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ABSTRACT
Developers often require knowledge beyond the one they possess,
which often boils down to consulting sources of information like
Application Programming Interfaces (API) documentation, forums,
Q&A websites, etc. Knowing what to search for and how is non-
trivial, and developers spend time and energy to formulate their
problems as queries and to peruse and process the results.

We propose a novel approach that, given a context in the IDE,
automatically retrieves pertinent discussions from Stack Overflow,
evaluates their relevance, and, if a given confidence threshold is
surpassed, notifies the developer about the available help. We
have implemented our approach in Prompter, an Eclipse plug-in.
Prompter has been evaluated through two studies. The first was
aimed at evaluating the devised ranking model, while the second
was conducted to evaluate the usefulness of Prompter.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments—In-
teractive environments

General Terms
Documentation, Experimentation

Keywords
Recommender Systems, Developers Support, Empirical Studies

1. INTRODUCTION
The myth of the lonely programmer is still lingering, in stark

contrast with reality: Software development, also due to the ever
increasing complexity of modern systems, is tackled by collaborating
teams of people. A helping hand is often required, either by team
mates [18], through pair programming sessions [6], or the perusal
of vast amounts of knowledge available on the Internet [41].

While asking team mates is the preferred means to obtain help
[20], their availability may fall short. In this case, developers resort
to electronically available information. This comes with a number of
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problems, the main one being the absence of automation: Every time
developers need to look for information, they interrupt their work
flow, leave the IDE, and use a Web browser to perform and refine
searches, and assess the results. Finally, they transfer the obtained
knowledge to the problem context in the IDE. The information is
retrieved from different sources, such as forums, mailing lists [2],
blogs, Q&A websites, bug trackers [1], etc. A prominent example is
Stack Overflow, popular among developers as a venue for sharing
programming knowledge. Stack Overflow is vast: In 2010 it already
had 300k users, and millions of questions, answers, and comments
[23]. This makes finding the right piece of information cumbersome
and challenging.

Recommender systems [33] represent a possible solution to this
problem. A recommender system gathers and analyzes data, iden-
tifies useful artifacts, and suggests them to the developer. Seminal
tools, such as eRose [43], Hipikat [9] and DeepIntellisense [14],
suggest project artifacts in the IDE aiming at providing developers
with additional information on specific parts of the system. They
come however with a caveat: the developer must proactively invoke
them, and, once invoked, they continuously display information,
which may defeat their purpose, as they augment the complexity of
what is displayed in the IDE. Ideally, a recommender system should
behave like a prompter in a theatre: Ready to provide suggestions
whenever the actor needs them, and ready to autonomously give
suggestions if it feels something is going wrong.

The interaction between the theatre prompter and the actor is
similar to the interaction between two developers doing pair pro-
gramming, working side by side to write code. These developers
have different roles, i.e., the driver, who is in charge of writing
code, and the observer, who observes the work of the driver [42],
tries to understand the context, and, if she has enough confidence,
interrupts the driver by giving suggestions. In addition, the driver
can consult the observer whenever she needs it, making the observer
the programming prompter of the programming actor.

This interaction is what we propose in Prompter, a tool that auto-
matically retrieves and recommends, with push notifications, rele-
vant Stack Overflow discussions to the developer. Prompter makes
the IDE a programming prompter that silently observes and analyzes
the code context in the IDE, automatically searches for Stack Over-
flow discussions on the Web, evaluates their relevance by taking into
consideration code aspects (e.g., code clones, type matching), con-
ceptual aspects (e.g., textual similarity), and Stack Overflow commu-
nity aspects (e.g., user reputation) to decide, given a certain amount
of self-confidence (encoded in a threshold the user can change
through a slider, to make the recommender quiet or talkative) when
to suggest discussions. We have evaluated Prompter through two
studies, one aimed at evaluating its ranking model, the other aimed
at evaluating its usefulness to developers.
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Figure 1: The Prompter User Interface.

Contributions. We make the following contributions:
1. a novel ranking model that evaluates the relevance of a Stack
Overflow discussion, given a code context in the IDE, by consider-
ing code, conceptual and community aspects;
2. Prompter , an Eclipse plugin that implementats our approach;
3. an empirical evaluation, Study I, aimed at validating the devised
ranking model;
4. a controlled experiment, Study II, aimed at evaluating the useful-
ness of Prompter during development and maintenance tasks;
5. a publicly available replication package for both studies1.

2. APPROACH
We first detail the user interface and architecture of Prompter,

the recommender system that implements our approach. We then
describe the models and techniques that enable its self-confidence.

2.1 Prompter
User Interface. Figure 1 shows the user interface of Prompter. It

provides two views through which the user can (i) receive and track
notifications, and (ii) read the suggested Stack Overflow discussions.

The notification center (1) keeps track of the last ten notifications
made by Prompter, reporting the title of the Stack Overflow discus-
sions, the timestamp of the notification, and a percentage indicating
Prompter’s confidence with which it deems a Stack Overflow dis-
cussion relevant to the given IDE context. Whenever Prompter con-
siders a discussion as relevant for the current context, it opens the
notification center and plays a sound. If a Stack Overflow discussion
is notified more than once, it is pushed to the top of the list for
visibility. At the top of the notification center, the developer can
change Prompter’s sensitivity: by sliding to the right Prompter is
more talkative, by sliding to the left it becomes more taciturn.

Whenever a developer clicks on a notification, a Stack Over-
flow document view (2) is opened, which shows the contents of the
Stack Overflow discussion. It provides a rating bar at the top of
the view, with which a developer can rate the current discussion.
Prompter keeps track of the ratings and the evaluated documents.
The rating bar does not appear in case a developer has already
evaluated a document within the same code context. Like in pair
programming, the observer may be silent, and the code writer may
1http://prompter.inf.usi.ch/

ask her companion for advice. We implemented the same interaction.
The developer can manually invoke Prompter thorough a contextual
menu in the code editor and the Eclipse package explorer.
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Figure 2: Prompter architecture.

