
Mining the History of Synchronous Changes to Refine Code Ownership

Lile Hattori and Michele Lanza
REVEAL@ Faculty of Informatics - University of Lugano, Switzerland

Abstract

When software repositories are mined, two distinct
sources of information are usually explored: the history log
and snapshots of the system. Results of analyses derived from
these two sources are biased by the frequency with which
developers commit their changes. We argue that the usage of
mainstream SCM systems influences the way that developers
work. For example, since it is tedious to resolve conflicts due
to parallel commits, developers tend to minimize conflicts by
not contemporarily modifying the same file. This however
defeats one of the purposes of such systems.

We mine repositories created by our Syde tool, which
records every change by every developer in multi-developer
projects. This new source of information can augment the
accuracy of analyses and breaks new ground in terms of
how such information can assist developers. In this paper we
illustrate how the information we mine can help to provide
a refined notion of code ownership. As a case study, we
analyze the developers’ activities of the development of a
commercial system.

1. Introduction

To manage the life cycle of software systems, developers
use a number of diverse tools, such as software configuration
management (SCM), bug trackers, discussion boards, etc.
These tools store a large amount of information that is
exploited by researchers to understand different aspects of
the evolution of projects. Especially SCM repositories are
a rich source of information because they contain both the
history of the source code and metadata describing who was
responsible for which change.

A significant number of studies that have mined SCM
repositories to reveal the nature of software changes [1]–
[3] and to understand the correlation between changes
and developers’ roles [4], [5] is based on largely adopted
SCM systems, such as CVS and Subversion. However, any
inference derived from such systems is subjected to the
granularity of information encountered in their repositories.

In their report on the impact of SCM systems, Estublier
et al. stated that one of the next steps for SCM systems
was to break the assumption of language independence [6].
Contradicting this statement, largely adopted SCM systems
are still file-based and do not model the particularities

of a programming language. Combined with the check-
out/checkin protocol, where a developer checks out the code
before an implementation session, and checks in the changed
files after an indefinite period of time, SCM systems lose
precious information about source code changes that are
impossible to be recovered even with elaborate mining and
reverse engineering techniques [7].

Since checking code in is an intermittent action and de-
velopment is a continuous activity, knowledge derived from
the history log may deviate from what actually happened.
For example, a technique that spots specialists for parts of
a system based on check-in frequency does not take into
account the actual effort spent by developers in terms of time
and written code. Also, the frequency with which developers
check in their code is biased by the lack of language-oriented
support for merging parallel changes. Since a developer does
not know whether someone else is changing the same file,
studies have shown that they tend to rush to check in their
code [8], and even check in partial changes [9] to avoid
dealing with merge conflicts.

Modern Decentralized Software Control Management sys-
tems (DSCM), such as Git1, offer additional support for
parallel development. In Git the checkout/checkin model
is replaced by the clone/pull/push model with which every
developer can potentially maintain his own repository by cre-
ating a branch from someone else’s repository. Some of the
consequences are that Git’s commits are not automatically
visible to other developers; instead of one history log, there
are as many as the number of repositories created; the logs of
privately owned repositories are not accessible to everyone;
and all the branches created have to be occasionally merged,
and conflicts resolved. Furthermore, DSCMs are also file-
based.

Thus, given that the nature of information found in
software repositories determines what we can infer from it
[10], we believe that studies purely derived from file-based
SCM systems are threatened by the loss of information that
comes with the underlying model.

We propose the use of a new software repository that
is created by our Syde tool to overcome the limitations of
current SCM data. Syde is a collaborative tool that brings
Spyware’s [11] change-centric approach to augment the
awareness of a team of developers by propagating changes
as they happen and by warning about potential conflicting

1. See http://git-scm.com/

http://git-scm.com/

changes [12]. It runs concurrently with the project’s SCM
system and does not obstruct or modify its usage. Syde’s
repository stores every change performed by every developer
at the exact time they happen. We define every change as
every saved file that has undergone at least one structural
change from the last save action (See Section 3). Hence, the
once approximate data about who changes what and when
is now accurate and complete; this is what we call syn-
chronous changes. We believe that the data made available
by Syde opens new perspectives for several analyses, such
as the understanding of developers’ roles and activities, code
ownership, detection of unstable code, etc. We also believe
that the fact that the data is being collected in real time can
provide new types of “developer assistance” [13], especially
with respect to the collaborative aspects that Syde supports.

