
Applying the Evolution Radar to PostgreSQL

Marco D’Ambros, Michele Lanza
Faculty of Informatics

University of Lugano, Switzerland

{marco.dambros, michele.lanza}@lu.unisi.ch

Categories and Subject Descriptors:D.2.7 [Software Engineer-
ing]: Maintenance, Version Control, Re-engineering, Reverse En-
gineering

General Terms: Measurements, Design.

Keywords: Evolution, Logical Coupling, Visualization.

1. GOALS
In this report we describe the results of the application of our

approach, the Evolution Radar [2], on the PostgreSQL system. The
mining questions we want to answer are:

1. What are the relationships among the system modules in terms
of logical coupling? How are these relationships character-
ized? Which are the main responsibles for the logical cou-
plings, i.e., the best candidates for starting a reengineering
process?

2. How have these relationships evolved over time? When have
refactorings been applied on the modules? In which phase is
the system in the current version?

2. INPUT DATA
To analyze the target system,i.e.,PostgreSQL, we use its whole

history, as recorded by the CVS version control system, stored in
a database called Release History Database (RHDB) [1, 3]. The
database populating process, performed in batch mode, consists
in (i) doing a checkout of the system, parsing it and storing the
structure information in the database, (ii) parsing the CVS logs and
storing all the commit-related information. The RHDB includes
information about all the files in the system,i.e., source code, doc-
umentation, make-files,etc. For our analysis we consider only the
source code data,i.e.,.c and .h files (since PostgreSQL is writ-
ten in c). We decompose the system using the top-most directories
in the src directory tree,i.e., we define a module as all the files
belonging to a directory subtree.

Copyright is held by the author/owner.
MSR’06,May 22–23, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

3. THE EVOLUTION RADAR APPROACH
The Evolution Radar (see Figure 1) visualizes the logical cou-

pling of one module with the others (see [2] for details). The mod-
ule in focus is placed in the middle of a pie chart, where each sector
represents one of the other modules. The size of each sector depicts
the size of each module in terms of number of files. The modules
are sorted according to this size metric.

The files of each of those modules are represented as circles and
placed (and colored) according to the logical coupling they have
with the module placed in the center. The closer the files are to the
center (the hotter, from blue to red, the color is), the more coupled
they are.

Given a moduleM , a file f , and a time interval(t1, t2), we
define the logical coupling between the two as:

LC(M, f, t1, t2) = max
fi∈M

˘
sc(fi, f, t1, t2)

¯
(1)

wheresc(fi, f, t1, t2) is the number of shared commits (performed
at the same time with a tolerance of 200 seconds) betweenfi and
f during the time interval(t1, t2)1.

4. RESULTS
We consider the three biggest modules with respect to the num-

ber of files: backend (673 files), include (394 files) and interfaces
(84 files). For each module we build four Evolution Radars (using
the module as the center of the radar) corresponding to the last four
years of development of the module. Then we study the relation-
ships of the target module with the five other biggest modules in
the system with respect to the logical coupling information. For
this study we both analyze the view and compute some measures
characterizing the evolution of the couplings. In details we define:

• Strength (s): The total value of the logical coupling between
the target moduleMt and another moduleM (a slice). It is
equal to the sum of the logical coupling of all the files ofM
with Mt.

• Distribution (d). The percentage of files involved in the log-
ical coupling. It is equal to the number of files ofM having a
logical coupling withMt divided by the total number of files
of M .

1We don’t need a normalized value,i.e.,weighting the logical cou-
pling with the number of commits, because we study the evolution
of the logical couplings, thus we compare absolute values of logical
couplings over time instead of analyzing one value only.

(a) 2002 (b) 2003 (c) 2004 (d) 2005

Figure 1: Evolution Radars for the backend module from 2002 to 2005.

• Outliers (ol). The files ofM having a logical coupling with
Mt much higher than all the others. Those are detected di-
rectly on the view instead of using a formal definition.

Figure 1 shows the four Evolution Radars for the backend mod-
ule (where the arrows highlight the outliers), while the computed
measures and the detected outliers are listed in Table 1.

2002 2003 2004 2005
s 832 928 957 431

in- d 53% 73% 71% 45%
clude ol parsenodes.h parsenodes.h

nodes.h
bufmgr.h

parse-
nodes.h
guc.h

parsenodes.h
nodes.h ex-
ecutor.h

s 81 161 107 95
inter- d 31% 81% 63% 55%
faces ol tabcomplete.ctabcomplete.cnone none

s 105 212 183 91
bin d 58% 84% 78% 64%

ol none none none none
s 31 63 70 37

port d 30 % 62% 53% 38%
ol none none none path.c
s 36 52 38 32

pl d 40% 45% 50% 40%
ol pl exec.c pl exec.c none none

Table 1: Results for the backend module.

Conclusions on the Backend Module.As we can see from Fig-
ure 1 and Table 1 the backend module was initially (2002) logically
decoupled from all the other modules but the include one. For this
module the distribution value was relatively low (53%) and the cou-
pling was mainly due to outliers, mostlyparsenodes.h . In the
following year the logical coupling with all the other modules in-
creased, for both strength and distribution, implying that the quality
of the design of the backend module decreased as well.

In 2004 we observe that: (i) the dependency with include stayed
stable at high values of strength and distribution, (ii) the logical
coupling with interfaces and pl decreased and (iii)tabcomplete.c
andpl exec.c which were outliers up to this moment were not
outliers any more. We deduce that a refactoring phase was pre-
viously (2003) applied for these two modules (interfaces and pl).
This is one of the reasons of the high logical coupling values in the
previous year.

In the last year the dependencies with all the other modules de-
creased (for both strength and distribution), especially with include,
bin and port. We deduce that in 2004 the backend module was
refactored, since the logical coupling decreased for all the other
modules.
Suggestions for the Backend Module.The filesparsenodes.h
andnodes.h of the include module should be further analyzed
and, in case, moved to the backend module. The first was an
outlier from 2002 to 2005 while the second in 2002 and 2005.
They were coupled with backend for a long time and they were
still coupled in the last year. The filepath.c of the port module
andexecutor.h of the include module should also be analyzed.
They were only recently coupled with backend, implying that the
dependencies are due to recent changes. We suggest to analyze
them because an early refactoring is less expensive.

5. CONCLUSION
The Evolution Radar allows us to study the evolution of the de-

pendencies among system modules and to detect the outliers, the
best starting points for the refactoring process. It is also helpful
to understand if the dependencies of the outliers are due to recent
changes or they were coupled with the target modules for many
years. We have shown the results of the application of our ap-
proach on the biggest module of PostgreSQL. We have found can-
didates for reengineering and refactoring phases in the evolution
of the modules. For the other two biggest modules we have found
similar results but we have not presented them for lack of space.

6. REFERENCES
[1] M. D’Ambros and M. Lanza. Software bugs and evolution: A

visual approach to uncover their relationships. InProceedings
of CSMR 2006 (10th European Conference on Software
Maintenance and Reengineering), pages xxx–xxx. IEEE CS
Press, Mar. 2006.

[2] M. D’Ambros, M. Lanza, and M. Lungu. The evolution radar:
Visualizing integrated logical coupling information. In
Proceedings of MSR 2006 (International Workshop on Mining
Software Repositories), pages xxx–xxx, May 2006.

[3] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking
systems. InProceedings International Conference on
Software Maintenance (ICSM 2003), pages 23–32, Los
Alamitos CA, Sept. 2003. IEEE Computer Society Press.