Architecture. Figure 2 depicts the architecture of Prompter,
which is composed of (i) the Eclipse plug-in, (ii) the Search Service,
and (iii) the Query Generation Service. The numbers in the picture
represent the sequence of actions that Prompter performs when it
retrieves documents from Stack Overflow.

The Eclipse plug-in tracks code contexts (1) every time a change
in the source code occurs. The extracted code context—code ele-
ments to formulate the query—is sent to the Query Generation Ser-
vice, which formulates a query starting from the code context (2). It
extracts a query and, according to a set of parameters described later,
determines if a new search can be triggered. This information is sent
back, with the query and the context, to the plug-in. Since the query
is the basis of every search triggered by Prompter, the plug-in also
considers the query when deciding to trigger a new search. To avoid
repeated identical searches, Prompter submits a new search only if
the query differs from the last one. The query and code context are
sent to the Search Service (3), which acts as a proxy between the
plug-in, the search engines to which the query is sent, and the Stack
Overflow API. The query is sent to search engines (Google, Bing,
Blekko) to perform a Web search on the Stack Overflow website (4).
All resulting URLs are collected and duplicates removed (5). Every
URL that refers to a question from Stack Overflow must match the
form stackoverflow.com/questions/<id>/<title>, otherwise it
is discarded. The service uses the Stack Overflow question ID
to retrieve the discussion via the Stack Overflow API (6). Every
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discussion is, given the code context, ranked (7) according to the
Prompter ranking model (see Section 2.2). The ranked list of URLs
is sent back to the plug-in where Prompter decides whether to fire a
new notification in the IDE (8).

2.2 Retrieval Approach
We present an integrated approach capable of (i) connecting dif-

ferent aspects of the code written by developers to the information
contained either in the text or in the code of Stack Overflow dis-
cussions, and (ii) taking into consideration information about the
quality of the discussions that Stack Overflow has available (e.g.,
user reputation and questions/answers score). Our previous work
in this context [28] only used text similarity as a means to retrieve
Stack Overflow discussions related to the actual code. This led to
errors in the identification of relevant discussions for the source code
in the IDE. The approach we present here relies on several combined
aspects, and has proven to be more robust and less error-prone.

2.2.1 Tracking Code Contexts in the IDE
Prompter is meant to be a silent observer “looking” at what a

developer writes, with the aim of suggesting relevant Stack Over-
flow discussions. Whenever the developer types, Prompter waits
until the developer stops writing, identifies the current code ele-
ment (i.e., method or class) that has been modified, and extracts the
current context, which consists of: (i) a fully qualified name iden-
tifying the code element, i.e.,packageName.ClassName for classes
and packageName.ClassName.methodSignature for methods; (ii)
the source code of the modified element (i.e., class or method);
(iii) the types of the used API, taking into account only types outside
the analyzed Eclipse project (i.e., declared in external libraries or in
the JDK); and (iv) the names of methods invoked in the API, again
considering only external libraries and JDK only. The extracted in-
formation (i.e., the context) is sent to the Query Generation Service
(see Figure 2) to generate a query.

2.2.2 Generating Queries From Code Context
Since we want to automate the triggering of searches for dis-

cussions on Stack Overflow, we have to devise a strategy to build
a query describing the current code context in the IDE. A näive
approach [28] is to treat the code as a bag of words by: (i) split-
ting identifiers and removing stop words; (ii) ranking the obtained
terms according to their frequency; and (iii) selecting the top-n most
frequent terms. However, using only the frequency value is not
highly discriminating in selecting terms that appropriately describe
the context. For example, words like print, run, or exception, even
if very frequent in source code and not considered stop words in
English, have a too general meaning in programming to discrimi-
nate the programming context. Our solution is to also consider the
entropy [8] of a given term t in Stack Overflow, computed as:

Et =
∑
d∈Dt

p(d) · logµ p(d) (1)

where Dt is the set of discussions in Stack Overflow containing
the term t, µ is the number of discussions in Stack Overflow, and
p(d) represents the probability that the random variable (term) t
is in the state (discussion) d. Such a probability is computed as
the ratio between the number of occurrences of the term t in the
discussion d over the total number of occurrences of the term t in all
the discussions in Stack Overflow. The entropy has a value in the
interval of [0,1]. The higher the value, the lower the discriminating
power of the term. We computed the entropy of all terms present in
Stack Overflow discussions by using the data dump of June 20132.
2http://www.clearbits.net/torrents/2141-jun-2013

This resulted in entropy information for 105,439 different terms.
Terms like the ones previously mentioned exhibit very high levels of
entropy (e.g., for run the entropy was 0.75) compared to less frequent
and more discriminative terms (e.g., for swt the entropy was 0.25).
Therefore, term entropy can be used to lower the prominence of
frequent terms that do not sufficiently discriminate the context. The
Query Generation Service ranks the terms in the context based on a
term quality index (TQI):

TQIt = νt · (1−Et) (2)

where t is the term, νt is frequency in the context, and Et is its
entropy value measured as described before. Once the raking is
complete, the Query Generation Service selects the top n terms to
devise the query, plus the word java. The query can exceed n terms
in case two or more terms exhibit the same TQI value.

The term entropy approach has one drawback. We observed that
terms with a very low entropy (thus good candidates to be part
of a query) may be terms containing typos (e.g., for override the
entropy was 0.63, and for overide it was 0.05). They are present in
very few Stack Overflow discussions and thus have a low entropy.
To overcome this problem, before selecting the n terms to create
the query, we use the Levenshtein distance [21] to verify if in the
context there are terms with a very high textual similarity. If we
detect two terms (say ti and t j) having Levenshtein distance = 1, the
term having the lower frequency in the context (say ti) is discarded
and considered as a likely typo, and its frequency is added to the
frequency of t j. If the two terms have the same frequency, we
discard the term with the lower entropy as the likely typo.