For a sample case study, we used Syde to record a period
of the development of a commercial system. In this paper
we use Syde’s change history together with the project’s
CVS history log to (1) analyze potential conflicts, and (2)
understand developers’ dynamics and ownership of the code.

Structure of the paper. In Section 2 we describe a
number of approaches that bear some similarity with ours.
In Section 3 we then detail our approach and its supporting
implementation in the form of Syde. In Section 4 we then
use Syde to analyze the history of a commercial system,
before concluding in Section 5.

2. Related Work

Syde is essentially a chance-centric approach to promote
team collaboration, and thus is related to (1) tools that sup-
port collaboration and (2) operation-based SCM solutions.

2.1. Tool Support for Collaboration

The continuous adoption of language independent SCM
systems in the context of team-based development influenced
the creation of solutions to overcome the workspace isolation
enforced by them [14]. Tool support for collaboration ranges
from full-fledged platforms, such as Jazz.net 2 and CollabVS
[15], to specific workspace awareness solutions [16]–[18].

Jazz.net is designed to be the central tool for planning,
managing and performing development activities. It enriches
Eclipse and Visual Studio to create a new environment with
support for intra and inter-team collaboration, automation,
and traceability of code, tasks and issues. Microsoft’s Col-
labVS extends the Visual Studio by adding communication
channels, such as text and audio-video chat, browsing of
remote unchecked versions of files, and notification of
presence in elements inside a file [15].

There are a number of valuable efforts to solve some
specific problems raised by workspace isolation generated

2. See http://jazz.net

by SCM systems. More specifically, they share an effort to
recover and broadcast information about changes that occur
between a check out and a check in, which tends become
more critical as this gap grows larger.

Palantir is an Eclipse plug-in that addresses direct and
indirect merge conflicts [16]. Direct conflicts are caused
by concurrent changes to the same artifact. Indirect ones
are caused by changes in one artifact that affect concurrent
changes in another artifact. Palantir informs the involved
developers about the existence of conflicts, and their severity
(e.g., it is high if one of the conflicting versions has already
been checked in).

Schneider et al. use a shadow CVS repository to record
changes every time that someone edits a file. The shadow
repository is then mined and information about who is
working with what is visually presented to developers with
the aim of augmenting group awareness [17].

FASTDash offers to developers real-time information
about changes: which team members have source files
checked out, which files are being viewed, and which classes
and methods are currently under change [18].

The demand for workspace awareness is becoming urgent
as intensive and globally distributed team collaboration be-
comes the state of pratice. Although the solutions discussed
above increase workspace awareness by working around
some of the limitations imposed by SCM systems, the root
of the problem lies in the currently used SCM models, which
offer insufficient support for collaboration.

2.2. Operation-based SCM

The key characteristic of file-based SCM systems is that
they are able to version any type of document, since docu-
ments are represented as files in a computer. In the context of
software development, this rather strong feature comes with
a tradeoff: they are unable to model, and hence, properly
version source code changes. The source code is treated
as plain text, which forces developers to deal with textual
merging of source code, with consequences that range from
compilation errors, to bugs generated from runtime errors.

On the other end of the spectrum there are language-
dependent operation-based SCM systems [11], [19], which
have support for the language model, and version the system
as a sequence of change operations. Some advantages of this
approach are that operations can be played or rewound to
bring the system from one state to another, and merge con-
flicts can be resolved with operation-based merge algorithms
[20]. However, despite a few noteworthy efforts to provide
operation-based SCM solutions, there is still a list of issues
to be addressed until they become fully functional.

For example, MolhadoRef, proposed by Dig et al. [19],
is not a pure operation-based SCM. It is a mixture of
state-based and operation-based, which means that it does
not record every change made by every developer. Instead,

http://jazz.net

it calculates the deltas before changes are checked in;
only refactoring operations are fully recorded. Consequently,
there is still loss of information, and not all system states
can be recovered from the MolhadoRef repository.

In contrast, Robbes’ Spyware’s change-centric solution
records every change made by one developer and is able to
recover any state of the system [11]. The main restriction of
Spyware is that it is a one-developer solution, i.e., it does not
support a multi-developer context. OperationRecorder [21]
tries to bring Spyware’s approach from Smalltalk to Java,
however, it presents the same drawback as MolhadoRef: it
also loses change information.

