
Quantifying Program Comprehension
with Interaction Data

Roberto Minelli1, Andrea Mocci1, Michele Lanza1 and Takashi Kobayashi2
1: REVEAL @ Faculty of Informatics – University of Lugano, Switzerland
2: Department of Computer Science – Tokyo Institute of Technology, Japan

Abstract—It is common knowledge that program compre-
hension takes up a substantial part of software development.
This “urban legend” is based on work that dates back decades,
which throws up the question whether the advances in software
development tools, techniques, and methodologies that have
emerged since then may invalidate or confirm the claim.

We present an empirical investigation which goal is to confirm
or reject the claim, based on interaction data which captures the
user interface activities of developers. We use interaction data
to empirically quantify the distribution of different developer
activities during software development: In particular, we focus
on estimating the role of program comprehension. In addition,
we investigate if and how different developers and session types
influence the duration of such activities. We analyze interaction
data from two different contexts: One comes from the ECLIPSE
IDE on Java source code development, while the other comes
from the PHARO IDE on Smalltalk source code development.
We found evidence that code navigation and editing occupies
only a small fraction of the time of developers, while the vast
majority of the time is spent on reading & understanding source
code. In essence, the importance of program comprehension was
significantly underestimated by previous research.

I. INTRODUCTION

Developers use IDEs (Integrated Development Environ-
ments) to read, understand, and write source code [7], [8].
Integrated development environments provide a number of
facilities to support software development, such as source
code browsers, refactoring engines, test runners etc. (e.g., [10],
[19]). While using an IDE, developers generate a large number
of events, for example, browsing the source code of a method,
editing the body of a method, or inspecting an object at run-
time. We call the set of such events interaction data.

Among software engineering activities, program under-
standing has been estimated to be one of the most challenging
tasks performed by developers [12]. According to Corbi,
developers understand programs by (1) reading documentation,
(2) reading source code, and (3) running the program itself [3].
According to some studies, understanding absorbs about half
of the time of developers [3], [6], [24]. In fact researchers
showed that developers spend more time reading than writing
source code [22]. Navigation between code fragments is an-
other essential activity for program comprehension [9], [14].
Ko et al. estimated that developers spend 35% of their time
navigating the system at hand [10].

These facts have been taken for granted for quite some
time, and some research fields, such as program comprehen-
sion and reverse engineering, base their reason to exist on such
facts. With this work we want to investigate whether these facts
can actually be confirmed.

We use interaction data to quantify the amount of time
developers spend to navigate, write, and understand source
code. Interaction is recorded silently while developers use an
IDE to perform their activities.

To get a feeling for the type of data we are considering,
refer to Fig. 1, which shows a development session at a glance.

Navigation UnderstandingEditing
time

Inspecting

Fig. 1: Development Activities at a Glance.

The session lasted 30 minutes and 43 seconds. During that
time a developer triggered a total of 455 interaction events:

• 403 navigation events (white). These are very quick
“trigger” events, such as opening a browser, clicking on
class or method names to see their contents, etc.

• inspection events (blue). These happen when the devel-
oper opened an inspector to examine the contents of an
object.

• editing events (red). These represent the actual “writing”
of the source code by editing new or existing code.

• The rest, depicted in yellow, is the time when the devel-
oper was seemingly “doing nothing”, but in fact this is
the time when the developer sits in front of the source
code and looks at it. It thus represents the actual program
understanding part.

We see that navigation events are mostly present at the
beginning of the session, when the developer is getting his
bearings in the system. Moreover, editing events are nearly
always present after a longer understanding time interval. To
collect such data we use two different means:

1) DFLOW, an extension to the PHARO Smalltalk IDE1 to
record all interactions. With DFLOW we collected 175
development sessions coming from 7 developers (both in-
dustrials and academics) performing their ordinary work.
Development sessions have different types assigned by
developers, e.g., bug-fixing. DFLOW recorded more than
110,000 interaction events of different types (e.g., navi-
gation, editing)

2) PLOG, an ECLIPSE plugin. With PLOG we collected
15 sessions from 15 developers (i.e., master students),
totaling almost 4,000 interaction events.

1See http://www.pharo-project.org

We use both data sources in this paper to make the
following contributions:

• A quantification of the development activities based on
interaction data to estimate how much time developers
spend to navigate, write, and understand source code;

• A comparison between our findings and the estimates
available in the literature;

• A brief presentation of the tools with which we collect
interaction data.

Structure of the Paper. In Section II we survey the related
work. In Section III we describe the interaction data we have
collected and briefly present the tools we developed in this
context. In Section IV we describe the obtained datasets. In
Section V we analyze and discuss our findings. In Section VI
we draw our conclusions.

II. RELATED WORK

In the past decades researchers have estimated that pro-
gram understanding occupies a large part of the work time
of developers. For example, Zelkowitz et al. estimated that
program comprehension takes more than half the time spent
on maintenance [24]. In turn, maintenance accounts for 55
to 95% of the total costs of a software system [4], thus the
weight of program comprehension globally ranges between
30 to 50%. This estimation is corroborated by Fjeldstad and
Hamlen, who claim that comprehension occupies half the
time of developers [6]. Reverse engineering is the part of
software maintenance that helps you understand the system
prior to changing it [1]. While recovering the design of a
software system, developers should understand what, how, and
why a program does something. The cost of understanding
software—that includes the time required to comprehend it and
time lost in misunderstanding—is rarely seen as a direct cost,
but is significant [1]. Also according to Erlikh, comprehending
software is time-consuming and costly [4]. He estimated that
about 90% of the budget goes to maintenance, leading to a
substantial expense for understanding. More recently, Ko et al.
claimed that understanding is also achieved through navigating
source code fragments [10]. They estimated that developers
spend about 35% of their time navigating the system at hand.

