
On the Impact of Design Flaws on Software Defects
Marco D’Ambros, Alberto Bacchelli, Michele Lanza

REVEAL @ Faculty of Informatics - University of Lugano, Switzerland
{marco.dambros, alberto.bacchelli, michele.lanza}@usi.ch

Abstract—The presence of design flaws in a software system
has a negative impact on the quality of the software, as they
indicate violations of design practices and principles, which make
a software system harder to understand, maintain, and evolve.
Software defects are tangible effects of poor software quality.

In this paper we study the relationship between software
defects and a number of design flaws. We found that, while some
design flaws are more frequent, none of them can be considered
more harmful with respect to software defects. We also analyzed
the correlation between the introduction of new flaws and the
generation of defects.

Index Terms—Software quality and design; Software defects

I. INTRODUCTION

In the light of the increased complexity of today’s software
systems, it is no wonder that maintenance and evolution claim
90% of the total software costs [1]. In this context, much effort
has been devoted to find approaches capable of detecting parts
of the source code that are likely to be harder to maintain, or
to be more related to defects. Source code entities that have
design flaws are good candidates, since these are known to
have a negative impact on quality attributes such as flexibility
or maintainability [2]. However, simple source code metrics
are not capable of identifying poorly designed parts, because
they must be analyzed and considered in the context in which
they appear. For this reason, meaningful metric combinations
have been devised as so-called detection strategies [3] and put
in the context of design (dis)harmony, [4].

Design disharmonies have been thoroughly analyzed in liter-
ature: to find good metrics and thresholds for their classification
[3]–[5], to propose correction strategies and refactorings [4],
[6], to visualize them [7], and to put them in relation to code
evolvability [8] or change-proneness [9]. However, a research,
which was never carried out so far, is the analysis of the
relationship between design flaws and software defects.

In this paper, we investigate this relationship conducting
an extensive experiment on six open-source software systems.
We analyze the frequency of design flaws in software systems.
Then, we analyze the correlation of flaws with post-release
defects. Finally, we evaluate whether an addition in the number
of flaws in a system can induce bugs. We conduct our
experiment not only analyzing each flaw, per se, but also
extracting and comparing differences between flaws in all
these situations.

We choose to analyze design flaws in six different software
systems from two open-source communities (i.e., Apache and
Eclipse) because the development environment, the community
culture, and the development paradigms are all likely to be

different. Our goal is to compare whether and how these
characteristics induct, influence, or alleviate different flaws.

Although our goal is clearly defined, we do not expect to be
able to fully determine it with six case studies, even though we
consider the comprehensive data from all the histories of the
software systems analyzed. However, we do expect to provide
some useful evidence that can contribute to the analysis of
the relationship between different design flaws, and between
design flaws and software defects, and also, help delineate
appropriate questions to ask in future case studies.

Structure of the paper In Section II we introduce detection
strategy: the technique we employ to identify design flaws in
software systems. In Section III we explain how we extract,
link, and process the actual data from source code and bug
repositories, that we later use in Section IV to conduct the
core of the experiment. In Section V we outline the threats to
the validity of this study. In Section VI we analyze the current
research on detecting design flaws and in the field of defect
analysis and prediction. We conclude in Section VII.

II. DESIGN FLAWS AND DETECTION STRATEGIES

As opposed to object-oriented metrics [10], which are simple
measures of size (e.g., lines of code, number of methods) or
complexity (e.g., McCabe cyclomatic complexity) of software,
detection strategies [3] provide a formal method to identify
design flaws in a given source code, also referred to in literature
as “code smells” [11].

To recognize a number of design flaws, we transform
informal design rules, guidelines, and heuristics [2], [11], [12]
into detection strategies, i.e., quantifiable expressions of rules
by which design fragments that are conforming to these rules
can be detected in the source code [3]. In practice, detection
strategies are logical conditions, based on source code metrics,
that detect violations against design guidelines. We use the
design flaws described by Lanza and Marinescu [4].

As it goes beyond the scope of this paper to describe each
flaw in detail, we limit ourselves to exemplify one of these
design flaws, i.e., Brain Method.

Example. The Brain Method design flaw refers to a method
that tends to centralize the functionality of a class, in the same
way a God Class [12] centralizes the functionality of an entire
(sub)system. It can be informally described by the following
rules: (1) it is excessively large, (2) it has many conditional
branches, computed using the McCabe’s cyclomatic complexity,
(3) it has a deep nesting level, and (4) it uses many1 variables.

1Refers to a number higher than a human can keep in short-term memory
[13], i.e., 6 - 9.



These rules can be transformed into the detection strategy
depicted in Figure 1.

MAXNESTING ≥ SEVERAL

Method has deep nesting

NOAV > MANY

Method uses many 
variables

LOC > HIGH (Class) / 2

Method is excessively large

CYCLO ≥ HIGH

Method has many 
conditional branches

AND Brain Method

Fig. 1. “Brain Method” Detection Strategy.

Filtering conditions are expressed in terms of metrics (the
left part of the expressions) and related to thresholds2 (the
right part of the expressions).