Our goal with Syde is to port Spyware’s approach to
a multi-developer context without losing information. Our
goal is thus not to replace, but to complement, file-based
SCM systems.

3. Syde

Syde is a client-server application that can manage and
store object-oriented software systems implemented in Java.
The client is an Eclipse plug-in that listens to “build”
operations, which are often linked to “save” operations in
Eclipse. Every time a developer tries to compile a changed
file, Syde’s listeners are triggered and send a new version
of the file to the server. If the file does not successfully
compile, a notice of unsuccessful compilation together with
the changed file is sent to the server. The server, then, saves
the received information and broadcasts the (successfully
compiled) changes to all active client instances. Finally, each
client instances of the plug-in shows the broadcasted changes
on a view inside Eclipse’s workbench.

We developed Syde with a number of goals in mind:

• Complement SCM systems. As stated before, our goal
is to complement file-based SCM systems. A software
project comprises not only source code, but also re-
quirements, specification, etc. For now, Syde focuses
exclusively on the source code of a project.

• Be non-intrusive and lightweight. Syde shows the infor-
mation of others’ activities in a view that the developer
can simply close or minimize. Thus, Syde provides
extra information without disrupting or distracting a de-
veloper from work. As opposed to holistic and complex
approaches such as Jazz.net or CollabVS we aim to
provide effective collaboration support with minimal,
lightweight, and complementary changes to the status
quo of the developers’ settings.

• Enhance awareness. Similar to other solutions to aug-
ment workspace awareness, Syde informs developers
about what changes in the source code are happening
and were not checked into the SCM repository yet. A
developer can go ahead and request these changes even
before they become available through the SCM.

• Enrich SCM history. Similar to the history logs of CVS
or Subversion, Syde provides the history of changes
with the following information: changed file, author,
and timestamp. The fundamental difference is that Syde
provides a historic entry for every change performed on
Eclipse, even if they were not checked in lately.

3.1. Design

The overall design and information flow of Syde are illus-
trated in Figure 1. Syde features the following components:

Eclipse

Syde (client) Syde (server)

Collector

Notifier

Distributor

...

Viewer

Inspector

 Requestor

...
Co

nfl
ict

M
an

ag
er

Li
st

en
er

s

Figure 1. Syde Architecture.

• The Inspector and the Collector. Syde’s inspector im-
plements listeners to capture from Eclipse’s workbench
changes performed by a developer. The inspector col-
lects two distinct types of data: the actual changes;
and metadata, which contains the author’s name, a
timestamp, and status of the change. Syde’s collector
receives information from the inspector and stores it in
a centrally accessible repository.

• The Notifier and the Viewer. Syde’s notifier maintains
a list of client instances that need to be notified of
any change, and is responsible for broadcasting the
metadata to all members of the team. Syde’s client
features display information about the changing system
in a view within Eclipse itself, thus providing awareness
of changes to all developers.

• The Distributor and the Requestor. Once a developer
has become aware that certain parts of the system have
changed, he can preempt the underlying classical SCM
system and request from the Syde server an update of
specific parts of the code, which are then sent by Syde’s
distributor, and updated in the client’s source base.

3.2. Implementation

We implemented Syde in Java with Eclipse. Syde’s goal
is to complement the workspace awareness offered by SCM

Figure 2. Screenshot of Syde.

systems. However, since its implementation is completely
independent from any SCM system, it can also be used by
projects that do not use any other version control system. To
explain Syde’s implementation, we follow the information
flow illustrated in Figure 1.

The Inspector is located in Syde’s plug-in and is re-
sponsible for inspecting and sending source code changes
to the server. To inspect source code changes, it relies on
the following strategy. If the project under inspection uses
the standard Java Builder for compilation, the Inspector im-
plements the IResourceChangeListener interface to
listen to POST_BUILD events. Before it sends the changed
file to the server, it checks for compilation errors inside the
file, and annotates the metadata with this information. Even
though the changed file can group more than one source code
change, we argue that this is a reasonable approach because a
developer tends to save (and automatically compile) changes
frequently enough for differencing algorithms, such as the
one proposed by Fluri et al. [22], to be able to precisely
find all changes from two subsequent versions. If the project

does not use the Java Builder, the Inspector listens to
POST_CHANGE events, and is therefore unable to check for
compilation errors in the file.

On the server side, the Collector

1) receives the file,
2) versions and saves it,
3) saves the metadata, and
4) preempts the Notifier.