2.3 Prompter Ranking Model
The goal of the ranking model is to rank the retrieved Stack

Overflow discussions, and assign them a value that measures their
relevance to the query. It relies on 8 different features that capture
relations between Stack Overflow discussions and source code.

1. Textual Similarity: The similarity of the code in the IDE
to the textual part of a Stack Overflow discussion without code
samples. The goal is to assess the similarity between the topics of
the code and the topics of the discussion. We use Apache Lucene to
create the index and preprocess the contents, by removing English
stop words and Java language keywords, by splitting compound
identifiers/token based on case change and presence of digits, and
by applying the Snowball stemming. Finally, we compute the cosine
similarity among the tf-idf vectors[3, 24].

2. Code Similarity: The percentage of lines of code in the IDE
that are cloned in the Stack Overflow discussion.

3. API Types Similarity: The percentage of API types used in
the code that are also present in the Stack Overflow discussion.
These are types that are not declared in the project, but in external
libraries or in the JDK. The higher the usage of the same types in
both discussions and code, the more the potential usefulness of the
discussions. To identify the API types, we parse every code sample
in the discussion with the Eclipse JDT parser. We are able to resolve
types among different samples in the discussion as long as the fully
qualified name (e.g., imports) of the type is used in one them, or if
the identified type is part of the standard JDK. In case of unresolved
types, we match the identified simple name of the class with the
simple name of the types used in the code.

4. API Methods Similarity: The percentage of API method invo-
cations used in the code that are present in the Stack Overflow dis-
cussion. Higher values suggest a similarity in usage of the API. We
use the Eclipse JDT parser, which identifies method invocations that
respect the Java grammar even if the type is not resolved. Since we
can only identify the name and number of parameters without any
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signature, we only consider the name of the invoked method, which
helps matching overloaded methods.

5. Question Score: The quality of the score of the question in
the Stack Overflow discussion. Since the score is not bounded, we
normalize the value in the range [0,1] using a sigmoid function:

σ(x) =
1

1 + e(x̄−x) (3)

where x is the score and x̄ is the average of the scores of all the
questions in Stack Overflow according to the data dump of June
2013. This index indicates the quality of the question, according to
the Stack Overflow community.

6. Accepted Answer Score: The quality of the score of the ac-
cepted answers in the Stack Overflow discussion. In case no ac-
cepted answer is present, the score is set to zero. The score is
normalized like the question score, using the related average score.
This index indicates the quality of the accepted answer, according
to the Stack Overflow community.

7. User Reputation: The level of reputation of the person who
posted the question. The value is normalized like the two previous
features, using the related average value. Differently from the two
previous indexes, this index evaluates the reliability of the person
who asked the question on the Stack Overflow community.

8. Tags Similarity: The percentage of tags covered by keywords
extracted from imports. Tags are split on number and symbols
to remove versions (e.g., apache-httpclient-4.x becomes apache
httpclient), and tokens are matched against the tokens obtained by
splitting imports on dots. The idea is to identify the topics or libraries
used in the discussions even if there is no code in the discussion.

2.3.1 Definition & Calibration of the Ranking Model
These 8 features are linearly combined to define the ranking

model. Each feature is assigned a weight that defines the impact of
this specific feature on the overall score:

S =

n∑
i=1

wi · fi having
n∑

i=1

wi = 1 (4)

where fi ∈ [0,1] is a feature value and wi ∈ [0,1] is the assigned
weight. The score S ranges in the interval [0,1]. The next step is to
calibrate the weights of the Prompter features in equation 4.

We need a way to objectively measure the recommendation accu-
racy of a given Prompter configuration, a “gold standard” composed
of code contexts each of which is linked to a set of “relevant” (useful
to a developer working on a specific context) Stack Overflow dis-
cussions. With such a dataset, the recommendation accuracy of
a specific Prompter configuration can be easily measured as the
number of code contexts for which Prompter is able to retrieve
a relevant Stack Overflow discussion in the first position. Since
Prompter recommends only one specific document (the top ranked
one), we only need to evaluate the accuracy for that document.

To identify the best configuration we used an exhaustive combi-
natorial search. We measured the performance of all configurations
obtained varying each weight between 0 and 1 with step size 0.01
where the weights total 1, as defined in equation (4). Although
time-consuming, this avoids that a possible sub-optimal calibration
affects the study results. Such a calibration process might be highly
biased by the choice of the dataset, i.e., of the set of code contexts.
We tried to mitigate this threat by maximizing the dataset diver-
sity, and its representativeness of various programming problems
developers could encounter: We collected a large set of problems
encountered by Master’s and Bachelor’s students during laboratory
and project activities conducted in the context of software engineer-
ing courses. For each problem, we asked the students to provide a

description and the code they produced before requesting help from
their teacher aiming at deriving a solution. Since senior developers
could have problems of different nature than students, we also asked
industrial developers to collect problems they encountered during
their development activity and to provide us samples of code they
produced just before asking for help or searching for solutions.

We collected 74 code contexts, 48 from academic contexts and
26 from industry. We randomly sampled half of them (37) for the
calibration, and used the remaining 37 for the first evaluation of
Prompter described in Section 3. For each of the 37 contexts used
for the calibration, we browsed Stack Overflow with the aim of
finding pertinent, helpful, discussions. More than one discussion
could be identified in this phase. The set of relevant documents
manually identified represents our “gold standard” to measure the
suggestion accuracy of a specific Prompter’s configuration.