CYCLO, also known as McCabe’s Cyclomatic Complexity, is
the number of linearly-independent paths through an operation.
MAXNESTING represents the maximum nesting level of con-
trol structures within an operation. NOAV is the total number
of variables directly accessed from the measured operation.
Variables include parameters, local variables, instance variables
and global variables. “HIGH” refers to a threshold for methods,
while “HIGH (Class)” refers to a threshold for classes.

This detection strategy, functioning on any Java software sys-
tem, produces a set of candidate entities exhibiting symptoms
of the Brain Method design flaw. For example, in one version
of ArgoUML we were able to detect 120 brain methods.

In addition to Brain Method, we consider the following
method level design flaws:

• Feature Envy: methods more interested in the data of other
classes than that of their own class [11], by accessing it
directly or via accessors.

• Intensive Coupling: methods intensively coupled to other
methods located in few other classes: The communication
between the client method and (at least one of) its provider
classes is excessively verbose.

• Dispersed Coupling is complementary to the previous
design flaw, and it refers to a method excessively tied to
many other methods in the system dispersed among many
classes: a single method communicates with an excessive
number of classes, whereby the communication with each
of the classes is not intense.

• Shotgun Surgery denotes that a change in a single method
implies many changes to many different methods and
classes [11]. This design flaw deals with strong afferent
(incoming) coupling, thus concerning the coupling strength
and dispersion.

2Obtained by measuring 45 Java systems. For more details see [4].

III. OBTAINING DISHARMONIES AND BUG DATA

To analyze the relationship between software bugs and
design flaws we first need to extract the necessary data from
source code and bug repositories. Figure 2 summarizes our
data extraction process.

Svn / Cvs
repository

Object oriented
model (FAMIX)Source code

n
o
c

lo
c

w
lo
c

n
o
m

n
o
a

fa
n
in

fa
n
o
u
t

m
c
c
a
b
e

o
n
a

p
n
a

- - - - - - - - - -
220 2532 143936 17324 6190 95 11 345 113 954
220 2681 169205 19599 7078 132 13 450 170 1098
220 2672 170149 19616 7067 135 12 459 171 1082
228 2664 169693 19452 6982 136 12 470 171 1074
- - - - - - - - - -
68 807 67027 5944 2930 48 1 36 0 289
80 861 69064 6232 3018 59 3 59 4 313
84 1045 75448 7227 3427 52 6 92 8 338
69 990 69719 6203 2673 57 2 46 8 320
75 1334 105783 10123 3181 79 59 281 33 311
77 1528 108259 11082 3403 72 43 319 36 380
78 1674 137852 12520 4196 115 57 326 44 405

Check out Parsing Design Flaw 
extraction

Bugzilla / 
Jira 

database Query

Class level
design flaw data

Linking 
classes 

with bugs

n
o
c

lo
c

w
lo
c

n
o
m

n
o
a

fa
n
in

fa
n
o
u
t

m
c
c
a
b
e

o
n
a

p
n
a

- - - - - - - - - -
220 2532 143936 17324 6190 95 11 345 113 954
220 2681 169205 19599 7078 132 13 450 170 1098
220 2672 170149 19616 7067 135 12 459 171 1082
228 2664 169693 19452 6982 136 12 470 171 1074
- - - - - - - - - -
68 807 67027 5944 2930 48 1 36 0 289
80 861 69064 6232 3018 59 3 59 4 313
84 1045 75448 7227 3427 52 6 92 8 338
69 990 69719 6203 2673 57 2 46 8 320
75 1334 105783 10123 3181 79 59 281 33 311
77 1528 108259 11082 3403 72 43 319 36 380
78 1674 137852 12520 4196 115 57 326 44 405

Design Flaw 
extraction

Class level
bug data

Fig. 2. Extracting Design Flaws and Bug Data.

Extracting Design Flaws. Our starting point, i.e., the input
data, is the source code of an object-oriented software system,
obtained from a CVS (or Subversion) repository. We parse the
source code with the tool inFusion3 and produce a FAMIX4-
compliant object-oriented model of the system.

Having the FAMIX-compliant model as input, we use detec-
tion strategies to spot the design flaws mentioned previously.
This operation is performed within the Moose reengineering
framework [15]. The result is a list of method level design
flaws that each class contains. We conduct our analysis at class
level because classes are the cornerstone of the object-oriented
paradigm, and developers perform maintenance and refactoring
tasks mostly at this level.

Extracting and Linking Bugs With Classes. Figure 3
shows our approach to link classes with bugs, through version-
ing system data.

Bug

AttributeAttributeAttribute
FAMIX Class

Commit
comments

Svn / Cvs
repository

Bugzilla / 
Issuezilla 
database

check out

Source code

Versioning 
system logs

log

Bug reports

Query

Parsing

Parsing

Parsing

Class / File 
link

Bug reference 
in the comment

Inferred 
link

Fig. 3. Linking classes with bugs.

3http://www.intooitus.com/inFusion.html
4FAMIX is a language independent object-oriented meta-model of software

systems [14].

http://www.intooitus.com/inFusion.html


We parse the source code obtaining the FAMIX-compliant
model. Then, we extract the list of classes, and we link
them with the corresponding files, whose histories (in terms
of commits) are included in the log files of the versioning
system. Log files contain comments written by developers at
commit time. These comments often includes references to
problem reports (e.g., “fixed bug 12345”), which allow us to
link problem reports with files in the versioning system, and
therefore with classes.