The Notifier manages which developers are connected to
Syde for a given project by keeping a set of projects and,
for each project, a set of developers. Immediately after a
new version of a file is available on the server, it broadcasts
an alert to all developers. To show the alerts in the plug-in,
the Viewer makes a contribution to Eclipse’s workbench by
creating a new ViewPart, as shown in Figure 2. Finally,
the Requestor adds the action “Get last version” to Syde’s
view, which requests from the Distributor the last version
of the selected file in the view.

ge
ne
ra
to
r

te
m
pl
at
es
M
an
ag
er

im
po
rt

Figure 3. Timeline of changes of Speed project.

3.3. Data

The history log of mainstream SCM systems usually
describes which files have been checked in, when and by
whom. For example, CVS history log shows: file name,
revision, author, timestamp, author’s comment, and number
of lines of code added and removed. Subversion gives the
same information, except for the number of lines of code
added and removed.

Syde’s history log offers the same kind of information,
but for every change performed by a developer. It shows:
file name, revision, author, timestamp, and whether the file
has compilation errors or not.

4. Case Study

In [12] we showed an initial analysis of the history of
projects developed by a single developer. In the context of
this paper we use the data provided by Syde to tackle the
following research question: How can Syde’s history log help

to characterize code ownership? To discuss this question we
analyze Syde’s history log of Speed, together with two the
corresponding CVS history log.

Speed is a commercial project that is under development
at the software factory of CPMBraxis 3. This software fac-
tory was chosen because of its professional characteristics:
it has a well defined production process certified by CMMI-
DEV 5 and ISO 9001:2000 standards; its projects adopt
metrics, software reuse, and new technologies for delivering
high quality products.

To collect the data from Speed, Syde was embedded into
the production environment of the software factory, and the
project’s team was instructed, but not forced to use it for a
period of 15 days. Speed has a total of 185 Java files, from
which 94 had new versions checked into the CVS repository,
and 50 had changes captured by Syde. During a period of
15 days, Syde collected a total of 2,429 changes performed
by four developers. The number of new versions checked

3. See http://www.cpmbraxis.com

http://www.cpmbraxis.com

into the CVS repository that corresponds to these changes
was 187.

Figure 3 shows the timeline of changes that Speed under-
went during the 15-days period. Each line corresponds to
a file that was versioned by Syde (The names of the files
were obfuscated for privacy reasons). Each circle represents
a change captured by Syde, and each vertical line a CVS
check in. Each color represents a different developer. Finally,
red rectangles indicate potential merge conflicts, which in
the case of Figure 3 appear if two developers changed the
same file within a period of 2 hours.

The four developers did not work in parallel during the
whole period. Instead, they alternated, two by two, the
periods of active development. This happened because the
developers work in more than one project at a time, and the
time that they dedicate to each project depends on deadlines.
In addition, some developers reported that they forgot to use
Syde for certain periods of time.

The project underwent a period of intensive development,
in which two developers (pink and dark blue) worked in
parallel on many different files. In most cases, none of them
checked in the changed code after the intensive period of
work. In some cases, the second file for example, there was
even a third developer making changes one week later. This
scenario seems susceptive to merge conflicts that will arise
when developers try to check in the modified files.

In the following we analyze the research question previ-
ously presented.

4.1. Characterizing Code Ownerships with Syde

Code ownership indicates which developer owns which
artifact of a software system by measuring who has ac-
cumulated more knowledge of each artifact. The notion of
code ownership is important in large projects, where not all
developers know each artifact of the system, and can be used
to answer questions such as “who should fix this bug” [23]
or “who should I ask about artifact XY” [24]. In this study,
we consider the definition of code ownership described by
Gı̂rba et al. [25]: “Based on the number of lines of code
added and removed extracted from the CVS log, the owner
of a file is the one who owns the greater percentage of lines
over the total number of lines of a file. In this case, the total
number of lines of a file is approximated with information
extracted from CVS.”

This measurement technique can be effective when de-
velopers check in their files approximately with the same
frequency. If however, within a team there are developers
who frequently check in their changes and others who work
for long periods before checking in, this technique is prone
to discrepancies.

We use the history logs provided by Syde to measure code
ownership, therefore basing the definition of ownership on
every small change that is being performed on a system.