Researchers proposed a number of approaches and tools
to track the way developers work inside the IDE. They
also leveraged this data for different purposes. Singer et al.
implemented NAVTRACKS, a tool that records and leverages
navigation histories of developers to better support browsing
through software [20]. Kersten et al. developed MYLAR, a tool
that monitors the programmer to identify the most important
program entities [9]. Murphy et al. later used this data to
answer the question “How Are Java Software Developers
Using the ECLIPSE IDE?” [13]. They showed that developers
use most of the ECLIPSE perspectives while developing and
that they often use keyboard shortcuts to perform activities.
Yoon and Myers developed FLUORITE, a tool that logs low-
level events in the ECLIPSE IDE [23]. They claimed that
FLUORITE can be used to evaluate existing tools through
the analysis of coding behavior. Robbes and Lanza proposed
SPYWARE, a tool that records semantic changes in real time
[16]. They later devised ad-hoc metrics and used their data to
understand and characterize development sessions [15].

Researchers also tried to automatically identify tasks and
activities in development sessions. Coman and Sillitti collected
low-level events and presented a technique to split sessions into
task-related sub-sessions [2]. Interaction data was also used for
change prediction. Kobayashi et al. developed PLOG, a tool
to capture interaction histories inside the ECLIPSE IDE. They
used the recorded data to devise a prediction model for change
propagation based on interaction histories [11]. Similar work
was performed by Robbes et al. [17].

What struck us while reviewing the related work is the di-
chotomy between claims regarding the importance of program
comprehension which are often not backed up by empirical
evidence, and a large of body of work that uses fine-grained
interaction to perform other types of research. With the present
paper we try to close this gap by using fine-grained interaction
data to validate claims pertaining to the role of program
comprehension in the context of software development.

III. INTERACTION DATA AND TOOLS

We first describe interaction data and its properties. We
then briefly present the tools we developed to record that
data. Since the data we collect comes from two different
development contexts, i.e., Smalltalk and Java, we also discuss
how the interaction data differs depending on the language and
the tool to collect it.

We classify interaction data according to the following
simple taxonomy:

• Navigation events, used to browse (but not modify) code
entities, like opening a browser to list the methods of a
class or a file to depict its contents;

• Inspection events (Smalltalk-only), that happen when de-
velopers inspect the state of run-time objects;

• Editing events, that modify source code, like adding a
new class or modifying the code of a method.

Each profiled event has the following properties:

• A creation time, the timestamp of the event;
• A set of program entities involved in the event, such as

classes and methods.

A sequence of interaction events make up a development
session, which consists of the following elements:

• A title, describing of the intention of the developer;
• An author name, that is, the name of the developer;
• A type (Smalltalk-only), describing its intended purpose:

◦ General purpose (default): The developer performs
various activities.

◦ Refactoring: The developer mainly performs refactor-
ing activities.

◦ Enhancement: The developer mainly performs perfec-
tive maintenance activities [21].

◦ Bug-fixing: The developer mainly performs bug-fixing
activities.

• A start time and end time;
• A number of sub-sessions, with the following data:

◦ A start time and an end time;
◦ A collection of interaction events;
◦ Windows information (Smalltalk-only).

Title, author name, and type are submitted by the developer
before the session starts. A session might last for hours or days,
but the developer will probably not program uninterruptedly.
Sub-sessions indicate pauses during development. In DFLOW,
when a developer stops programming for any reason (e.g., a
conference call) she can explicitly pause (and later resume) the
recording. In addition, when we post-process the interaction
histories of DFLOW and PLOG, we automatically detect (and
remove) idle times longer than 10 minutes and create implicit
sub-sessions without idle periods.

As we use two different tools that track two different
IDEs which support a different development philosophy, the
information above cannot be mapped to the interaction data
collected by the tools. To make an example: The PHARO
Smalltalk IDE is a multi-window environment, and it is normal
for users to spawn several windows during development.
Moreover, it is an IDE based on program entities, and not files,
which entails that a developer is looking always at methods
in isolation. As opposed to that, ECLIPSE is an IDE based on
tabs and files, which requires that developers open files which
are presented in the editor and it is therefore normal that a
developer has several methods in front of his eyes in the same
window. This in essence means that in the ECLIPSE case it is
not possible for us to unambiguously understand which entity
is being looked at. However, we are not interested into what
exactly the developer is doing, but more when she is doing it.

A. DFlow and Smalltalk Interaction Histories

DFLOW is the tool we developed to record interaction
histories in Smalltalk. DFLOW collects, in a non-intrusive way,
33 different events. Table I lists these events with an identifier
and a short description.

The initial character of each identifier represents the event
type, i.e., Navigation, Inspection, and Editing. DFLOW also
records window information to observe how a developer
interacts with the windows of the target IDE. DFLOW profiles
how and when the user opens, resizes, moves, activates, and
closes a window. Developers use a simple UI of DFLOW to
start, pause, stop, and resume the recording of sessions.

Table II and Table III summarize the data collected with
DFLOW, grouped per type and per developer respectively. We
have 175 sessions by 7 developers, totaling more than 110,000
events. The developers are all from the PHARO open-source
community, with a background in both industry and academia,
located in 4 different sites (INRIA Lille, France; University of
Bern, Switzerland; University of Santiago, Chile; University
of Lugano, Switzerland). The vast majority of the sessions are
Enhancement and General, where general sessions are usually
the longest, with an average length of more than 1.5 hours. We
also note that bug-fixing sessions are generally short, which
can be explained by the fact that often they were dedicated
and guided sessions to fix particular known bugs in existing
code. Across all session types, navigation events are one order
of magnitude more than the number of editing events. General
purpose sessions are, on average, those that contain more sub-
sessions and have the higher number of navigation and edit
events (778.75 and 76.29 on average). Bug-fixing sessions have
the highest number of inspect (44.63 on average). This is not
surprising since inspects are often triggered while debugging.

TABLE I: List of Interaction Events.

