
On the Nature of Commits

Lile P. Hattori and Michele Lanza
REVEAL @ Faculty of Informatics - University of Lugano, Switzerland

Abstract

Information contained in versioning system commits has
been frequently used to support software evolution research.
Concomitantly, some researchers have tried to relate com-
mits to certain activities, e.g., large commits are more likely
to be originated from code management activities, while
small ones are related to development activities. However,
these characterizations are vague, because there is no con-
sistent definition of what is a small or a large commit. In this
paper, we study the nature of commits in two dimensions.
First, we define the size of commits in terms of number of
files, and then we classify commits based on the content of
their comments. To perform this study, we use the history
log of nine large open source projects.

1 Introduction

The history log of versioning systems, such as CVS or
Subversion, stores a log for every change committed into
the repository. Thus, it represents a rich amount of infor-
mation about the changes of a software system. Because
of their open and accessible nature, researchers often an-
alyze versioning system history logs instead of processing
all revisions of each file in a software system. The MSR
(Mining Software Repositories) community is widely us-
ing this approach to investigate evolutionary aspects of soft-
ware systems. Work in this area has dealt with correlating
refactorings with defects by mining the comments of com-
mits (Ratzinger et al [14]), investigating developer expertise
based on their commit activities (Schuler and Zimmermann
[16]), or detecting logical coupling by analyzing the fre-
quency in which files changed together (Gall et al. [4]).

Although some studies characterized groups of commits,
researchers misleadingly make assumptions like “large
commits are outliers and, therefore, must be ignored”.
These assumptions are based on the observation that small
commits occur more often, while large commits are rare ex-
ceptions. However, to the best of our knowledge, there is no
study that tried to classify commits with respect to their size,
with the exception of two approaches dealing with special

cases: Purushothaman and Perry [13] used Swanson’s clas-
sification of maintenance activities to analyze very small
changes, and Hindle et al. [8] performed a similar study
for large commits.

Our goal is to study commits to answer some seemingly
simple questions: What is a small/large commit? Do de-
velopment activities appear mainly in small commits? Are
large commits only related to code management? To an-
swer these questions we analyzed a total of 72,351 commits
from nine open source projects. The results show that the
distributions of commits from all 9 projects follow a Pareto
distribution. These findings confirm previous observations
[13] that most of the commits concern few files, whereas
large commits are scarce. However, contrary to what one
may assume, neither small commits are related exclusively
to development activities, nor large commits are exclusively
derived from management activities. Our study indicates
that corrective actions, such as bug fixes, generate more tiny
commits than any other activity. In addition, the number of
large commits related to development is remarkably high,
which demystifies the assumption that large commits are
mainly related to management. The contributions of this
paper are:

• A study of the statistical distribution of the size, in
terms of changed number of files, of commits.

• A lightweight approach to classify each commit into
development (forward engineering) or maintenance
(reengineering, corrective engineering, management)
activities, based on the content of their comments.

• A characterization of the commits of 9 open-source
projects by evaluating their size and content distribu-
tions.

Structure of the paper. Section 2 presents related work
that studied commits of software systems. Section 3 de-
scribes a study of the statistical distribution of size of com-
mits and presents a size classification. In Section 4 we pro-
pose a content classification based on keywords that appear
in a commit’s comment. In Section 5 we present a case
study that assesses both classifications using 9 open source
projects according to the size and comment. Finally, Sec-
tion 6 presents some conclusions and future work.

2 Related Work

Many researchers have explored the history logs to un-
derstand changes to a software system during its life cycle.
Here we detail the work mostly related to ours.

Mockus and Votta [11] used word frequency and seman-
tic analysis techniques to classify comments of commits ac-
cording to Swanson’s [17] classification of maintenance ac-
tivities. Their classification consists of the following key-
words: corrective – problem, incorrect, correct; adaptive –
new, modify, update; and perfective – cleanup, unneeded,
remove, rework. They compared the distribution of each
maintenance activity with the size of a change in terms of
lines added and deleted, and found that adaptive and inspec-
tion changes added most lines while inspection activities
deleted many more lines than other activities.