Table 1: Prompter Ranking Model: Best Configuration.
Index Weight Index Weight
Textual Similarity 0.32 Question Score 0.07
Code Similarity 0.00 Accepted Answer Score 0.00
API Types Similarity 0.00 User Reputation 0.13
API Methods Similarity 0.30 Tags Similarity 0.18

Table 1 reports the configuration that provides the best recommen-
dation accuracy. The indices with value 0.00 have been discarded
from the model after completing the calibration. We have used this
configuration for the two evaluation studies. Having 74 code con-
texts available (along with manually identified relevant documents),
and having calibrated the model using only 37 of them, we could
have used the other 37 contexts as a test set to automatically evaluate
the performance of the ranking model. However, such an evalua-
tion would have been biased by our manual validation of the links
between contexts and relevant documents. Instead, we do not have
such a threat in the studies we performed, because the relevance
was evaluated by external participants (Study I), or with participants
using Prompter in maintenance and development tasks (Study II).

2.4 Putting It Together
The result of the Prompter ranking model is not enough to deter-

mine if a discussion is to be recommended or not. As we discussed
in Section 2.1, the user can define the sensitivity of Prompter in
notifying new discussions, and we showed how the Query Service
determines if a new search is to be triggered or not. Triggering a
new search and notifying a discussion relies on two thresholds: (i)
Query Entropy Threshold and (ii) Minimum Confidence Threshold.
The former is sent to the Query Service and defines the entropy level
that should not be exceeded by the median (or mean, depending
on the user preferences) of the terms of the query. If the value is
below the threshold, a new search is triggered. The latter defines
the minimum confidence level needed for a discussion to be recom-
mended. Both thresholds range in the interval [0,1]. We limited
the interval to [0.1,0.9] to prevent Prompter from not being able to
submit new searches or notify new discussions. Whenever one uses
the sensitivity slider, these values are modified in an inverse pro-
portional way. A complete slide to the right means a high-sensitive
configuration with Query Entropy Threshold at 0.9 and Minimum
Confidence Threshold at 0.1, and the opposite otherwise.

3. STUDY I: EVALUATING PROMPTER’S
RECOMMENDATION ACCURACY

The goal of this study is to evaluate, from a developer’s perspec-
tive, the relevance of the Stack Overflow discussions identified by
Prompter, to understand to what extent the retrieved discussions
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Figure 3: An Example Question from Our Questionnaire.

provide useful information to a developer working on a particular
code snippet.

3.1 Study Design and Planning
The context of the study consists of participants, i.e., various

kinds of developers, among professionals and students, and objects,
i.e., source code snippets and its related Stack Overflow discus-
sion as identified by Prompter. The study addresses the following
research question (RQ1): To what extent are the SO discussions
identified by Prompter relevant for developers?

We aim at investigating to what extent the Stack Overflow dis-
cussions identified by Prompter contain information perceived as
relevant by developers for a specific programming task. We asked 55
people (industrial developers, academics, and students) to complete
a questionnaire aimed at evaluating the relevance of the Stack Over-
flow discussions identified by Prompter, by analyzing a specific
code snippet. 33 participants filled in the questionnaire: 13 devel-
opers, 9 PhD students, 7 MSc students, 2 BSc students, 2 faculty.
All participants had experience in software development and design.
The least experienced participants were 3rd year BSc students that
practiced software development and documentation production in
the context of a Software Engineering course.

The different background of participants is a requirement for this
study, since Prompter should be able to support developers having
different skills, programming knowledge, and experience. Partici-
pants answered the questionnaire through a Web application. They
received the URL of the questionnaire, along with email instructions.
Before accessing the questionnaire, participants were required to cre-
ate an account, and to fill in a pre-questionnaire aimed at gathering
information on their background.

Once the participants answered the pre-questionnaire, they had to
perform (up to) 37 tasks where the web application showed a Java
class and a discussion from Stack Overflow that Prompter suggested
as top-1 ranked discussion among the results retrieved when analyz-
ing that class. Even though participants had the chance of skipping
tasks, we obtained at least 30 answers for each task. In the context of
this study, we used the remain 37 code snippets manually collected
as explained in Section 2.3.1. Participants had to express their level
of agreement to the claim “The code and the Stack Overflow dis-
cussion are related”, providing a score on a five points Likert scale
[27]: 1 (strongly disagree), 2 (disagree), 3 (neutral), 4 (agree), and
5 (strongly agree). In other words, the participants had to indicate

to what extent the discussion could help them in competing the
implementation task in the showed class.

Figure 3 shows an example of task from our survey. After submit-
ting the score, participants were asked to write an optional comment
to explain the rationale of their evaluation. We gave participants four
weeks to complete the questionnaire. The participants were neither
aware of the experimented technique (i.e.,Prompter) nor how the
Stack Overflow discussions were selected. The web questionnaire
was also designed to (i) show the 37 tasks to participants in random
order to limit learning and tiredness effects, and (ii) measure the
time spent by each subject in answering each question. Response
time was collected to remove from the analysis of the results partici-
pants that provided answers in a less than 10 seconds, i.e., without
carefully reading code and the Stack Overflow discussion. This was
not the case for any participant.

3.2 Analysis of the Results
We quantitatively analyzed participants’ answers through violin-

plots [12] to assess the ability of Prompter in identifying relevant
Stack Overflow discussions given a piece of code. Violin plots
combine box-plots and kernel density functions to better indicate
the shape of a distribution. The dot inside a violin plot represents the
median. A thick line is drawn between the lower and upper quartiles,
while a thin line is drawn between the lower and upper tails. We also
e qualitatively analyzed the feedback provided by the participants
as well as cases of discussions particularly appreciated/disliked by
participants to identify strengths and weaknesses of Prompter.

