of the disharmonies within the observed systeThe
non-visual approach of [Ratiu et al. 2004] aims at furthepiiov-
ing the design flaw detection by taking into account inforiorat
from the suspect classes’ evolution to compute their persiy in
exhibiting a particular design flaw during their lifetime.

8 Discussion & Conclusions

We extended our previous work on 3D software visualizatitiet
tel and Lanza 2007a; Wettel and Lanza 2007b], by enrichivngglit
data on the quality of the system’s design. We obtain thisrinf
mation by running detection strategies [Marinescu 2004gteal
design disharmonies [Lanza and Marinescu 2006]. Drawiggiin
ration from the field of geographical information systems, use
a gray color scheme for unaffected artifacts and strongrsdtar
affected ones, according to the disharmonies they exhibit.

With our case studies, we showed that using a pure metriesbas
visualization to assess the design problems of a systenoii®do
false results, because an outlier is not necessarily ardisimaous
entity, as our counterexamples have proved. These fals# iffir
pressions” are due to the fact that each design disharmodg-is
fined as a complex expression of a set of metrics. To have a more
informed first impression without using the results of theedgon
strategies would require mapping a large amount of metricsach
visualization, which is not feasible due to the reduced amofivi-
sual properties that the human eye and brain are able to.dfasp
ever, looking only at a list of results of running the detectstrate-
gies against a subject system does not provide enough tdatex
the assessment of its design’s quality. Neither does visnglthe
system using only structural information. An overview o$fufr-
monies and their distribution throughout the system, stippdoy
the locality of our metaphor, helps in building a mental i@axf
the design problems within the system.

The main contribution of this paper is an effective intepratof
the design anomaly data with our visual approach based on a 3D
city metaphor, which provides both the big picture of thetayss
design problems and the means to further investigate tladslet

We applied our approach on 4 Java systems, and were ablerio lea
about false appearances, visualize patterns of dishaesioob-
serve how a bad organization of the package structure istgzzo
nied by many disharmonies of its classes, or how disharrsarada
conquer a system in the absence of reengineering. As futoiie w
we plan to perform an evaluation of our approach’s effectgs.

Acknowledgements

We gratefully acknowledge the financial support of the HaBleundation for the
project “EvoSpaces” (Hasler Foundation MMI Project No. @p7 We thank the
European Smalltalk User Groupt(t p: / / esug. or g) and CHOOSEKt t p: //
choose. s- i . ch) for travel sponsorships.

References

ALAM, S.,AND DUGERDIL, P. 2007. Evospaces visualization
tool: Exploring software architecture in 3d. Rroceedings of
WCRE 2007IEEE CS Press, 269-270.

ANDREWS, K., WOLTE, J.,AND PICHLER, M. 1997. Information
pyramids: A new approach to visualising large hierarchiks.
Proceedings of VIS 199TEEE CS Press, 49-52.

BALZER, M., NOACK, A., DEUSSEN O., AND LEWERENTZ C.
2004. Software landscapes: Visualizing the structure fela
software systems. IRroceedings of VisSym 20 urographics
Association, 261-266.

BEck, K. 2000. Extreme Programming Explained: Embrace
Change Addison Wesley.

BENTLEY, J. L. 1975. Multidimensional binary search trees used
for associative searchin@ommun. ACM 18, 509-517.

BIEMAN, J., AND KANG, B. 1995. Cohesion and reuse in an
object-oriented system. IRroceedings of the ACM Symposium
on Software ReusabiliyACM Press.

Boccuzzo, S.,AND GALL, H. C. 2007. Cocoviz: Towards cog-
nitive software visualizations. IRroceedings of VISSOFT 2007
IEEE CS Press, 72-79.

BRIAND, L. C., DALY, J. W.,AND WUsST, J. 1998. A Unified
Framework for Cohesion Measurement in Object-Oriented Sys
tems. Empirical Software Engineering: An International Jour-
nal 3,1, 65-117.

CHARTERS, S. M., KNIGHT, C., THOMAS, N., AND MUNRO, M.
2002. Visualisation for informed decision making; from edd
components. IiProceedings of SEKE 200ACM Press, 765—
772.

CHIDAMBER, S. R.,AND KEMERER, C. F. 1994. A metrics suite
for object oriented designEEE Transactions on Software Engi-
neering 206 (June), 476—493.

CHIKOFSKY, E., AND CRrROsSsII, J. 1990. Reverse engineering
and design recovery: A taxonomfEEE Software 71, 13-17.

DEMEYER, S., TICHELAAR, S.,AND DUCASSE S. 2001. FAMIX
2.1 — The FAMOOS Information Exchange Model. Tech. rep.,
University of Bern.