Purushothaman and Perry [13] used the same classifica-
tion to analyze very small changes. Their definition of small
changes was: one or more modifications to single/multiple
lines, one or more new statements inserted between exist-
ing lines, one or more lines deleted, or a modification to a
single/multiple lines accompanied by insertion and/or dele-
tion of one or more lines. One important finding of their
study was that there is less than a 4 percent probability that
a one-line change will introduce a fault in the code.

Later, Livshits and Zimmermann [10] used this observa-
tion as one of some data mining rules to find common error
patterns by combining revision history with source code in-
formation. Hindle et al. [8] performed a similar study to
Purushothaman and Perry on large commits. Selecting the
99th percentile of commits with respect to the number of
files from nine projects, they manually classified them ac-
cording to an extended version of Swanson’s classification.
They contrasted their findings against previous work by Pu-
rushothaman and Perry, and concluded that large commits
are more perfective while small commits are more correc-
tive.

Another work that classifies history logs is the case study
conducted by Ayari et al. [2]. They collected Mozilla’s
CVS and Bugzilla information to evaluate the difficulties
faced to integrate them. The case study pointed out that
Mozilla’s bug tracking database contains 50% of entries that
are not related to corrective maintenance.

Research that correlates size of commits, and conse-
quently, size of changes with project’s activities has con-
centrated only on specific cases. Furthermore, they tend to
present and use only relative values, such as 1% of commits
that contain larger number of files. How large are these
commits? Do they contain 30 or 1,000 files? What is the
range? What is the percentile of commits with one, 10, 200
files? There is a need for an overall view of the distribution
of development and maintenance activities according to the
size of a change.

3 Size Classification

The size of a commit can be measured by the number
of files involved or the number of added/deleted lines. In
a previous study Herraiz et al. [7] showed that, at least for
open source software, the evolution patterns in both count-
ing source lines of code (SLOCs) or files is the same. We
measure the size of a commit by counting the number of
files it affects.

What is a “small” commit? There is no widely accepted
classification of commits with respect to their size. For
example, previous work classified small commits as those
with one line changes, or large commits as the 99th per-
centile of all commits. In this work we segment commits
into four groups based on a study of the statistical distribu-
tion of commits from nine different open source projects.

Project Languages Interval Files Commits
aMSN C, C++, Tcl 28.05.02 - 04.06.08 10,080 10,092
ArgoUML Java 26.01.98 - 29.10.07 11,631 12,334
Firebird C, C#, C++,

Java, Object
Pascal, Python

26.06.06 - 23.05.08 3,941 580

JEdit Java 16.01.00 - 27.05.08 15,837 12,714
JHotdraw Java 12.10.00 - 10.05.07 5,237 391
Mantis PHP 28.11.00 - 22.05.08 3,070 5,297
Miranda C, C++, Del-

phi/Kylix, PHP
28.05.02 - 04.06.08 7,868 7,848

Spring Java 17.06.05 - 28.05.08 41,258 12,596
Swig C, C++ 03.08.99 - 26.05.08 10,766 10,499

Table 1. Open Source Projects Analyzed

Table 1 shows the chosen projects, the programming lan-
guages used, the initial and final dates used in our analysis,
the number of files in the last version considered and the
total number of commits analyzed. To guarantee a good
generalization of open source projects, we have selected
projects with ages ranging from two to almost nine years,
and that are written in various programming languages.

Histogram of JHotDraw

Number of files per commit

Fr
eq

ue
nc

y

Figure 1. Histogram of JHotDraw

QQ plot - ArgoUML QQ plot - JEdit QQ plot - Swig

QQ plot - Mantis QQ plot - JHotDraw QQ plot - Miranda

QQ plot - aMSN QQ plot - Spring QQ plot - Firebird

Sa
m

pl
e

qu
an

tile
s

Theoretical quantiles

Sa
m

pl
e

qu
an

tile
s

Sa
m

pl
e

qu
an

tile
s

Sa
m

pl
e

qu
an

tile
s

Sa
m

pl
e

qu
an

tile
s

Sa
m

pl
e

qu
an

tile
s

Sa
m

pl
e

qu
an

tile
s

Sa
m

pl
e

qu
an

tile
s

Sa
m

pl
e

qu
an

tile
s

Theoretical quantilesTheoretical quantiles Theoretical quantiles

Theoretical quantiles Theoretical quantiles Theoretical quantiles

Theoretical quantiles Theoretical quantiles Theoretical quantiles

Figure 2. Quantile-Quantile Plot of each project’s sample against a Pareto distribution