The linking between a CVS/SubVersion file and a
Bugzilla/JIRA issue report is not formally defined. As widely
done in practice [16], [17], we use pattern matching techniques
on the developer’s comments to find a reference to the issue
report id. To choose the appropriate algorithm to detect the
links, we analyzed a number of sample comments taken from
the case studies. We noted that some bug reference ids are
just plain numbers, without keywords such as “fix” or “bug”.
If looking for the mere number, it is possible to obtain false
positives. Thus, in our algorithm, each time we find a candidate
reference to a bug report, we not only check that a bug with
such an id exists, but we also verify that the date in which
this bug was reported is antecedent to the timestamp of the
commit comment in which the reference was found (i.e., it
verifies that the bug is fixed after being reported).

Having the links between classes and files and between files
and bugs, we infer the links between classes5 and bugs.

IV. EXPERIMENTS

We performed two sets of experiments to analyze the
relationship between design flaws and software defects:

1) Correlation analysis: We studied the correlation between
number of defects and class-level design flaws.

2) Delta analysis: We investigated whether increments in the
flaws correlate with defects, within a given time window.

Lucene A high-performance, full-featured text search engine
library.

Maven A software project management and comprehension tool.
Mina A network application framework.
Eclipse CDT A C/C++ Integrated Development Environment (IDE) for

the Eclipse platform.
Eclipse PDE
UI

Models, builders, editors and more to facilitate plug-in
development in the Eclipse IDE.

Equinox An implementation of the OSGi R4 core framework
specification.

TABLE I
SOFTWARE SYSTEMS USED FOR THE EXPERIMENTS.

Data Set. We performed our experiments on the six Java
software systems detailed in Table I.

For each system, we considered multiple versions: one
version every two weeks in the history of the system. To

5Due to the fact that Java inner classes are defined in the same file as their
containing class, different classes might point to the same CVS/Subversion
file. This implies that a bug linking to a file might actually be linking to more
than one class. We are not aware of a fix for this problem, which in fact is a
shortcoming of the bug tracking systems employed in the software projects
analyzed. For this reason, in our experiments we do not consider inner classes.

achieve this, given the Subversion repository of a software
project, we performed the following two steps:

1) We checked out the source code relative in the repository
at a particular date, iteratively incrementing the date by
14 days.

2) We parsed the source code, extracted design flaws and
bug data, as previously described.

For each system, Table II shows the period of time con-
sidered6, the number of versions considered, the size of the
systems in terms of average number of classes, the average
number of design flaws and the number of references to bugs
reported in the considered time period.

Since the number of classes and the number of design flaws
vary across system versions, we show average numbers over
all the considered versions. The number of classes shown in
the table is the total number of classes linked with versioning
system files (e.g., not considering inner classes). Bug references
indicate all the links to classes that a bug report can have (when
a single bug affects multiple classes, it is linked with multiple
classes: the number of bugs is one, while the number of bug
references is equal to the number of affected classes).

Once we have extracted the design flaw data for all the
versions of a system, for each flaw we build a design flaw matrix
M with the following properties, exemplified in Figure 4:

1

4

9

0

...

2

2

nil

3

0

...

1

1

nil

5

0

...

0

...

...

...

...

...

...Class Foo

V1 V2 Vn

Class Foo at version V2
has 1 brain method

Class Bar Class Bar at version Vn
does not exist

14 days

Class

System version

Fig. 4. An example of design flaw matrix for brain methods.

• Each column represents a version of the system.
• Each row represents a class.
• The value of a cell at row r and column c is equal to

the number of instances of the design flaw in the class
represent by r at the version represent by c.

• Since some classes exist in some versions but not in others,
the set of rows is composed by the sum of all the classes
existing in at least one version. If a class at row r does
not exist at the version in column c, we set the value of
the cell c, r to nil.

Having all the pieces of information, the first question that
we want to answer is: Are there design flaws that are more
frequent in all the systems, or is each system different with
respect to design flaws frequencies?

6The end of the time period always corresponds to a release of the software.



Software system Lucene Maven Mina CDT PDE UI Equinox
Time period begin 1 Jan 2005 1 Jan 2005 14 Jan 2006 24 Jun 2006 1 Jan 2005 1 Jan 2005
Time period end 8 Oct 2008 18 Feb 2009 10 Dec 2008 25 Feb 2009 11 Sep 2008 25 Jun 2008
Last release 2.4.0 2.0.10 2.0.0-M4 5.0.2 3.4.1 3.4
Number of versions 99 108 76 70 97 91
Bug refs in the time period 982 1500 629 923 4953 2043
Avg. # classes 513.5 156.2 108.6 217.8 1170.5 242.6
Avg. # Brain method 106.9 24.8 1.6 6.9 29.1 35.5
Avg. # Dispersed coupling 14.2 2.9 1.6 0.4 63.0 31.8
Avg. # Feature envy 943.7 74.7 70.1 90.6 1006.8 450.8
Avg. # Intensive coupling 0.97 6.6 1.3 3.4 1.55 4.3
Avg. # Shotgun surgery 123.7 20.7 19.6 31.5 117.5 36.7

TABLE II
THE DATA SET USED FOR THE EXPERIMENTS.