DucAsSE S., GRBA, T., AND NIERSTRASZ O. 2005.
Moose: an agile reengineering environment.Phoceedings of
ESEC/FSE 20039-102.

Eick, S. G., SEFFEN, J. L., AND ERIC E., R., S. 1992.
SeeSoft—a tool for visualizing line oriented software istats.
IEEE Transactions on Software Engineering 1& (Nov.), 957—
968.

Eick, S., GRAVES, T., KARR, A., MARRON, J.,AND MOCKUS,

GAMMA , E., HELM, R., JOHNSON, R.,AND VLISSIDES, J. 1995.
Design Patterns: Elements of Reusable Object-Orientett Sof
ware. Addison Wesley.

KNIGHT, C., AND MUNRO, M. C. 2000. Virtual but visible soft-
ware. InProceedings of IV 20Q0EEE CS Press, 198-205.

LANGELIER, G., SAHRAOUI, H. A., AND POULIN, P. 2005.
Visualization-based analysis of quality for large-scalévgare
systems. IrProceedings of ASE 200BCM Press, 214-223.

LANZA, M., AND DUCASSE S. 2003. Polymetric views—a
lightweight visual approach to reverse engineerifrgnsactions
on Software Engineering (TSE),2®(Sept.), 782—795.

LANZA, M., AND MARINESCU, R. 2006.0bject-Oriented Metrics
in Practice Springer-Verlag.

MARcUS, A., FENG, L., AND MALETIC, J. |. 2003. 3d repre-
sentations for software visualization. Rroceedings of SoftVis
2003 ACM Press, 27-36.

MARINESCU, C., MARINESCU, R., MIHANCEA, P. F., RTIU,
D., AND WETTEL, R. 2005. iPlasma: An integrated platform
for quality assessment of object-oriented desigrPrioceedings
of ICSM 2005, Industrial & Tool VoluméEEE CS Press, 77-80.

MARINESCU, R. 2004. Detection strategies: Metrics-based rules
for detecting design flaws. IRroceedings of ICSM 20Q04EEE
CS Press, 350-359.

McCABE, T. 1976. A measure of complexityEEE Transactions
on Software Engineering, 2 (Dec.), 308-320.

MULLER, H., AND KLASHINSKY, K. 1988. Rigi: a system for
programming-in-the-large. IRroceedings of ICSE 1982CM
Press, 80-86.

PaNAs, T., BERRIGAN, R., AND GRUNDY, J. 2003. A 3d
metaphor for software production visualization. Rroceedings
of IV 2003 IEEE CS Press, 314.

PINZGER, M., GALL, H., FISCHER, M., AND LANZA, M. 2005.
Visualizing multiple evolution metrics. IRroceedings of SoftVis
2005 ACM Press, 67-75.

PINZGER, M. 2005. ArchView — Analyzing Evolutionary Aspects
of Complex Software SystenthD thesis, Vienna University of
Technology.

RATIU, D., Ducassg S., GRBA, T., AND MARINESCU, R.
2004. Using history information to improve design flaws dete
tion. In Proceedings of CSMR 200MEEE CS Press, 223-232.

RIEL, A. 1996. Object-Oriented Design Heuristicaddison Wes-
ley, Boston MA.

SaNTOS, C. R. D., QRos, P., ABEL, P., LOISEL, D., TRICHAUD,
N., AND PARIS, J. P. 2000. Mapping information onto 3d virtual
worlds. InProceedings of IV 20QB79-386.

SHNEIDERMAN, B. 1992. Tree visualization with tree-maps: 2-d
space-filling approachACM Trans. Graph. 1,11, 92—99.

A. 2001. Does code decay? assessing the evidence from chang&AN GURP, J.,AND BoscH, J. 2002. Design erosion: problems

management datdEEE Transactions on Software Engineering
27,1, 1-12.

ERLIKH, L. 2000. Leveraging legacy system dollars for e-business.

IT Professional 23, 17-23.

FOWLER, M., BECK, K., BRANT, J., OPDYKE, W., AND
RoBERTS D. 1999. Refactoring: Improving the Design of Ex-
isting Code Addison Wesley.

and causesJournal of Systems and Software 81105-119.

WETTEL, R., AND LANZA, M. 2007. Program comprehension
through software habitability. IProceedings of ICPC 2007
IEEE CS Press, 231-240.

WETTEL, R., AND LANZA, M. 2007. Visualizing software sys-
tems as cities. IProceedings of VISSOFT 200EEE CS Press,
92-99.