Figure 4 shows the violin-plots of scores provided by participants
of our experiment to each of the 37 questions composing our ques-
tionnaire (i.e., their level of agreement to the claim “the code and
the Stack Overflow discussion are related”). To understand whether
Prompter excels in particular domain, we grouped the 37 tasks
based on the topic/piece of technology they are related to, instead
of ordering the tasks by their number. Overall, the analyzed Stack
Overflow discussions have been considered related to the showed
Java code snippet. 28 out of the 37 analyzed discussions (76%)
received a median score greater than equal to 4. This means that
participants agreed or strongly agreed to the above reported claim.
Among the remaining 9 discussions, 5 (14%) achieved 3 as median,
meaning that participants were generally undecided about their rele-
vance to the code context, and four (10%) were mostly marked as
not relevant achieving a median score of 2 (i.e., disagree). In the
following, we discuss two examples in which Prompter performed
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Figure 4: Violin Plots of Scores Assigned by Participants to the Evaluated Stack Overflow Discussions.

well, and a scenario in which we show its limitations.
Example I. The question reported in Figure 3 (question 8 in Fig-

ure 4) is an example where the achieved median score is 5. The class
CompressByteArray—implementing the compression of a byte
array using the Deflater class—has been linked by Prompter to
the Stack Overflow discussion Compression/Decompression of
Strings using the deflater3. Among the comments left by devel-
opers to their votes, one explained its “strongly agree” vote with
the following sentence: it is a good discussion if working on the
CompressByteArray class, since it talks about compression with
deflater, decompression, but also about problems that could be expe-
rienced and possible solutions.

Example II. Another Stack Overflow discussion felt by devel-
opers as strongly related to the companion Java class was the one
entitled Java regex email4 (question 9 in Figure 4) and associated
to the following Utility class:
import java.util.regex.*;

public class Utility {
    public static boolean isValidEmailAddress(String email) {
    //regex to match an e-mail address
        String EMAIL_REGEX = "^[\\w-_\\.+]*[\\w-_\\.]\@([\\w]+\\.)+[\\w]";
        Pattern emailPattern = Pattern.compile(EMAIL_REGEX);
        Matcher emailMatcher = emailPattern.matcher(email);
        return emailMatcher.matches();
   }
}

The Utility class emulates a developer experiencing troubles
in writing the method isValidEmailAddress, aimed at validat-
ing through the Java regex mechanism an email address provided
as parameter. In particular, the regular expression stored in vari-
able EMAIL_REGEX is wrong, and for this reason isValidEmail-
Address is incorrect. In the Stack Overflow discussion retrieved by
Prompter as the most related one to the Utility class, a user is ask-
ing help since she is experiencing a similar problem when trying to
validate an email address using Java regex. The top answer in this
discussion contains the solution to the problem in method isValid-
EmailAddress, i.e., the correct regular expression to validate email
addresses. This explains why almost all subjects involved in our
study (26 out of 32) assigned a score equal to 5 to this discussion.

Example III. Developers did not consider particularly useful
the discussion Invoke only a method of a servlet class not the
whole servlet5 related to the ShoppingCartViewerCookie servlet
class (question 36 in Figure 4). The reason why Prompter linked
ShoppingCartViewerCookie to this discussion is because it is about
3http://tinyurl.com/q4faaz5
4http://tinyurl.com/pxzpw6e
5http://tinyurl.com/orlyln3

servlets, but not about the particular problem the developer wants
to solve (i.e., managing cookies). Instead, the discussion explains
how to invoke a single method of a servlet. This was also confirmed
by one of the participants: “the SO discussion does not mention
how to use cookies”. This example shows the limits of Prompter:
It correctly captures the general context of the code (a developer is
working on a servlet class), but it fails to identify the problem she is
experiencing when trying to implement a specific feature. The same
happened in the few cases where our approach obtained low scores
(questions 3, 23, and 37 in Figure 4).

Summary of Study I. The Stack Overflow discussions identified
by Prompter are, from a developer’s point-of-view, generally consid-
ered related to the source code. In particular, 76% of the discussions
where considered related (median 4) or strongly related (median 5)
by developers, while only 10% was considered as unrelated.

4. STUDY II: EVALUATING PROMPTER
WITH DEVELOPERS

The goal of this study is to evaluate to what extent the use of
Prompter can be useful to developers during a development or main-
tenance task. The quality focus is the completeness (and correctness)
of the task a developer can perform in a limited time frame, e.g.,
because of a hard deadline. The context consists of objects, i.e., par-
ticipants have to perform two tasks with/without the availability of
Prompter. We had 12 participants (3 BSc and 3 MSc CS students,
and 6 industrial developers). Before the study, we screened the
participants by using a pre-study questionnaire, asking them about
their experience in programming and Java (The study tasks were in
Java). The experience was measured in terms of (i) the number of
years of Java programming, and (ii) a self-assessment based on a
five-points Likert scale [27] going from 1 (very low experience) to 5
(very high experience). Also, we asked participants which sources
of documentation they generally exploit when programming.

Participants. All participants have at least 3 years of experience
in programming, with a maximum of 12 reached by an industrial
developer and a median of 6.5. They have a median of 4 years of
Java programming experience. Participants felt to have a good expe-
rience in programming and Java programming with a median of four
(high experience) in both cases. Only two BSc students assessed
their experience at 3 (medium), while all the others declared a high
experience (4). The sources of information mostly exploited by par-
ticipants when programming are: Stack Overflow (10 participants),
Forums (8), Javadoc (8), and Books (6).

Tasks. The tasks participants have to perform are one mainte-
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nance task and one greenfield development task (i.e.,, from scratch).
The choice of tasks was performed taking into account that, being
the study executed within a lab, the tasks could not be too long nor
complicated. On the other side, the tasks could not be too simple, to
avoid a “ceiling” effect, i.e., that all participants correctly completed
the tasks without problems, regardless of the use of Prompter.