Table II provides a first indication that there are patterns of
design flaws frequencies in the analyzed systems. However, we
cannot compare the numbers of flaws in Table II, as systems
have different number of classes. To better investigate our
question, we compare the average number of disharmonies per
class (which is also an average over all the versions).

0	  

0.2	  

0.4	  

0.6	  

0.8	  

1	  

1.2	  

1.4	  

1.6	  

1.8	  

2	  

Brain	  Methods	   Dispersed	  Coupling	   Feature	  Envy	   Intensive	  Coupling	   Shotgun	  Surgery	  

Lucene	   Maven	   Mina	   CDT	   PDE	  UI	   Equinox	  

Fig. 5. Average number of design flaws per class, grouped by flaw.

Figure 5 shows the average number of disharmonies per
class, grouped by flaw: Feature envy is the most frequent in
all the systems, followed by shotgun surgery, which is stable
for all the systems. Intensive coupling is relatively low for all
systems, while dispersed coupling and brain methods vary.

A. Correlation Analysis

We found that some design flaws are more frequent than
others. Now we want to study the correlation between number
of design flaws and number of post release defects at the class
level. In particular we aim at answering the following question:
Do design flaws correlate with software defects? Does any
flaw consistently correlate more than others in all systems?

In our analysis we consider post release defects reported
after the considered version of the system. For example, if
we consider class Foo at version x, post release defects are
defects linked to Foo reported after x and within a certain
time window. As done by Zimmermann et al. we consider a
period of 6 months for post release defects [17]. We consider

post-release defects because we want to investigate whether
the presence of design flaws generate bugs in the future.

We need two lists to compute the correlation: The first one
contains the number of design flaws for each class, and the
second one the number of post release defects. The first list
corresponds to a column of the matrix M , while the second
is mapped to a column in an analogous matrix B. In B rows
represent classes, columns represent versions and the value
of a cell at position c, r represent the number of post release
defects relative to the version c of the class r. To compute the
number of post release defects we filter the extracted bug data
according to the bugs reporting dates.

To measure the correlation we could use either the Pearson’s
linear correlation coefficient, which should be used to linear
relationships, or the Spearman’s rank correlation coefficient,
suitable for general associations [18]. To choose which measure
is more appropriate we studied the distribution of the data,
which resulted to be highly skewed with respect to a normal
distribution, in fact, most of the classes have very few or zero
design problems and post release defects. For this reason we
decided to use the Spearman’s coefficient, as it is recommended
with data that is skewed or that contains outliers [18].

Design flaw matrix M

Post release defects 
matrix B

...

...

ρ1 ρ2 ρ3 ρn... Correlation vector

Fig. 6. Computing Spearman’s correlations over multiple versions of a system.

Figure 6 shows how we compute the correlation over all
the versions of a given system, producing a correlation vector
which represents the correlation trend over time. We create the
vector by computing the Spearman’s coefficient on pairs of
columns from the design flaws and bugs matrixes.



-0.1!

0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0! 10! 20! 30! 40! 50! 60! 70! 80! 90! 100!

-0.1!

0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0! 10! 20! 30! 40! 50! 60! 70! 80! 90! 100!

-0.1!

0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0! 10! 20! 30! 40! 50! 60! 70! 80! 90! 100!

-0.1!

0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0! 10! 20! 30! 40! 50! 60! 70! 80! 90! 100!

-0.1!

0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0! 20! 40! 60! 80! 100!

-0.1!

0!

0.1!

0.2!

0.3!

0.4!

0.5!

0.6!

0! 10! 20! 30! 40! 50! 60! 70! 80! 90! 100!

Lucene Maven

Mina Cdt

Pde Equinox

Brain Methods Shotgun Surgery Feature Envy Dispersed Coupling Intensive Coupling

Fig. 7. Spearman’s correlations between number of design flaws and number of post release defects over multiple versions of software systems.

Figure 7 shows, for each software system in our data set,
plots of the correlation vectors for all the considered design
flaws. Interruptions in the lines mean that in the corresponding
version of the system the Spearman correlation coefficient
was not significant. We see that every system is different
and there is no flaw which is consistently more correlated
with post release defects across the systems. Moreover, not

even within systems design flaws are consistently more or
less correlated with respect to each other: They oscillate over
different versions. To obtain a better grasp at which and how
much flaws are correlated with defects, we only consider strong
correlation: having a Spearman’s coefficient above 0.4, which
is the threshold for considering a correlation to be strong in
fault prediction studies [19].



0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

Lucene	   Maven	   Mina	   CDT	   PDE	  UI	   Equinox	  

Brain	  methods	   Dispersed	  coupling	   Feature	  envy	   Intensive	  coupling	   Shotgun	  surgery	  

Fig. 8. Percentages of systems versions with a strong correlation (Spearman
> 0.4) with post release software defects.

Figure 8 shows the percentage of versions with a strong
correlation, by design flaw and by software system.

The percentages are computed from the correlation vectors
as number of versions with a strong correlation (greater than
0.4) divided by total number of versions. We see that there
are two types of systems: (1) systems where no design flaw
is strongly correlated with defects (PDE and Lucene) and
(2) systems in which one design flaw is frequently strongly
correlated with defects (Equinox, CDT, and Maven). Mina does
not belong to any group, as some design flaws rarely have a
strong correlation with defects, but none of them is much more
frequent than the others (as in Equinox, CDT, and Maven).