ID Description
N1 Opening a Finder UI
N2 Selecting a package in the system browser
N3 Selecting a method in the system browser
N4 Selecting a class in the system browser
N5 Opening a system browser on a method
N6 Opening a system browser on a class
N7 Selecting a method in the Finder UI
N8 Starting a search in the Finder UI
I1 Inspecting an object
I2 Browsing a compiled method
I3 Do-it on a piece of code (e.g., workspace)
I4 Print-it on a piece of code (e.g., workspace)
I5 Stepping into in a debugger
I6 Run to selection in a debugger
I7 Exiting from an active debugger
I8 Proceeding in a debugger
I9 Browsing full stack in a debugger
I10 Stepping over in a debugger
I11 Entering a full debugger
I12 Browsing the hierarchy of a class
I13 Browsing all implementors of a method
I14 Browsing all senders of a method
I15 Closing the current Smalltalk image
I16 Saving the current Smalltalk image as...
I17 Browsing the version control system
I18 Browsing the stack trace in the debugger
I19 Browse versions of a method
E1 Creating a new class
E2 Adding/removing instance variables from a class
E3 Removing a method from a class
E4 Adding a method in a class
E5 Remove a class from the system
E6 Automatically creating accessors for a class

It appears that, while fixing bugs, developers navigate less
than in other sessions (264.96 navigations on average). Our
hypothesis on this is that these sessions are highly focused
since the developer already knows the subset of program
entities involved in a given bug-fixing task. One third of
times developers do not know what they are going to do,
i.e., they select “general purpose” as session type. Those
sessions have a very high concentration of navigation and edit
events (respectively 778.75 and 76.29) and a higher number of
windows with respect to other types (115.85 where the average
over all the sessions is 89.52). This justifies their general, broad
purpose: Developers do a little bit of everything.

Table III gives insights on how different developers behave.
All developers, but SD4, have a number of navigation events
that are one order of magnitude more than the number of
editing. It remains to be investigated the behavior of SD4 that
on average performs one edit event every two navigations.
Developer SD1 has a very high number of windows per
session (262.00). She is developing a visualization engine
for Smalltalk. PHARO is a window-based environment and
her tool generates visualization inside windows. This explains
why her use of windows is significantly higher than others.
This developer, in general, is an outlier: She has significantly
higher number of navigations and edits with respect to other
developer and further investigation on her behavior is required.
Developers SD3 and SD5 are the two subjects that used

TABLE II: Smalltalk Sessions Data per Type.

Session Type Sessions Events Windows
Navigation Inspect Edit

Avg.
Subsessions

Avg.
Duration
(hh:mm:ss)

Avg. # Avg. # Avg. # Avg.

Bug Fixing 27 2.11 44:38 7,154 264.96 1,205 44.63 1,537 56.93 1,739 64.41
Enhancement 86 2.26 57:08 40,973 476.43 3,631 42.22 3,992 46.42 7,331 85.24
General 55 4.18 1:33:38 42,831 778.75 1,767 32.13 4,196 76.29 6,372 115.85
Refactoring 7 1.71 48:46 3,294 470.57 22 3.14 331 47.29 224 32.00
All 175 2.38 1:06:21 94,252 538.58 6,625 37.86 10,056 57.46 15,666 89.52

TABLE III: Smalltalk Sessions Data per Developer.

Developer Sessions Events Windows
Navigation Inspect Edit

Avg.
Subsessions

Avg.
Duration
(hh:mm:ss)

Avg. # Avg. # Avg. # Avg.

SD1 12 6.08 03:01:24 21,617 1,801.42 183 15.25 2,458 204.83 3,144 262.00
SD2 3 1.00 16:27 393 131.00 157 52.33 24 8.00 71 23.67
SD3 65 1.49 52:32 20,468 314.89 2,157 33.18 2,091 32.17 3,183 48.97
SD4 6 1.83 48:13 2,183 363.83 353 58.83 1,196 199.33 608 101.33
SD5 70 2.84 56:26 35,495 507.07 2,952 42.17 3,289 46.99 7,336 104.80
SD6 7 4.29 01:25:18 6,862 980.29 337 48.14 472 67.43 555 79.29
SD7 12 6.67 01:34:25 7,234 602.83 486 40.50 526 43.83 769 64.08
All 175 2.82 01:06:21 94,252 538.58 6,625 37.86 10,056 57.46 15,666 89.52

DFLOW the most. The former is pretty new to the Smalltalk
programming language. She navigates and edits less than the
average of other developers. SD5, an experienced Smalltalk
developer, instead is mostly in line with average values. It
remains to be investigated how the expertise of developers
impact on their behavior inside the IDE. Developers SD1 and
SD6 are the two subjects that navigate the most (1,801.42 and
980.29 events on average). Interestingly, while SD1 uses a very
high number of windows, SD6 despite navigating a lot more
than other developers, uses few windows. Developers SD1 and
SD7 have the highest numbers of sub-sessions (6.08 and 6.67,
where the average is 2.82), symptoms of highly interrupted
development sessions.

B. Plog and Java Interaction Histories

In addition to Smalltalk interaction histories collected with
DFLOW, we also analyzed 15 Java development sessions.
These sessions were captured using the PLOG tool developed
by Kobayashi et al. [11].

PLOG captures interactions at two granularities: file and
method level. For this study we only used histories at file level
which are comparable to the interaction histories recorded with
DFLOW (a class in Smalltalk is conceptually similar to a file
in Java, which often contain one class). Interaction histories
captured by PLOG have the following meta-information: (1) an
author name; and (2) a list of events, with the following
information: a timestamp when the event was recorded and a
type. PLOG records two types of events:

• NR: a navigation without any editing;
• NW : a navigation with an editing event.

Navigation events happen when the developer moves between
tabs and opens new tabs. NR events are comparable to nav-
igation events in DFLOW, while NW events contain implicit
editing events. Inspection events are not captured in PLOG, as
ECLIPSE does not offer a live programming environment, as
opposed to PHARO.

Table IV summarizes the data collected with PLOG.

TABLE IV: Java Sessions Data per Developer.