Maintenance Task (MT). The maintenance task required the im-
plementation of new features in a Java 2D arcade game, where the
player controls a spaceship to destroy an attacking alien enemy fleet.
We asked participants to perform the following changes: (i) add
an initial screen from where players can start the game or look at
top scores; (ii) allow players to enter their nickname before starting
a game; (iii) when a game is over, save the score along with the
player’s nickname in a XML file; and (iv) allow a player to see the
top 10 scores retrieved from the XML file.

Development Task (DT). For this task the participants had to
create from scratch a Java program that, given the URL of a Web
page and an e-mail address, converts the HTML page into a PDF
and then send it via email. The task consisted in three sub-tasks: (i)
allow the user to input the URL, e-mail address and subject of the
email from text fields; (ii) retrieve the HTML page and convert it
into a PDF; and (iii) send the PDF via e-mail.

We did not provide to participants any indication about the strat-
egy to follow in the implementation of the two tasks, e.g., we did
not recommend the usage of any specific library.

4.1 Research Questions and Variables
The study addresses the following research question (RQ2): Does

Prompter help developers to complete their task correctly?
We aim at investigating if the use of Prompter helps developers

when performing coding activities. We are interested in knowing
to what extent—within the available time frame, and when work-
ing with or without Prompter—participants are able to correctly
complete the task (or part of it).

The dependent variable aimed at addressing RQ2 is the task
completeness. Since it is difficult to automatically evaluate task
completeness, we asked two independent industrial developers as
“evaluators” to measure it by performing code reviews on each task
implemented by participants. The evaluators did not know the
goal of the study, nor which tasks were performed with (without)
Prompter support. To help them in the assessment, we provided
them with a checklist, aimed at assigning a fixed completeness score
to each of the sub-tasks correctly implemented by participants when
working on MT and DT. For example, for the maintenance task hav-
ing correctly implemented each of the four sub-tasks would mean a
completeness increment of 15%, 25%, 35%, and 25% respectively.
The scores were proportional to the different difficulty and complex-
ity of the four sub tasks. The detailed checklists are available in
our replication package. The evaluators compared their indepen-
dent, and conducted a discussion in case of diverging scores. This
happened only on four out of the 24 evaluated tasks (i.e., two tasks
for each of the twelve participants) and the divergence was quickly
solved by evaluators performing an additional code inspection.

The main factor and independent variable of this study is the
presence or absence of Prompter. Specifically, such a factor has
two levels, i.e., the availability of Prompter (P) or not (NP). Other
factors that could influence the results are (i) the (possible) different
difficulty of the two tasks MT and DT, (ii) the participants’ (self-
assessed) Ability and (iii) Experience in Java development, and (iv)
the years of Industrial Experience (if any) they may have.

4.2 Study Design and Procedure
The study design is a classical paired design for experiments with

one factor and two treatments: (i) each participant worked with both
P and NP; (ii) to avoid learning, each participant had to perform
different tasks (MT and DT) across the two sessions; (iii) different
participants worked with P and NP in different ordering, as well as
on the two different tasks MT and DT. Overall, this means partition-
ing participants into four groups, receiving different treatments in
the two laboratory sessions. When assigning participants to the four
groups, we made sure that their level of experience was (roughly)
uniformly distributed across groups.

Before the study, we conducted a pre-laboratory briefing, in which
we trained participants on the use of Prompter, and illustrated the
laboratory procedure. We made sure not to reveal the study research
questions. In addition, the training was performed on tasks not
related to MT and DT to not bias the experiment.

After that, the participants had to perform the study in two ses-
sions of 90 minutes each. In other words, participants had a max-
imum of 90 minutes to complete each of the required tasks. Each
participant received the instructions for the task she had to perform
in the first session. After 90 minutes, each participant provided
the code she implemented for the required task. Then, a 60 min-
utes break minutes was given before starting the second session to
avoid fatigue effects. During the break participants did not have the
chance to exchange information among them. After the break, each
participant received the instructions for the task she had to perform
in the second session. After 90 minutes, each participant provided
the code she implemented for the required task. To simulate a real
development context, participants were allowed to use whatever they
want to complete the tasks including any material available on the
Internet. After the study, we collected qualitative information by (i)
using a post-study questionnaire, and afterwards, by (ii) conducting
focus-group interviews.

The post-study questionnaire was composed of: (i) three questions
asking if participants used Internet, the suggestions by Prompter,
and their own knowledge during implementation. To answer these
three questions participants used a four points scale, choosing be-
tween absolutely yes, more yes than no, more no than yes, and
absolutely no; and (ii) a question asking participants to evaluate
the relevance of the suggestions generated by Prompter. In this
case, we adopted a five-points Likert scale [27] going from 1 (totally
irrelevant) to 5 (very relevant).

During the focus-group interview, two of the authors and all
participants discussed together about Prompter, trying to point out
its weaknesses and strengths. This interview lasted 45 minutes.

4.3 Quantitative Analysis of the Results
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Figure 5: Boxplots of Completeness achieved by Participants
with (P) and without (NP) Prompter.
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Figure 5 shows boxplots of completeness achieved by participants
when using (P) and when not using (NP) Prompter. As it can be
noticed, participants using Prompter were able to achieve a level
of completeness greater than those not using it. The P median is
68% (mean 70%) against the 40% median (mean 46%) of NP. In
other words, Prompter allowed participants to achieve a median
additional correctness of 28% (mean of 24%). Such a difference is
also statistically significant. The Wilcoxon paired test indicates a
p-value less than 0.01 for a significance level α = 5%. To assess the
magnitude of such a difference, we used Cliff’s delta (d) effect size
[11], which returned a value of d = 0.65, i.e., a large effect.