From the correlation analysis we conclude that:
• Design flaws correlate with post release software defects,

but not strongly in all the analyzed systems.
• There is no design flaw which consistently correlates more

than others in all the systems.
• In some systems there is no design flaw which strongly

correlates with defects.
• Some systems are characterized by a particular design

flaw, i.e., one flaw is strongly correlated with defects much
more frequently than all the others.

B. Delta Analysis

In the second part of our experiments we want to investigate
whether an addition of design flaws in a class generates bugs.
In particular, our goal is to answer the following question:
Do design flaws additions correlate with software defects? Is
there a design flaw for which additions consistently correlate
more than addition of any other design flaw? What is the
relationship between “flaws-defects” correlation and “flaws
additions-defects” correlation?

To study design flaws additions, we need to detect, extract
and measure these addition events. We do that by analyzing
each row in the design flaw matrix M , as depicted in Figure 10.
Given a row, which includes the number of design flaws in all

-‐0.3	  

-‐0.2	  

-‐0.1	  

0	  

0.1	  

0.2	  

0.3	  

0.4	  

0.5	  

0.6	  

0.7	  

Lucene	   Maven	   Mina	   CDT	   PDE	  UI	   Equinox	  

Brain	  methods	   Dispersed	  coupling	   Feature	  envy	   Intensive	  coupling	   Shotgun	  surgery	  

Fig. 9. Spearman’s correlations between additions of design flaws and number
of generated defects.

the considered versions of a class, we first compute the deltas
between each consecutive pair of versions: A positive delta
represents an addition of design flaw in the given class.

0 2 2 2 3 6 9 8 9

2 0 0 1 3 3 -1 1

9

0

1.
1.

20
05

15
.1

.2
00

5

29
.1

.2
00

5

12
.2

.2
00

5

26
.2

.2
00

5

12
.3

.2
00

5

26
.3

.2
00

5

9.
4.

20
05

23
.4

.2
00

5

7.
5.

20
05

Total addition
Defects time window

Begin End
2 15.1.2005 15.1.2005 + 90 days

7 26.2.2005 26.3.2005 + 90 days

1 23.4.2005 23.4.2005 + 90 days

Design flaw
matrix row

Deltas row

Fig. 10. Extracting and measuring design flaw addition events.

Then, given the deltas row, we group all the sequences of
positive values, where a sequence indicate a “longer” addition
(see Figure 10). To analyze the relationship between the
detected sequences and software defects, we count the number
of bugs (linked to the considered class) reported from the
beginning to the end of the sequence plus a time window
of 90 days7. In case the sequence is composed of a single
delta, the begin of the sequence coincides with its end. We
finally build two lists that we use to compute the correlation:
Each element in the lists represents a design flaw addition (a
sequence): the first list measures the total addition value, the
second one counts the number of defects reported during the
addition period (the sequence) over a time window of 90 days

Figure 9 shows, for each system and for each design flaw, the
Spearman’s correlations between the two lists (the total addition

7To be conservative, we use a time window which is half of the post release
defect time window.



values and the number of reported defects). For some flaws
in some systems, not enough addition events were detected to
obtain a significant correlation: In these cases we do not show
the correlation.

We conclude that:
• Additions of design flaws correlate with software defects,

i.e., introducing a design flaw in a class is likely to
generate bugs that affect the class. However, this does not
hold for all design flaws in all software systems.

• There is no design flaw addition which consistently
correlates more than others in all the systems.

Comparing correlations of defects with absolute numbers of
design flaws and design flaws addition, we notice the following
facts: In PDE and Lucene no design flaw is strongly correlated
with defects (see Figure 8), but at the same time, adding any
design flaw in these systems is likely to introduce bugs, as
the correlations between flaw additions and defects is relevant
for all the design flaws (with the exception of feature envy
in PDE). For systems characterized by a particular flaw, an
addition of that flaw is not likely to introduce defects or, at
least, not as much as other flaws. For example, in Maven brain
method is far more frequently correlated with defects than
other flaws; However, an addition of brain methods in Maven
is not as likely to introduce defects as an addition of shotgun
surgery. The same happens for Equinox with shotgun surgery
and CDT with intensive coupling.

C. Wrapping Up

The goal of our experiments was to answer a number of
questions concerning the frequency of design flaws in the
analyzed system, their correlation with software defects and
whether their introduction to software entities is likely to
generate bugs. The experiments showed that feature envy is
the most frequent design flaw, but it is not the most correlated
with software defects. Our correlation analysis demonstrated
that none of the analyzed design flaws is more correlated
with defects than others consistently across systems. Similarly,
adding design flaws is likely to introduce defects in many (but
not all) software systems, but no design flaw addition correlates
with defects more than the others consistently across systems.

Moreover, we found that some software systems are charac-
terized by a specific design flaw “f” (different from system to
system), in the sense that in these systems the flaw f is strongly
correlated with defects much more frequently (across versions)
than all the others. Interestingly, by performing deltas analysis,
we discovered that an addition of f in these systems is not
likely to introduce defects, or at least not as much as other
flaws which are less correlated with defects than f. A possible
explanation of this finding is that these systems have the flaw
f in their “nature” and therefore developers know better how
to deal with it without generating defects.