EventsDeveloper Sub-sessions Duration
(hh:mm:ss) Navigation Edit

JD1 5 1:15:39 48 17
JD2 7 2:02:51 121 13
JD3 11 3:49:00 208 56
JD4 5 1:28:38 139 48
JD5 14 4:42:31 248 82
JD6 8 2:48:00 204 57
JD7 18 12:38:03 803 295
JD8 5 1:28:24 111 11
JD9 6 2:18:31 121 11
JD10 19 3:36:59 231 61
JD11 7 1:48:24 109 20
JD12 11 2:01:47 121 21
JD13 1 1:28:37 70 28
JD14 16 5:16:42 454 27
JD15 11 2:35:52 132 29
ALL 144 49:19:58 3,120 776

There are 15 sessions by 15 different developers. Naı̈vely,
PLOG has no concept of sub-session, but we pre-processed the
data to automatically identify sub-sessions according to periods
of idle (minimum idle set to 10 minutes) in the interaction
histories. This generates 144 sub-sessions without idle.

Navigation UnderstandingEditing

time

Fig. 2: Visualizing Java Development Activities.

Navigation UnderstandingEditing

time

Inspecting
Fig. 3: Visualizing Smalltalk Development Activities.

Developers were given different tasks, namely to extend
an existing system to fulfill a series of change requests
without any prior knowledge of the system (i.e., enhancement
sessions). Each developer has a personal way of approaching
the task, as some of them took several hours (up to 12) to
implement the requested changes, while others took little bit
more than one hour. We can infer that about 20% of all
navigation events led to an editing activity.

IV. QUANTIFYING ACTIVITIES

Our goal is to estimate how much time developers spend to
navigate, write, and understand source code using interaction
data. Interaction data, as we described in Section III, is the
information we leverage to quantify development activities.
Fig. 2 and 3 depict two development sessions captured with
our recording tools. Fig. 2 shows a Java session recorded with
PLOG. That session lasted 1 hours 48 minutes and 24 seconds
and counts 109 navigation activities (white), 20 edits (red),
and a large amount of understanding (yellow). The developer
(JD11 in Table IV) spends 65.1% of her time understanding
the system whilst performing perfective maintenance. The first
half of the session is essentially composed of understanding
driven by the navigation of the system at hand. After that,
the developer acquired the necessary knowledge to perform
the changes. The second part of the session encloses all the
20 editing activities interleaved with navigation events and
understanding time frames. Editing activities have different
durations. The first one lasts for a quite long time, probably
due to the fact that the developer is not confident with her
understanding of the system. Finally, she performs a series of
editing activities and increases her confidence on the system.

Fig. 3 shows a Smalltalk development session recorded
with DFLOW. The session lasted for 1 hour 14 minutes and
8 seconds and counts 491 navigations, 25 inspections, and 34
editing activities. The first difference with Fig. 2 is the presence
of inspection activities (blue). In Smalltalk an inspection hap-
pens when a developer observes some property of an instance
of an object, i.e., the value of its fields. Inspections are, most
of the times, triggered while debugging when, upon a crash,
the developer wants to know more about the reasons of the
failure. Fig. 3 depicts a bug-fixing session of the developer
SD5 (in Table III). The developer spent 60.91% of her time in

understanding tasks, 15.28% on editing activities, and 10.93%
navigating between code fragments. In the session, there are
some peculiarities. For example, inspections have often an
edit preceding them. Our hypothesis is that the developer first
changes the code, then executes and debugs it. This is possible
in the PHARO Smalltalk IDE as it is a live programming
environment, i.e., even when the system raises an exception it
is still “alive” and can be modified on the fly. Most important
editing activities (i.e., the ones with the longest durations) are
often preceded by significant understanding time frames. This
is a symptom of the fact that developers want to gather a
substantial understanding of the system prior to changing it.
As in the Java session, editing activities are concentrated in
the second part of the session while the first part is mainly
comprehension.

A. Estimation Model for DFlow

Fig. 4 depicts a fragment of a raw interaction history
recorded with DFLOW, that is, a sequence of events with
their timestamp. As a base to estimate the amount of program
understanding during development, we need first to estimate
the amount of time spent for other development activities,
starting from the recorded events.

N N E N I N

t1 t2 t3 t4 t5 t6

Fig. 4: A Sample DFLOW Interaction History

Considering DFLOW interaction histories, we have three
types of recorded events: navigation, inspection, and editing,
for which we estimate the duration of the corresponding
activities as follows.

Navigation Activities. Navigation events are clicks in the
user interface of the IDE. To perform the “click” a user spend
a relatively small amount of time. A navigation implies an
additional time required to move to a target area. This is known
as Fitts’s Law and computed as a function of the distance and
the size of the target [5]. In this work we approximate this time

to a fixed average duration (∆N). Fig. 5 shows the updated
interaction history after estimating navigation activities.

N N E N I N

t1 t2 t3 t4 t5 t6

Fig. 5: History with Navigation Activities

Editing Activities. For an editing activity Ei, DFLOW
records an event when the user is done with the editing: We
denote this time as end(Ei). We assume that the duration of
the edit (∆Ei) is a fraction (PE) of the time interval between
the end time of the previous activity end(prev(Ei)) and the
end time of Ei.

∆Ei = PE × (end(Ei) − end(prev(Ei))) (1)

Fig. 6 shows the updated interaction history assigning a
duration to editing events.

N N E N I N

t1 t2 t3 t4 t5 t6

Fig. 6: History with Navigation & Editing

Inspection Activities. For an inspection activity Ii,
DFLOW records an event at time start(Ii), that is, when
the user starts the activity. We assume that the duration of
the inspection (∆Ii) is a fraction (PI) of the time interval
between start(Ii) and the start time of the following event
start(next(Ii)).

∆Ii = PI × (start(next(Ii)) − start(Ii)) (2)

Fig. 6 shows the updated interaction history assigning a
duration to inspection events.