We define code ownership as: The owner of a file f, own f,
is the developer who has performed the greater number of
small changes c on it. A developer becomes the owner of a
file at the moment he performs c+1 changes in relation to
the previous owner.

Figure 4 shows code ownership schemas for Speed
project. The top schema is based on our definition of
ownership, thus it uses exclusively information contained
in Syde’s logs. In this schema, every colored circle is a
change. The larger circles indicate when a new owner is
assigned to a file, from where the line of the corresponding
file is colored with the developer’s color. Figure 4 a shows a
magnified view of code ownership changes with Syde’s logs.
The overview suggests that developers dark blue and pink
are the owners of the majority of the files. More specifically,
by the last day (Feb 6) dark blue owns 34, pink owns 9,
yellow owns 6, and cyan owns 1 out of 50 files.

The second schema is based on the definition by Gı̂rba
et al.. Each tick represents one CVS commit, and the larger
ones indicate when a new owner is assigned to a file, from
where the line of the corresponding file is colored with
the developer’s color. Figure 4 b shows a magnified view
of code ownership changes with CVS logs. This schema
shows that the developers who own more files are dark
blue (10) and yellow (7). Cyan developer owns only 2 files,
while pink does not own any file. In addition, 31 files (a
significant number) remain without classification because of
the complete absence of a commit containing them.

Finally, the third schema shows the delta between the
two techniques, illustrated by a red line where they diverge.
In this schema, only the circles and ticks that represent
ownership changes are shown. Figure 4 c illustrates how
the differences are highlighted.

Figure 5. Distribution of changes per developer for Syde
and CVS logs of Speed project.

It is evident from the difference between the first two
illustrations that these developers do not check in their
code frequently, nor do they present a common behavior.
Figure 5 and Table 1 reinforce this observation. They show

01/22 01/23 01/24 01/25 01/26 01/27 01/28 01/29 01/30 01/31 02/01 02/02 02/03 02/04 02/05 02/06

01/22 01/23 01/24 01/25 01/26 01/27 01/28 01/29 01/30 01/31 02/01 02/02 02/03 02/04 02/05 02/06

01/22 01/23 01/24 01/25 01/26 01/27 01/28 01/29 01/30 01/31 02/01 02/02 02/03 02/04 02/05 02/06

Sy
de

 lo
g

CV
S

lo
g

De
lta

a

b

c

Figure 4. Ownership of Speed project measured with both definitions, and the delta between them.

dark blue pink yellow cyan
Syde (2,429 changes) 45% 44% 10% 1%
CVS (187 commits) 66% 10% 21% 3%

Table 1. Distribution of changes per developer for
Syde and CVS logs of Speed project.

the distribution of changes per developer for both Syde
and CVS. The absolute values of small changes and CVS
commits are, respectively, 2,429 and 187. Developer dark
blue appears as the most active, performing 45% of small
changes and 66% of commits. However, developer pink,
who appears as the second most active in relation to small
changes (44%), has only made a few commits (10%) and
does not even appear as owner in the second illustration.
Consequently, he is the one responsible for the majority of
diverging deltas (7 out of 12).

The illustration and the corresponding analysis evidence
that our definition of code ownership is more suitable in the
context of Speed. Based on this, we suggest that the larger
the difference between the effort of a developer (measured
as number of small changes) and the frequency of his
commits, the more suitable our approach is in relation
to the one of Gı̂rba et al. However, since this was an
initial analysis of Syde’s log generated in a multi-developer
context, further investigation is needed to support our
suggestion.

4.2. Threats to validity

Syde records every change made by a developer as long
as he is connected to Syde server. The history log collected
from Speed is not complete, because some of the developers
reported that they forgot to connect to Syde a couple of
times. We try to minimize this issue by offering the option to
automatically connect, however we do not force developers
to use it. In the future, we will add a buffer in the plug-in to
save the changes performed while the developer is offline,
and send to the server when he connects. In addition, Syde
was used since the beginning of the implementation phase
of Speed, but CVS was only adopted four days later (02/26).
This fact could have influenced the ownership variation in
the beginning of the project.

Another aspect to be considered is that developers might
present diverse patterns on saving and compiling, which
could influence the results of code ownership measurement,
since it is based on the number of changes each developer
produced.

Finally, the short period of usage of Syde and the fact
that we only discuss one system, are evident restrictions that
prevent us from deriving stronger conclusions at this time.