We also found systems in which no design flaw is strongly
correlated with defects. Adding any flaw in such systems is
likely to introduce defects. This corroborates our previous
explanation: As long as no design flaw is not in the “nature”
of these systems, an addition of any of them introduce defects.

We can hypothesize that this happens because developers do
not know how to deal with them. However, this is a speculation
which needs to be backed up by interviewing the developers
of these software systems.

V. THREATS TO VALIDITY

Threats to construct validity regard measured variables that
may not actually measure the conceptual variable. A first
construct validity threat concerns the linking of bugs with
versioning system files and, subsequently, with classes. The
algorithm we use cannot guarantee that all the links are
retrieved: For example those links that do not have a bug
reference id in the commit comment are not found. However,
this is the state of the art in linking bugs to versioning system
files, and it is broadly used in literature [16], [17]. A second
threat concerns inner classes: As stated in Section III, it is not
possible to distinguish reports linking inner classes from reports
linking their containing class, because of the file based nature of
the content management systems used in the software projects
we consider, For this reason, we do not consider inner classes.
One way to avoid this problem would be to use heuristics that
can detect which class (i.e., the container class or one of its
inner classes) is affected by the bug. Such heuristics would be
based on bug descriptions and the source code of the classes.
A last construct validity threat concerning defects is due to
the noise affecting Bugzilla/JIRA repositories. Antoniol et al.
showed that a considerable fraction of problem reports marked
as bugs are problems not related to corrective maintenance
[20]. As part of our future work, we plan to apply the approach
that was proposed by Antoniol et al. to filter “non bugs” out.

A construct validity threat concerning design flaws is that
we defined them using the detection strategies suggested by
Marinescu [3] to detect violations against design guidelines.
These guidelines are based on thresholds statistically assessed
on 45 Java systems. Although such a comprehensive number
of software systems, from various projects and domains, was
considered, they do not cover all the possible cases, and this can
vary the effectiveness of the thresholds in identifying design
flaws.

Threats to statistical conclusion validity concern the relation-
ship between the treatment and the outcome. In our approach
we use the Spearman’s correlation coefficient to evaluate the
relationship between design flaws and software defects, and
all the correlations are significant at the 0.01 level.

Threats to internal validity concern external factor that
may affect an independent variable. We are not aware of any
external factor that can affect independent variables of our
case studies. However, since these threats are often caused by
human intervention, we decided to limit the human factor as
more as possible. For this reason, we choose to not consider
bug severity as a weight factor when evaluating the number
of defects in the experiment. In fact, Ostrand et al. reported
how these severity ratings are highly subjective and inaccurate
in industrial settings, because of political considerations not
related to the importance of the fix to be made [21]. This is also
the case for open-source software systems: For example the



severity of a defect can be changed to increase the reputation
of the developer who fix it; or defects can be reported as more
severe than necessary, so that developers who actually make
the change focus on it quickly.

Threats to external validity concern the generalization of the
findings. In our experiment, there are two threats regarding to
this category: first we considered open-source software systems
only. Differences between open-source and industrial develop-
ment could change our results. However, as also reported by
Lanza and Marinescu [4], design flaws also appear in industrial
software systems and can be effectively detected using the
employed detection strategy. Second, we only considered
software systems developed in the Java programming language.
This affect the generalization of our findings. However, having
the possibility to use the same parser for all the case studies
ensure that all the code metrics are defined identically for
each system, and that we can avoid threats due to behavior
differences in parsing, a known issue for reverse engineering
tools [22]. Nevertheless, we plan to conduct our analysis to
industrial systems as well as systems written in other object-
oriented languages.

VI. RELATED WORK

We divide the related work in two parts: In the first we
analyze the current research on detecting design flaws and
we compare our approach against it, while in the second we
look at other related work in the field of defect analysis and
prediction.

A. Design flaw detection

A number of approaches have been devised to address the
problem of detecting and correcting design flaws in object-
oriented software systems. Marinescu proposed the detection
strategies that we use in our work, as metrics-based composed
logical conditions [3]. Studying various large-scale software
systems, Marinescu provided evidence that these strategies
accurately spot design issues in object-oriented programs [3].

Raţiu and Gı̂rba [23] applied such detection strategy concept
to find design problems revealed by the software system history.
Trifu et al. propose correction strategies to refactor design
problems detected using the suite of detection strategies defined
by Marinescu [6].

Our research is especially engendered by the work by
Lanza and Marinescu [4]. They expand the detection strategies
previously proposed by Marinescu [3], and -analyzing statistical
information from many industrial projects and generally
accepted semantics- they deduce many single and combined
threshold values for the detection. They show in detail how to
identify disharmony patterns in code, which solution strategies
can be used, and how to devise possible remedies.

Salehie et al. proposed a metric-based heuristic framework
to detect and locate object-oriented design flaws similar to
those illustrated by Marinescu [5].

Wettel and Lanza continue the research on “design dishar-
monies” through disharmony maps: A visualization-based
approach to locate, in large systems, software artifacts that are

flawed according to the detection strategies mentioned above
[7]. They display software systems using a 3D visualization
technique based on a city metaphor, and they enrich such
visualizations with the results returned by a number of detection
strategies. They both render the static structure and the design
problems that may affect a subject system, and they evaluate
their approach on various open-source Java systems.