N N E N I N

t1 t2 t3 t4 t5 t6

Fig. 7: History with Navigation, Editing, and Inspecting Ac-
tivities

Understanding Activities. Understanding activities are
all the gaps between the other three types of development
activities. We consider that everything that is not navigation,
inspection, and editing is program understanding. For this
reason, we first assigned duration to the other types of events,
and we identify every remaining gap in the interaction history
as understanding activities. Fig. 8 shows the final interaction
history, with all the activities.

Interaction between Inspection and Editing. Our esti-
mation model uses time intervals between events to estimate

N N E N I N

t1 t2 t3 t4 t5 t6
understanding

Fig. 8: A DFLOW History with all Activities

the duration of the corresponding activities. There are 3 types
of events, thus nine possible combinations which lead to the
same number of possible intervals: NN, NI, NE, EN, EI, EE,
IN, II, and IE. The last case – that is, an inspection event
followed by an editing event – is relatively more complex,
because the duration of the inspection activity depends on the
duration of the editing activity, which in turn depends on the
duration of the inspection. Fig. 9 illustrates the situation.

EI

∆Ii ∆Ei∆Ui
Fig. 9: The Case of Editing after Inspection

According to our estimation model, the duration of the
inspection activity ∆Ii and the duration of the editing activity
∆Ei are as follows:

∆Ii = PI × (start(next(Ii)) − start(Ii)) (3)

∆Ei = PE × (end(Ei) − end(prev(Ei))) (4)

To solve Equation (3) we should know the start time of
next(Ii), that is Ei. We cannot know this before solving
Equation (4).

In turn, to determine ∆Ei we need the end time of
prev(Ei), that is Ii, and we cannot know this a priori. To
simplify, we can rewrite Equations (3) and (4) as follows:

{
∆Ii = PI × (∆ − ∆Ei)

∆Ei = PE × (∆ − ∆Ii)
(5)

where ∆ = ∆Ii + ∆Ui + ∆Ei. ∆Ii depends on ∆Ei,
and vice-versa. We want to find two percentages, P IE

I and
P IE
E , such that ∆Ei and ∆Ii can be computed from the whole

interval ∆:

{
∆Ii = P IE

I × ∆

∆Ei = P IE
E × ∆

By definition, these two fractions are:

{
P IE
I = ∆Ii

∆

P IE
E = ∆Ei

∆

By dividing Equations (5) by ∆ we obtain:

{
P IE
I = PI × (1 − P IE

E)

P IE
E = PE × (1 − P IE

I)
(6)

Solving Equations (6) we obtain:{
P IE
I = PI−PI×PE

1−PI×PE

P IE
E = PE−PI×PE

1−PI×PE

To summarize, the three time intervals depicted in Fig. 9,
can be computed in function of the whole interval ∆ as
follows:

∆Ii = P IE

I × ∆

∆Ei = P IE
E × ∆

∆Ui = ∆ − ∆Ii − ∆Ei

Reflections. We do not have “perfect” interaction data. For
example, during an editing activity we do not know exactly
what the developer is doing, only that she is editing. Our
future work in this context is to track interactions at finest
level possible, i.e., the keystroke level for editing operations,
and mouse events (including scrolling, etc.) for navigation and
inspection activities.

B. Estimation Model for Plog

PLOG interaction histories are composed of just two types
of recorded events: NR and NW . The former represents pure
navigation events, while the latter represents a navigation
event that follows an editing activity. Fig. 10 shows a PLOG
interaction history.

NR

t1 t2 t3 t4 t5 t6

NR NW NR NR NW

Fig. 10: A Sample PLOG Interaction History

Since PLOG interaction histories lack inspection events,
and editing events are implicit, to estimate the duration of
developer activities we use a slightly different model with
respect to the case of DFLOW histories.

Navigation Activities. Events of type NR denote pure
navigation. As in the DFLOW case, we approximate this
time to a fixed duration (∆N). Fig. 11 shows the updated
interaction history with explicit pure navigation activities of
fixed duration.

N

t1 t2 t3 t4 t5 t6

N NW N N NW

Fig. 11: History with Navigation Activities

Editing Activities. Editing activities are implicit: PLOG
records an event of type NW at time t(NW) when the user
performs a navigation after editing. The editing happened in
an unknown moment in the time interval between the end of
the previous event, denoted as end(prev(NW)) and t(NW).
To make the editing activity Ei explicit, we place it in the
middle of the interval and with a duration (∆Ei) that is half
the duration of that interval. The NW event is then converted
to a navigation activity with a fixed duration ∆N .

∆Ei = PE × (t(NW) − end(prev(Ei))) (7)

Fig. 12 shows the updated interaction history assigning a
duration to both navigation and editing activities.

N

t1 t2 t3 t4 t5 t6

N N N N NE E

Fig. 12: History with Navigation and Editing Activities

Understanding Activities. We assign every remaining gap
in the interaction history to understanding activities. Fig. 13
shows the final shape of the PLOG interaction history.

N

t1 t2 t3 t4 t5 t6
understanding

N N N N NE E

Fig. 13: A PLOG History with all Activities

Reflections. Again, this interaction data is not perfect.
Since we do not have keystroke-level events, we must approx-
imate the editing activities. Is it possible that if a user open a
new file and spends one minute in that file, 59 seconds could
be spent on doing nothing. We believe our approximation is
however reasonable, as it does not assign the editing activity
an exaggerated weight. Future work in this context is the
recording of keystroke-level events, as done for example in
ECLIPSEEYE [18].

C. Discussion: ∆N , PE , and PI

The estimation model we propose to quantify development
activities has three degrees of freedom: i) ∆N , that repre-
sents the conventional average duration of navigation events;
ii) PE , that models the average percentage of editing activities
between an edit event and the preceeding event; and iii) PI ,
which similarly represents the percentage of inspection activ-
ities in Smalltalk interaction histories. We intend navigation
as the “mechanics of navigation”, i.e., the clicks in the user
interface. Thus, we conventionally assume that each navigation
event lasts, on average, 0.5 seconds. We fix ∆N to 0.5s.