Figure 5 also shows boxplots of completeness when focusing on
results achieved for MT and DT , respectively, to better understand
where Prompter results particularly helpful. Prompter helped par-
ticipants in both MT and DT, increasing the median completeness
achieved for MT of 10%, and for DT of 40%. If we compare the
completeness of P and NP for each one of the two tasks separately,
Mann-Whitney unpaired, two-tailed test indicates that for MT the
difference is not significant (p-value=0.23) and the effect size is 0.38
(medium), while it is statistically significant for DT (p-value=0.03),
with an effect size of 0.88 (large). Since here multiple tests have
been performed, p-values have been adjusted using Holm’s correc-
tion [13]. Prompter produced much more benefits for DT, where
participants implemented from scratch and where they had to use
several libraries, e.g., to parse the HTML page, to convert it in
PDF, to send an e-mail. In such a circumstance, Prompter pro-
vided an effective support by pointing to Stack Overflow discussions
concerning the correct usage of such libraries.

To check the influence of the various co-factors and their interac-
tion with the main factor treatment, we used permutation test [5], a
non-parametric alternative to Analysis of Variance (ANOVA).

Table 2: Effect of Co-Factors and their Interaction with the
Main Factor: Results of Permutation Test.

Co-Factor Effect Interaction
Java Ability 0.02 1.00
Java Experience 0.03 0.68
Industry Experience 0.56 0.69
Task 0.81 0.10

The test p-values, summarized in Table 2, indicate that Java Abil-
ity and Experience have a significant effect on the participants’ per-
formance, although they do not interact with the main factor. In other
words, people with higher ability and experience perform better, al-
though independently on the availability of Prompter. Also, there
is no effect nor interaction of the Industry Experience. Lastly, Task
has no direct effect on the observed results, although it marginally
interacts with the main factor. As one could have expected from
Figure 5, Prompter resulted more helpful for DT than for MT.

In summary, the quantitative assessment provided a first indi-
cation of the usefulness of Prompter for developers performing
maintenance activities (MT) or greenfield development (DT).

4.4 Qualitative Analysis of the Results
Results from the post-questionnaire provided us with interesting

observations. Participants generally used Internet during the im-
plementation of the required tasks. When being asked, 6 of them
answered absolutely yes, 5 more yes than no, and 1 more no than yes.
This is consistent with the answers they provided to the pre-study
questionnaire. Second, most participants felt to have used their
knowledge in the tasks implementation, with 4 of them answering
absolutely yes, 6 more yes than no, and 2 more no than yes.

As for the question related to the use of Prompter’s recommen-

dations, most of participants answered positively. Three of them
answered absolutely yes, eight more yes than no, and two more
no than yes. The latter participants explained that they received
very few Prompter recommendations, due to the fact that they spent
much time on the Internet, trying to figure out how to implement the
required tasks. This resulted in wasted time during which the code
they were working on was untouched. Thus, Prompter was simply
waiting in vain for their moves to produce suggestions. However,
these two participants agreed that the few received recommenda-
tions were actually relevant to what they were implementing in the
IDE. Among the twelve participants, two of them classified the
suggestions as very relevant (5), and the remaining ten as relevant
(4).

Apart from the questionnaire, we gained very useful insights from
the focused group interview. On the one side, participants agreed
that Prompter is very useful when working on tasks in which the
developer has poor experience, since the information bring in the
IDE by Prompter helps the developer in enriching her knowledge
about the task to be performed. For instance, one of the participants
was experiencing problems with the repaint function provided in the
JFrame by the updateUI method. Prompter pushed in his IDE a
Stack Overflow discussion6 exactly related to what he was trying to
implement, solving his problem. Another participant, when starting
to work on DT, observed the push notification of Prompter about a
Stack Overflow discussion7 providing guidelines on how to choose
the HTML parser library to use. After reading the discussion, his
choice was targeted on jsoup.

Summarizing, on the one side participants identified the following
Prompter strengths: (i) the accuracy of the suggestions and the
relevance of the suggested Stack Overflow discussions; (ii) the user
interface: clean, clear, and not invasive; (iii) the ease of use, with
almost no training required; (iv) the possibility to tune the sensitivity
of Prompter, increasing or reducing the rate of suggestions.

On the other side, they would like to see the following improve-
ments in future Prompter releases: (i) the possibility to exploit
information coming not only from Stack Overflow, but also from fo-
rums and programming tutorials available online; (ii) a way to force
Prompter in looking for specific types of discussions on Stack Over-
flow. For example, participants would like the possibility to specify
some key terms that should always be considered by Prompter when
searching for discussions on Stack Overflow; and (iv) similarly, the
possibility to have a search field: Most participants agreed on the
fact that Prompter loses its usefulness if the developer has no idea
on how to start coding. In such a situation, the developer is forced to
leave the IDE and surf the Web. Participants suggested the addition
of a search field in the Prompter user interface that allows one to
explicitly formulate and execute a query without leaving the IDE.

Summary of Study II: Prompter allowed participants to achieve
a significantly better completeness of the assigned tasks. The col-
lected feedbacks indicated that participants perceived the tool as
usable, the suggestions accurate and not invasive. Eleven out of the
twelve participants involved in our study claimed that they would
like to use Prompter in their daily development activities. They
also suggested to add to Prompter a feature to allow developers to
explicitly formulate queries.

5. THREATS TO VALIDITY
Threats to construct validity. In Study I such threats are due to (i)

the fact that we mimic the code being written by a user by providing

6http://stackoverflow.com/questions/11640494/
7http://stackoverflow.com/questions/3152138/
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with Prompter a partially-complete class, and (ii) by letting the users
provide evaluations using a Likert scale. Concerning the former,
we made sure such classes were not too detailed nor too empty, to
represent realistic situations where Prompter could be used. Con-
cerning the latter, this is a standardized evaluation scale used to
collect participants’ feedbacks. Study II overcomes the limitations
of Study I mentioned above. In Study II threats to construct validity
are due to how we measured the task completeness. Certainly, we
could have used a test suite to measure the completeness in a objec-
tive manner. Conversely, code inspection allows to evaluate partial
implementations. In addition, the use of a checklist and multiple
independent evaluators limited the bias and subjectiveness.