When considering the research on design flaws and on
metrics-based logical conditions that are able to identify them,
the first concern is assessing whether these metrics can detect
real bad design quality; followed by how bad design can be
refactored. In our case, we “stand on the shoulders” of this
previous research and, having enough evidence that detection
strategies actually identify bad design in the code, we want
to see how design flaws are related to software defects: the
tangible effect of poor software quality.

B. Defect analysis and prediction

In 2003 Subramanyam and Krishnan pointed out that
empirical evidence linking the object-oriented programming
paradigm and project outcomes was scarce [24]. After that,
much work has been done on evaluating the capability of source
code characteristics (i.e., metrics) to predict and correlate to
the outcome of projects, in terms of defect prediction (e.g.,
[21], [25]–[27]), integration failure prediction (e.g., [28]), or
post-release defect correlation (e.g., [17], [19]).

One of the first approaches to prove that object-oriented
metrics correlate with defects was proposed by Basili et al. [29].
Later Subramanyam et al. provided empirical evidence, through
eight industrial case studies, that object-oriented metrics are
significantly associated with defects [30]. Then other object-
oriented metrics have been extensively assessed (e.g., [17],
[31]), and other approaches to bug prediction exploiting various
measures of coupling and cohesion, or use the information
contained in software relationships, have been proposed. For
example, Marcus et al. introduced a measure of cohesion, called
Conceptual Cohesion of Classes, and used it to predict faults
in three large open-source systems [32].

As opposed to the mentioned research that considers single
source code metrics, or a sum of them, to find a relation with
defects, our work is the first one considering the presence of
design flaws, identified with detection strategies.

Code smells have been also evaluated by Mäntylä and
Lassensius, in order to see to what extent they can be used as
a basis for subjective evaluation of code evolvability [8]; while
Khomh et al. showed that classes containing code smells change
more frequently than others, and that specific smells are more
correlated than others to change-proneness [9]. Differently, our
approach evaluate if class design flaws are related to defects.

VII. CONCLUSION

Design flaws are known to have a negative impact on quality
attributes of software systems, for example in their flexibility, or
maintainability. In this paper, we proposed an extended analysis
of the relationship between design flaws and software defects:
We studied design flaws and software defects in six different



software systems developed by independent development teams
and emerging from the context of two unrelated communities.

Looking at the frequencies of design flaws in these projects,
we discovered that Feature Envy is consistently the most
recurring design flaw. The Feature Envy disharmony refers
to methods that access more the data of other classes, than
the data of the class containing it. It might be a sign that the
method was misplaced and that it should be moved to another
class. The most significant aspect about Feature Envy is that it
is a sign of an improper distribution of a systems intelligence.

Afterward, our analysis, spreading over the data from a
minimum of two years in the history of the chosen systems,
showed that design flaws do correlate with software defects.
Also, no flaw consistently correlates more than others across
all the different systems.

Finally, we found that an increase in the number of design
flaws is likely to generate bugs, and still, there is no design flaw
addition that consistently correlates more than others across
the totality of the systems.

To make our experiments extendible and reproducible by
other researchers, our data set, and in particular the design
flaws and post release defects matrixes, is publicly available8.

A. Future Work

In the future we plan to extend our experiments by analyzing
more software systems. We also want to investigate whether
programming languages play a role by analyzing software
systems written in different object-oriented languages, such
as C++ and Smalltalk. Finally, we plan to corroborate the
speculations done in this paper by conducting qualitative
research with software developers.

Acknowledgements. We gratefully acknowledge the finan-
cial support of the Swiss National Science foundation for the
project “DiCoSA” (SNF Project No. 118063).

REFERENCES

[1] L. Erlikh, “Leveraging legacy system dollars for e-business,” IT Profes-
sional, vol. 02, no. 3, pp. 17–23, 2000.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Reading, Mass.:
Addison Wesley, 1995.

[3] R. Marinescu, “Detection strategies: Metrics-based rules for detecting
design flaws,” in 20th IEEE International Conference on Software
Maintenance (ICSM’04). Los Alamitos CA: IEEE Computer Society
Press, 2004, pp. 350–359.

[4] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice.
Springer-Verlag, 2006.

[5] M. Salehie, S. Li, and L. Tahvildari, “A metric-based heuristic framework
to detect object-oriented design flaws,” in Proceedings of ICPC 2006
(14th IEEE International Conference on Program Comprehension, 2006,
pp. 159–168.

[6] A. Trifu, O. Seng, and T. Genssler, “Automated design flaw correction
in object-oriented systems,” in Proceedings of CSMR 2004 (the 8th
European Conference on Software Maintenance and Reengineering.
IEEE Computer Society, 2004, pp. 174–183.

[7] R. Wettel and M. Lanza, “Visually localizing design problems with
disharmony maps,” in Proceedings of Softvis 2008 (4th ACM International
Symposium on Software Visualization). ACM Press, 2008, pp. 155–164.

[8] M. V. Mäntylä and C. Lassenius, “Subjective evaluation of software
evolvability using code smells: An empirical study,” Empirical Software
Enggineering, vol. 11, no. 3, pp. 395–431, 2006.