Quantifying the right amount of PE and PI is out of the
scope of this paper, since it would require more fine-grained
events to be collected (e.g., keystroke events). Instead, we

discuss how the results of our quantification model change by
varying these parameters, obtaining possible lower and upper
bounds to the amount of time spent in program understanding.
Table V shows how the amount of program understanding
changes by varying PE and PI in the case of Smalltalk
development sessions collected by DFLOW.

TABLE V: Amount of Understanding in Smalltalk Sessions
Varying the Estimates of PE and PI

PI

PE
0.10 0.25 0.50 0.75 0.90

0.10 88.44% 83.74% 75.87% 67.94% 63.16%

0.25 86.17% 81.63% 73.97% 66.20% 61.46%

0.50 82.34% 78.02% 70.71% 63.24% 58.62%

0.75 78.46% 74.28% 67.28% 60.16% 55.73%

0.90 76.10% 71.97% 65.09% 58.16% 53.93%

The most pessimistic estimate is shown in the bottom right
cell of the table, and corresponds to PE = PI = 90%. In
this case understanding amounts to 54% of time, which is
slightly above the upper-bound of previous estimates [3], [6],
[24]. The most optimistic estimate is on the top-left cell of
the table, corresponding to PE = PI = 10%: In this case,
understanding consumes around 88% of the time of developers,
which is significantly above previous estimates. Obviously,
more accurate estimates lay between these two quite unrealistic
extremes, and they are shown in the other cells of the table.
It appears very likely that actual time spent by developers in
program understanding has been underestimated by previous
research by at least 10-20%.

Table VI shows similar results in the case of Java develop-
ment sessions recorded by PLOG. In this case, since the tool
did not record inspection events, the only parameter to vary is
PE . Pessimistic and optimistic estimates for program under-
standing are similar to the case of DFLOW, suggesting similar
considerations about the time spent in program understanding.

TABLE VI: Amount of Understanding in Java Sessions
Varying the Estimate of PE

PE 0.10 0.25 0.50 0.75 0.90

94.33% 87.13% 75.12% 63.11% 55.91%

V. RESULTS

Tables VII, VIII, and IX summarize the distribution of
development activities for all the recorded sessions in the
case of DFLOW and PLOG. For each development activity,
we calculate the average of the percentage of time spent by
developers in each activity.

As we pointed out in the previous section, program under-
standing is a dominant activity, as it accounts, on average, from
54 to 94% of the total development time in each session. The
values are similar despite the profound difference in the way
developers produce Java and Smalltalk code. This suggests that
the role of program understanding has been underestimated
by previous research. Decades ago researchers claimed that

understanding a program absorbs about 50% of the time of
developers [3], [6], [24], while we find that the percentage is
likely to be substantially higher.

Fig. 14 depicts the distribution of the relative importance of
the activities using boxplots. Although there can be substantial
differences between individual sessions and developers, what
emerges is a clear pre-dominance of program understanding
activities.

NAV EDI INS UND

%
 o

f t
im

e
sp

en
t

10%

20%

30%

40%

50%

60%

70%

80%

90%
Smalltalk
Java

Fig. 14: Development Activities for All Sessions.
Note: inspect (INS) applies only to Smalltalk sessions.

Role of session types. While in interaction histories
collected by DFLOW and PLOG program understanding is
dominant in both cases, there is difference ranging from
2% to 6% depending on the estimates of parameters, as
shown in Table VII. On all the Smalltalk sessions, program
understanding ranges from 54 to 88% while on Java sessions
these bounds range from 56 to 94%. A possible interpretation
of this difference can be found in the fact that PLOG sessions
were all enhancement sessions, while the sessions we collected
with DFLOW are of different type and include, for example,
bug-fixing and refactoring sessions.

Table VII shows the different distribution of the duration of
development activities per session type in the case of Smalltalk
sessions collected by DFLOW.

The role of understanding is still dominant in all session
types: However, there is some significant difference in the
distribution of editing and navigation activities. Refactoring
sessions, for example, have a high understanding compo-
nent and make minimal use of inspection activities (0.2-
1.7%). While program understanding does not appear to be
significantly different between session types, there are some
differences on the distribution of other activities. Enhancement
and Bug Fixing sessions spend significant time on inspection
(around 10%), while Enhancement and Refactoring sessions
spend more time on editing.

Developer Diversity. Table VIII lists the relative impor-
tance of the activities for each Smalltalk developer. We can

TABLE VII: Development Activities per Session Type.
Min: PE = 0.9 and PI = 0.9, Med: PE = 0.5 and PI = 0.5, and Max: PE = 0.1 and PI = 0.1

Type N (%) E (%) I (%) U (%)
Min Med Max Min Med Max Min Med Max

DFLOW: Smalltalk
Enhancement 7.8% 30.6% 17.4% 3.6% 13.4% 7.8% 1.7% 48.2% 67.0% 86.9%
Refactoring 9.1% 30.4% 16.9% 3.4% 1.7% 0.9% 0.2% 58.9% 73.1% 87.3%
General 6.2% 21.3% 12.1% 2.5% 9.5% 5.5% 1.2% 63.0% 76.2% 90.1%
Bug Fixing 4.6% 25.5% 14.5% 3.0% 17.4% 10.0% 2.1% 52.6% 70.9% 90.3%
All 6.8% 26.9% 15.3% 3.2% 12.3% 7.2% 1.6% 54.0% 70.7% 88.4%

PLOG: Java
All 0.9% 43.2% 24.0% 4.8% – – – 55.9% 75.1% 94.3%

TABLE VIII: Smalltalk Development Activities per Developer.
Min: PE = 0.9 and PI = 0.9, Med: PE = 0.5 and PI = 0.5, and Max: PE = 0.1 and PI = 0.1