5. Conclusion

In this paper we have presented a novel type of software
repository that stores every change performed by every
developer in a multi-developer project. The new repository
is managed by Syde, a client-server application built with
the goal of augmenting workspace awareness on a multi-
developer environment. The foundation of Syde is Spyware’s
change-centric approach [11], in which every small code edit
is saved and can be recovered in the future.

Similar to mainstream SCM systems, such as CVS, Syde
produces history logs containing useful information about
changes, which can be mined in the same context as the
widely mined CVS logs. The fundamental difference is that
Syde’s logs are the result of continuous edits performed by
developers, who do not need to stop their work to submit
the changes to Syde. In contrast, CVS logs are the result of
explicit check-ins of changes, which can vary according to
team culture, developer habits, and the likelihood of merge
conflicts. Hence, we argue that Syde’s logs reflect what
happened in the past more accurately than the ones provided
by mainstream SCM systems.

We applied Syde’s log to determine code ownership and to
compare the result with the one produced exclusively with
CVS log. To achieve that, we used the data collected by
Syde, and the CVS log from the development of a com-
mercial system for a period of 15 days. During this period,
four developers were active, but not working exclusively
on this project. The results showed differences between the
two classifications, especially when active developers did
not check in their changes frequently. Based on this finding,
we suggest that our code ownership classification is more
accurate than the one proposed by Gı̂rba et al. [25].

As future work on code ownership, we intend to add the
notion of memory loss on the definition of code ownership.
That is, a developer who has performed the majority of
code edits of a file, but has not touched it for a long
period (when the file underwent significant changes), starts
to lose knowledge of it. In the meantime, the developer who
performs the recent changes becomes more knowledgeable,
even though he did not perform as many edits as the first
one.

Syde’s log opens new perspectives for investigation of
other mining techniques that have exclusively used CVS
or Subversion logs. Moreover, it provides fine-grained
information that can be retrieved and analyzed “on the fly”
to help developers while they are working.

Acknowledgments. We gratefully acknowledge the fi-
nancial support of the Swiss National Science foundation
for the project “REBASE” (SNF Project No. 115990). We
would like to thank CPMBraxis and its professionals for
using Syde and providing useful feedback to us.

References

[1] Q. Tu and M. Godfrey, “The build-time software architecture
view,” in ICSM ’01: Proceedings of the IEEE International
Conference on Software Maintenance (ICSM’01). Washing-
ton, DC, USA: IEEE Computer Society, 2001, p. 398.

[2] A. E. Hassan and R. C. Holt, “Predicting change propagation
in software systems,” in ICSM ’04: Proceedings of the 20th
IEEE International Conference on Software Maintenance.
Washington, DC, USA: IEEE Computer Society, 2004, pp.
284–293.

[3] A. T. T. Ying, R. Ng, M. C. Chu-Carroll, and G. C. Murphy,
“Predicting source code changes by mining change history,”
IEEE Trans. Softw. Eng., vol. 30, no. 9, pp. 574–586, 2004.

[4] O. Baysal and A. J. Malton, “Correlating social interactions
to release history during software evolution,” in MSR ’07:
Proceedings of the Fourth International Workshop on Min-
ing Software Repositories. Washington, DC, USA: IEEE
Computer Society, 2007, p. 7.

[5] L. Yu and S. Ramaswamy, “Mining cvs repositories to
understand open-source project developer roles,” in MSR
’07: Proceedings of the Fourth International Workshop on
Mining Software Repositories. Washington, DC, USA: IEEE
Computer Society, 2007, p. 8.

[6] J. Estublier, D. Leblang, A. van der Hoek, R. Conradi,
G. Clemm, W. Tichy, and D. Wiborg-Weber, “Impact of
software engineering research on the practice of software con-
figuration management,” ACM Trans. Softw. Eng. Methodol.,
vol. 14, no. 4, pp. 383–430, 2005.

[7] R. Robbes and M. Lanza, “Versioning systems for evolution
research,” in Proceedings of IWPSE 2005 (8th International
Workshop on Principles of Software Evolution). IEEE CS
Press, 2005, pp. 155–164.

[8] R. E. Grinter, “Supporting articulation work using soft-
ware configuration management systems,” Comput. Supported
Coop. Work, vol. 5, no. 4, pp. 447–465, 1996.