8http://www.inf.usi.ch/phd/dambros/tools/bugs-disharmonies.php

[9] F. Khomh, M. D. Penta, and Y.-G. Gueheneuc, “An exploratory study of
the impact of code smells on software change-proneness,” Proceedings of
WCRE 2009 (16th IEEE Working Conference on Reverse Engineering),
pp. 75–84, 2009.

[10] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on Software Engineering, vol. 20, no. 6, pp.
476–493, Jun. 1994.

[11] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code. Addison Wesley, 1999.

[12] A. Riel, Object-Oriented Design Heuristics. Boston MA: Addison
Wesley, 1996.

[13] S. Pinker, How the Mind Works. W. W. Norton, 1997.
[14] S. Demeyer, S. Tichelaar, and S. Ducasse, “FAMIX 2.1 — The FAMOOS

Information Exchange Model,” University of Bern, Tech. Rep., 2001.
[15] O. Nierstrasz, S. Ducasse, and T. Gı̂rba, “The story of Moose: an agile

reengineering environment,” in Proceedings of the European Software
Engineering Conference (ESEC/FSE’05). ACM Press, 2005, pp. 1–10.

[16] M. Fischer, M. Pinzger, and H. Gall, “Populating a release history
database from version control and bug tracking systems,” in Proceedings
International Conference on Software Maintenance (ICSM 2003). Los
Alamitos CA: IEEE Computer Society Press, Sep. 2003, pp. 23–32.

[17] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in Proceedings of ICSEW 2007 (29th International Conference
on Software Engineering Workshops). Washington, DC, USA: IEEE
Computer Society, 2007, p. 76.

[18] M. Triola, Elementary Statistics. Addison-Wesley, 2006.
[19] T. Zimmermann and N. Nagappan, “Predicting defects using network

analysis on dependency graphs,” in Proceedings of ICSE 2008 (30th
International Conference on Software Engineering), 2008.

[20] G. Antoniol, K. Ayari, M. D. Penta, F. Khomh, and Y.-G. Guéhéneuc,
“Is it a bug or an enhancement?: a text-based approach to classify change
requests,” in Proceedings of CASCON 2008. ACM, 2008, pp. 304–318.

[21] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Where the bugs are,” in
Proceedings of ISSTA 2004 (ACM SIGSOFT International Symposium
on Software testing and analysis). ACM, 2004, pp. 86–96.

[22] R. Kollmann, P. Selonen, and E. Stroulia, “A study on the current state
of the art in toolsupported uml-based static reverse engineering,” in
Proceedings of WCRE 2002 (9th IEEE Working Conference on Reverse
Engineering, 2002, pp. 22–32.

[23] D. Raţiu, S. Ducasse, T. Gı̂rba, and R. Marinescu, “Using history
information to improve design flaws detection,” in Proceedings of CSMR
2004 (the 8th European Conference on Software Maintenance and
Reengineering. IEEE Computer Society, 2004, pp. 223–232.

[24] R. Subramanyam and M. Krishnan, “Empirical analysis of ck metrics
for object-oriented design complexity: implications for software defects,”
IEEE Transactions on Software Engineering, vol. 29, no. 4, pp. 297–310,
April 2003.

[25] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict
component failures,” in Proceedings of the ICSE 2006 (28th International
Conference on Software Engineering. New York, NY, USA: ACM, May
2006, pp. 452–461.

[26] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting the location
and number of faults in large software systems,” IEEE Transactions on
Software Engineering, vol. 31, no. 4, pp. 340–355, 2005.

[27] ——, “Automating algorithms for the identification of fault-prone files,”
in Proceedings of ISSTA 2007 (ACM SIGSOFT International Symposium
on Software testing and analysis. ACM, 2007, pp. 219–227.

[28] T. J. Ostrand and E. J. Weyuker, “The distribution of faults in a large
industrial software system,” SIGSOFT Software Engineering Notes,
vol. 27, no. 4, pp. 55–64, 2002.

[29] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-
oriented design metrics as quality indicators,” IEEE Transactions on
Software Engineering, vol. 22, no. 10, pp. 751–761, 1996.

[30] R. Subramanyam and M. S. Krishnan, “Empirical analysis of ck metrics
for object-oriented design complexity: Implications for software defects,”
IEEE Transactions on Software Engineering, vol. 29, no. 4, pp. 297–310,
2003.

[31] Y. Zhou and H. Leung, “Empirical analysis of object-oriented design
metrics for predicting high and low severity faults,” IEEE Transactions
on Software Engineering, vol. 32, no. 10, pp. 771–789, 2006.

[32] A. Marcus, D. Poshyvanyk, and R. Ferenc, “Using the conceptual
cohesion of classes for fault prediction in object-oriented systems,” IEEE
Transactions on Software Engineering, vol. 34, no. 2, pp. 287–300, 2008.


	Introduction
	Design Flaws and Detection Strategies
	Obtaining Disharmonies and Bug Data
	Experiments
	Correlation Analysis
	Delta Analysis
	Wrapping Up

	Threats to Validity
	Related Work
	Design flaw detection
	Defect analysis and prediction

	Conclusion
	Future Work

	References