Developer N (%) E (%) I (%) U (%)
Min Med Max Min Med Max Min Med Max

SD1 5.1% 30.9% 17.6% 3.6% 13.7% 8.0% 1.7% 50.3% 69.4% 89.5%
SD2 8.9% 21.6% 12.1% 2.4% 20.3% 11.3% 2.3% 49.2% 67.7% 86.4%
SD3 8.0% 30.2% 17.0% 3.5% 5.6% 3.3% 0.7% 56.2% 71.8% 87.9%
SD4 8.5% 26.5% 15.1% 3.1% 12.8% 7.4% 1.6% 52.2% 69.0% 86.8%
SD5 4.6% 16.8% 9.7% 2.1% 9.3% 5.6% 1.3% 69.4% 80.1% 92.1%
SD6 8.4% 10.5% 6.0% 1.2% 10.5% 6.0% 1.2% 70.6% 79.6% 89.1%
SD7 5.7% 22.3% 12.6% 2.6% 10.5% 6.1% 1.3% 61.5% 75.6% 90.4%

deduce diverse “profiles”: SD3 has a tendency towards more
navigation and editing, and less understanding. In essence he
could be characterized as more “aggressive” towards the code
base. Similarly, SD2 spends almost the same amount of time on
navigation, but distributes almost equally the remaining time
between editing and inspection, being thus more “cautious”
and she probably frequently verifies the implemented changes.
SD5 and SD6 are even more cautious, denoted by their high
understanding values. In essence they reflect more on the code
before they change it. SD3 however is making very little use of
inspecting, which is a preferred activity of skilled developers.
SD1 and SD3 have the highest editing and the among the
lowest understanding values. In essence, they seem to be at
ease with the code base and confidently change it without the
need to rely on extensive navigation.

Table IX lists the relative importance of the activities
for each Java developer. Again we can infer some developer
“profiles”. For example JD8 took a short time to implement the
changes, but has high understanding and low editing (refer to
Table IV for durations). JD2 and JD14 have a similar behavior
but they took more time to implement the task. We can say that
JD8 is someone who thinks deeply about what to do, and then
does it quickly and firm. JD13 is at the opposite end of the
spectrum: The high amount of editing time, with relatively high
navigation time, denotes a developer who meanders heavily in
the code base until she slowly implements the changes.

Reflections. The importance of program understanding has
been underestimated. This finding is all the more relevant as
it holds across diverse IDEs and programming languages. We
believe this to be an important insight that corroborates the
importance of research in approaches and tools that deal with
program comprehension and reverse engineering.

TABLE IX: Java Development Activities per Developer.
Min: PE = 0.9 and PI = 0.9, Med: PE = 0.5 and PI = 0.5,

and Max: PE = 0.1 and PI = 0.1

Dev. N (%) E (%) U (%)
Min Med Max Min Med Max

JD1 0.5% 60.2% 33.4% 6.68% 39.3% 66.0% 92.78%
JD2 0.8% 20.3% 11.3% 2.25% 78.8% 87.9% 96.90%
JD3 0.8% 52.5% 29.1% 5.83% 46.8% 70.1% 93.41%
JD4 1.3% 32.0% 17.8% 3.56% 66.6% 80.9% 95.12%
JD5 0.7% 68.7% 38.2% 7.63% 30.6% 61.1% 91.64%
JD6 1.0% 40.7% 22.6% 4.52% 58.3% 76.4% 94.46%
JD7 0.9% 62.1% 34.5% 6.90% 37.0% 64.6% 92.22%
JD8 1.1% 24.9% 13.8% 2.76% 74.0% 85.1% 96.19%
JD9 0.7% 28.3% 15.7% 3.14% 71.0% 83.5% 96.13%
JD10 0.9% 34.1% 18.9% 3.79% 65.0% 80.2% 95.32%
JD11 0.9% 27.6% 15.4% 3.07% 71.5% 83.8% 96.05%
JD12 0.8% 49.1% 27.3% 5.46% 50.0% 71.9% 93.71%
JD13 0.7% 75.2% 41.8% 8.35% 24.2% 57.6% 90.98%
JD14 1.2% 22.4% 12.4% 2.48% 76.4% 86.4% 96.32%
JD15 0.7% 50.1% 27.9% 5.57% 49.1% 71.4% 93.72%

A. Threats to Validity

Construct Validity. We record interaction data in terms of
events in the IDE with their timestamp. We devised a model to
estimate the duration of activities: A threat to validity for our
results is the accuracy of this model, that may not precisely
capture, for example, the moment when editing activities start.
To get a more accurate model to estimate activity durations,
one should record more fine-grained interaction data and
corresponding events. However, in Section IV-C we described
how even varying the degrees of freedoms the essence of this
paper remains true.

In our study we only considered the part of software
development carried on inside an IDE. Since program com-
prehension can be carried out throughout the whole software
development lifecycle, our findings are a lower bound of the
total time devoted to software understanding.

Statistical Conclusion. We considered a total of 190
sessions with around 120,000 interactions, which we repute
to be substantial enough to deduce some conclusions, but we
did not measure the statistical confidence of our results. We
consider this to be part of our future work, once the data
collection is precise to the finest level possible (i.e., keystroke-
level and accurate mouse tracking).

External Validity. The weight of different development
activities may significantly vary with different programming
languages and IDE user interfaces. To ameliorate this possible
threat, we considered two significantly different programming
languages and IDEs, obtaining similar estimates that give us
confidence about the generalizability of our results.

A similar argument can be formulated about the developer
diversity, which may influence the amount of time required
from program comprehension. In our study, we considered
15 different Java developers in the case of interaction data
recorded on the ECLIPSE IDE, and 7 different developers
with different background and experience in the case of
Smalltalk and the PHARO IDE. Further investigation is needed
to understand how developers’ expertise influences the way
they interact with the UI of the IDE.

VI. CONCLUSIONS AND FUTURE WORK

Program understanding is considered one of the most time
consuming activities of software development. This claim is
taken as an ipse dixit, a dogmatic statement to be accepted
as it is. We believe that the advances on software engineering
practice may have mutated the role of program comprehension,
and that this topic needs investigation, also to motivate the im-
portance of areas of research, such as program comprehension,
reverse engineering, and mining software repositories.