[9] C. R. B. de Souza, D. Redmiles, and P. Dourish, “Breaking
the code, moving between private and public work in collab-
orative software development,” in GROUP ’03: Proceedings
of the 2003 international ACM SIGGROUP conference on
Supporting group work. New York, NY, USA: ACM, 2003,
pp. 105–114.

[10] R. Robbes, “Mining a change-based software repository,” in
Proceedings of the 4th International Workshop on Mining
Software Repositories (MSR 2007). ACM Press, 2007, p. 15.

[11] R. Robbes and M. Lanza, “Spyware: A change-aware de-
velopment toolset,” in Proceedings of ICSE 2008 (30th
ACM/IEEE International Conference in Software Engineer-
ing). ACM Press, 2008, pp. 847–850.

[12] L. Hattori and M. Lanza, “An environment for synchronous
software development,” in Proceedings of ICSE 2009 (31st
ACM/IEEE International Conference on Software Engineer-
ing - New Ideas and Emerging Results Track). IEEE CS
Press, 2009, pp. xxx–xxx.

[13] A. Zeller, “The future of programming environments: Inte-
gration, synergy, and assistance,” in Proceedings of FOSE
2007 (2nd Conference on the Future of Software Engineering.
IEEE CS Press, 2007, pp. 316–325.

[14] A. Sarma, D. Redmiles, and A. van der Hoek, “Empirical
evidence of the benefits of workspace awareness in software
configuration management,” in SIGSOFT ’08/FSE-16: Pro-
ceedings of the 16th ACM SIGSOFT International Symposium
on Foundations of software engineering. New York, NY,
USA: ACM, 2008, pp. 113–123.

[15] R. Hegde and P. Dewan, “Connecting programming envi-
ronments to support ad-hoc collaboration,” in Proceedings
of ASE 2008 (23rd IEEE/ACM International Conference on
Automated Software Engineering. IEEE CS Press, 2008.

[16] A. Sarma, G. Bortis, and A. van der Hoek, “Towards support-
ing awareness of indirect conflicts across software configura-
tion management workspaces,” in Proceedings of ASE 2007
(22nd IEEE/ACM International Conference on Automated
Software Engineering. ACM, 2007, pp. 94–103.

[17] K. A. Schneider, C. Gutwin, R. Penner, and D. Paquette,
“Mining a software developers local interaction history,” in
MSR ’04 : Proceedings of the 1st International Workshop on
Mining Software Repositories, 2004, pp. 106–110.

[18] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson,
“FASTDash: a visual dashboard for fostering awareness in
software teams,” in CHI ’07: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. New
York, NY, USA: ACM, 2007, pp. 1313–1322.

[19] D. Dig, K. Manzoor, R. Johnson, and T. N.Nguyen,
“Refactoring-aware configuration management for object-
oriented programs,” in ICSE ’07: Proceedings of the 29th
international conference on Software Engineering. Washing-
ton, DC, USA: IEEE Computer Society, 2007, pp. 427–436.

[20] E. Lippe and N. van Oosterom, “Operation-based merging,”
SIGSOFT Softw. Eng. Notes, vol. 17, no. 5, pp. 78–87, 1992.

[21] T. Omori and K. Maruyama, “A change-aware development
environment by recording editing operations of source code,”
in MSR ’08: Proceedings of the 2008 international working
conference on Mining software repositories. New York, NY,
USA: ACM, 2008, pp. 31–34.

[22] B. Fluri, M. Würsch, M. Pinzger, and H. Gall, “Change dis-
tilling: Tree differencing for fine-grained source code change
extraction,” IEEE Trans. Software Eng., vol. 33, no. 11, pp.
725–743, 2007.

[23] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this
bug?” in ICSE ’06: Proceedings of the 28th international
conference on Software engineering. New York, NY, USA:
ACM, 2006, pp. 361–370.

[24] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller,
“Mining version histories to guide software changes,” in Pro-
ceedings of ICSE 2004 (26th ACM International Conference
on Software Engineering). IEEE CS Press, 2004, pp. 563–
572.

[25] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse, “How
developers drive software evolution,” in IWPSE ’05: Proceed-
ings of the Eighth International Workshop on Principles of
Software Evolution. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 113–122.

	Introduction
	Related Work
	Tool Support for Collaboration
	Operation-based SCM

	Syde
	Design
	Implementation
	Data

	Case Study
	Characterizing Code Ownerships with Syde
	Threats to validity

	Conclusion
	References