Threats to internal validity. For Study I one factor to be consid-
ered is the knowledge of the participants—not known a-priori—of
the APIs being used in the particular task. Having multiple partici-
pants with different degrees of experience mitigates this threat. Also,
students taking part in our evaluation were not evaluated based on
the task outcome, and we asked participants not to use other sources
of information during the task, e.g., to use them as a comparative
source to the provided discussion. In Study II, to limit the effect
of participants’ ability and experience, we pre-assessed them to
assign them to the four groups. We also analyzed to what extent the
usefulness of Prompter depends on the particular task.

Threats to conclusion validity. For Study I we report descriptive
statistics and violin plots of the collected results, along with partici-
pants’ feedbacks. For Study II, we used distribution-free tests and
effect size measures, suitable for limited data sets as in our study.
The goal was to gain qualitative insights about the usefulness of
Prompter, rather than to observe statistically significant results.

Threats to external validity. The study involved both profession-
als and students, with different degree of experiences. Therefore, we
claim the study provides a good coverage of the potential categories
of Prompter users, although further studies with more participants
are desirable. In terms of objects, we selected 37 tasks being differ-
ent in nature and required technical knowledge. We cannot exclude
that our results depend on the particular choice of the tasks. For
Study II, although we selected both students and industrial develop-
ers, it is worthwhile to replicate the study with a larger number of
participants. Furthermore, Prompter was only evaluated with two
tasks that, although different, are not representative enough for tasks
that developers would perform. We believe that Study I achieves a
better external validity whereas Study II a better construct validity.

6. RELATED WORK
Prompter is a recommender system that mixes different software

engineering fields, namely code search and recommender systems.
Semantic code search and code search engines. The main us-

age of such search engines is to retrieve code samples and reusable
open source code from the Web. Different works [31, 38, 39] tack-
led this problem and provided the developers with the capability
of searching, ranking and adapting open source code. The min-
ing of open source repositories has also been used to identify API
and framework usage and to find highly relevant applications to be
reused [25, 26, 40]. Other studies analyzed the usage and the habits
of the developers in performing researches with code search engines
(e.g., Koders) [4, 22, 41], and how general purpose search engines
(e.g., Google) outperform code search engines when retrieving code
samples from the Web [35]. In our work we follow an approach
based on general-purpose search engines. Differently from the work
done so far on code search, we do not target open source repositories
to provide code samples and reusable code, or to understand the
usage of APIs; instead, we target the crowd knowledge provided
by the discussions in Stack Overflow as alternative source. This is

because we want to provide developers with code examples with ex-
planations, rather than just with reusable code components/snippets.
The way Prompter interacts with search engines to retrieve discus-
sions concerns code context analysis and matching. A milestone in
identifying relevant code elements in the IDE is Mylyn [17]. The
automation and generation of queries from code is another aspect
that relates with Prompter. Holmes et al. [16, 15, 30] presented
Strathcona, a tool to recommend relevant code fragments that au-
tomatically extracts queries from structural context of the code. In
our work, we focus on the current element being modified by the
developer. We take advantage of our own definition of context, and
we apply an entropy-based approach to generate the query.

Recommender systems. Different typologies of recommender
systems to recovery traceability links, suggest relevant project ar-
tifacts, and suggest relevant code elements in a project has been
presented. Well-known examples are Hipikat [9], DeepIntellisence
[14], and eRose [43]. Other work focused on suggesting relevant
documents, discussions and code samples from the web to fill the
gap between the IDE and the Web browser. Examples are Code-
trail [10], Mica [36], FishTail [34], Dora [19], and SurfClipse
[29]. Among the various sources available on the Web, Q&A Web-
sites and in particular Stack Overflow, have been the target of many
recommender systems. Other tools used Stack Overflow as main
source for recommendation systems to suggest, within the IDE, code
samples and discussions to the developer [7, 32, 37, 29]. In our
previous work we presented SeaHawk [28], a prototype tool to link
Stack Overflow discussions to the source code in the IDE using tf-idf.
Prompter has several differences from SeaHawk, that (i) does not
rely on a ranking model mixing various factors, it just uses textual
similarity; and (ii) it does not feature confidence-based push noti-
fications, but rather it requires developers to explicitly trigger the
queries. Finally, SeaHawk has not been validated with developers.

Prompter is different from any recommender system proposed so
far. Prompter is able to automatically and silently retrieve and rank
Stack Overflow discussions relevant for the current code context.
Then, it uses a configurable “self-confidence” mechanism to push
suggestions, yet providing the developer with the possibility of
consulting further relevant discussions whenever needed.

7. CONCLUSION AND FUTURE WORK
We have presented a novel approach to turn an Integrated Develop-

ment Environment (IDE) into a developer’s programming prompter.
The approach is based on (1) automatically capturing the code con-
text in the IDE, (2) retrieving documents from Stack Overflow, (3)
ranking the discussions according to a novel ranking model we
developed for this work, and (4) suggesting them to the developer
when (and only if) it has enough self-confidence. We implemented
our approach in a novel tool named Prompter, which embodies the
ideal behavior a recommender should have: a silent observer of the
developer, that only intervenes when it deems itself to have a relevant
enough suggestion, and that does not force the developer to invoke
it but is always available in case the developer needs it. Trough
a quantitative study we showed how the Prompter ranking model
resulted to be effective in identifying the right discussions given
a code snippet to analyze. We evaluated Prompter during mainte-
nance and development tasks. We showed how, from a quantitative
point of view, Prompter revealed to significantly help developers in
completing the experiment tasks and how, from a qualitative point
of view, the developer highly appreciated its features and usability.
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