We presented a study whose aim was to get empiri-
cal evidence about the role of program comprehension. We
computed an estimate of the duration of developer activi-
ties leveraging interaction data, that captures the interaction
events of the developer with the user interface of the IDE.
Our study considered two significantly different development
contexts, one coming from the ECLIPSE IDE and the Java
programming language, and another one considering Smalltalk
code development in the PHARO IDE. We collected interaction
data from 22 developers, 15 working in Java with ECLIPSE
and 7 working in Smalltalk with PHARO, totaling hundreds
of hours of recorded activities. Our findings strongly suggest
that the role of program comprehension has been significantly
underestimated by previous research.

Acknowledgments. We acknowledge the support of the
Swiss National Science foundation for the project No. 146734
“HI-SEA”. We thank Max Leske, Lorenzo Baracchi, and all
the developers that helped us gathering the data.

REFERENCES

[1] E. Chikofsky and I. Cross, J.H. Reverse engineering and design
recovery: a taxonomy. IEEE Software, 7(1):13–17, Jan 1990.

[2] I. Coman and A. Sillitti. Automated identification of tasks in devel-
opment sessions. In Proceedings of ICPC 2008 (16th International
Conference on Program Comprehension), pages 212–217. IEEE, 2008.

[3] T. A. Corbi. Program understanding: Challenge for the 1990s. IBM
Systems Journal, 28(2):294–306, 1989.

[4] L. Erlikh. Leveraging legacy system dollars for e-business. IT
Professional, 2(3):17–23, May 2000.

[5] P. M. Fitts. The information capacity of the human motor system
in controlling the amplitude of movement. Journal of experimental
psychology, 47(6):381, 1954.

[6] R. K. Fjeldstad and W. T. Hamlen. Application Program Maintenance
Study: Report to Our Respondents. In G. Parikh and N. Zvegintzov,
editors, Tutorial on Software Maintenance, pages 13–30. IEEE, 1982.

[7] T. Gı̂rba, A. Kuhn, M. Seeberger, and S. Ducasse. How developers drive
software evolution. In Proceedings of IWPSE 2005 (8th International
Workshop on Principles on Software Evolution), pages 113–122. IEEE,
2005.

[8] O. Greevy, T. Gı̂rba, and S. Ducasse. How developers develop features.
In Proceedings of CSMR 2007 (11th European Conference on Software
Maintenance and Reengineering), pages 265–274. IEEE, 2007.

[9] M. Kersten and G. C. Murphy. Mylar: a degree-of-interest model for
IDEs. In Proceedings of AOSD 2005 (4th International Conference on
Aspect-Oriented Software Development), pages 159–168. IEEE, 2005.

[10] A. Ko, B. Myers, M. Coblenz, and H. Aung. An exploratory study
of how developers seek, relate, and collect relevant information during
software maintenance tasks. IEEE TSE 2006 (Transactions on Software
Engineering), 32(12):971–987, 2006.

[11] T. Kobayashi, N. Kato, and K. Agusa. Interaction histories mining for
software change guide. In Proceedings of RSSE 2012 (3rd International
Workshop on Recommendation Systems for Software Engineering),
pages 73–77, 2012.

[12] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining mental models:
A study of developer work habits. In Proceedings of ICSE 2006 (28th
International Conference on Software Engineering), pages 492–501.
ACM, 2006.

[13] G. C. Murphy, M. Kersten, and L. Findlater. How are java software
developers using the eclipse IDE? IEEE Software, 23(4):76–83, 2006.

[14] D. Piorkowski, S. Fleming, C. Scaffidi, L. John, C. Bogart, B. John,
M. Burnett, and R. Bellamy. Modeling programmer navigation: A head-
to-head empirical evaluation of predictive models. In Proceedings of
VL/HCC 2011 (Symposium on Visual Languages and Human-Centric
Computing), pages 109–116. IEEE, 2011.

[15] R. Robbes and M. Lanza. Characterizing and understanding develop-
ment sessions. In Proceedings of ICPC 2007 (15th IEEE International
Conference on Program Comprehension), pages 155–164. IEEE CS
Press, 2007.

[16] R. Robbes and M. Lanza. Spyware: A change-aware development
toolset. In Proceedings of ICSE 2008 (30th ACM/IEEE International
Conference in Software Engineering), pages 847–850. ACM Press,
2008.

[17] R. Robbes, D. Pollet, and M. Lanza. Replaying ide interactions to
evaluate and improve change prediction approaches. In Proceedings
of MSR 2010 (7th IEEE Working Conference on Mining Software
Repositories), pages 161 – 170. IEEE CS Press, 2010.

[18] Y. Sharon. Eclipseye - spying on eclipse. Bachelor’s thesis, University
of Lugano, June 2007.

[19] J. Sillito, G. C. Murphy, and K. De Volder. Asking and answering ques-
tions during a programming change task. IEEE TSE 2008 (Transactions
on Software Engineering), 34(4):434–451, 2008.

[20] J. Singer, R. Elves, and M. Storey. Navtracks: supporting navigation
in software maintenance. In Proceedings of ICSM 2005 (21st Inter-
national Conference on Software Maintenance), pages 325–334. IEEE,
2005.

[21] E. B. Swanson. The dimensions of maintenance. In Proceedings of
ICSE 1976 (2nd International Conference on Software Engineering).
IEEE, 1976.

[22] A. Von Mayrhauser and A. Vans. Program comprehension during
software maintenance and evolution. IEEE Computer, 28(8):44–55, Aug
1995.

[23] Y. Yoon and B. A. Myers. Capturing and analyzing low-level events
from the code editor. In Proceedings of PLATEAU 2011 (3rd Workshop
on Evaluation and Usability of Programming Languages and Tools),
pages 25–30. ACM, 2011.

[24] M. Zelkowitz, A. Shaw, and J. Gannon. Principles of software
engineering and design. Prentice Hall, 1979.