The first step to segment the commits is to investigate
their distribution. Figure 1 shows the histogram of commits
of JHotDraw. The x-axis represents the number of files per
commit; the y-axis shows the frequency of commits that
has a certain number of files. There are a great number
of commits with few files and very few commits with hun-
dreds of files, which suggests a power law distribution. The
same pattern is observed in the other eight selected projects.
To confirm this, we fit the commits from each project to a
Pareto distribution [3, 12] through a quantile-quantile plot.
A quantile represents an equally divided part of the fre-
quency distribution, which in this case is a frequency of
commits with a certain number of files.

Figure 2 shows the quantile-quantile plots of the com-
mits versus the theoretical quantile of a Pareto distribution.

They are ordered from the oldest to the youngest project.
The interpretation of a q-q plot is: if the population distri-
bution is the same as the comparison distribution this ap-
proximates a straight line, especially near the center. As it
can be observed, almost all q-q plots approximate a straight
line, which confirms that they follow a Pareto distribution.
Only the q-q plot of Firebird shows a slightly different pat-
tern, because it has too few large commits (to be more pre-
cise, only three commits have more than 125 files). This
behavior can be due to the age and the number of commits.
It is the youngest project, aging less than two years, and it
has the second fewest number of commits registered. So,
one hypothesis to explain this result is that this project is
still under active development, a phase that usually gener-
ates more small commits.

Our goal is to classify commits into a restricted number
of significant groups. Since commits follow a Pareto distri-
bution, it does not make sense to split them into quartiles,
for example, because the number of commits with only one
file is around the 50th percentile in most cases. Although
we could use the approximate distribution function found
for each project to calculate an exact division, this is not a
generalized approach that could be directly applied to other
open source projects.

The approach we propose is to divide the commits into
fours groups by using an exponential scale. Although the
exponential scaling parameter for power law distributions
typically lies in the range 2 < α < 3 [3], we choose 5
as exponential scaling parameter. Otherwise the last group
would range from 16 or 81 up, which would still be a small
number compared to some commits with hundreds of files
in it. The proposed size classification of commits is:

• tiny: 1 to 5;

• small: 6 to 25;

• medium: 26 to 125;

• large: 126 up.

This classification is used in section 5 together with the
content classification, presented next, to reason about the
nature of commits.

4 Comment Classification

The comment of a commit is a textual message usually
related to the activity that generates the new piece of code
that is being committed. It ranges from a simple note to a
detailed description, depending on the project’s conventions
and on the developer’s behavior. Although there is no uni-
versal convention on writing a comment, some words fre-
quently appear to describe an activity, e.g., the words “fix”
and “bug” when someone is fixing a bug.

Comment keywords were previously used to classify
small and large changes according to Swanson’s classifi-
cation of maintenance activities [8, 13]. We could adopt
the same approach if we were not analyzing open source
software. Previous works have proven that the growth of
open source software is different from commercial software
systems. While commercial systems tend to have a sub-
linear growth when reaching the maintenance phase, open
source software tend to have linear to superlinear growth
[5, 6, 7]. This implies that open source software is continu-
ously evolving, and incorporating new features, rather than
only being maintained.

For this reason, we propose a different classification with
four major activities: forward engineering as a develop-
ment activity; and reengineering, corrective engineering
and management as maintenance activities.

Forward engineering activities are those related to in-
corporation of new features and implementation of new re-
quirements. Reengineering activities are related to refactor-
ing, redesign and other actions to enhance the quality of the
code without properly adding new features. Corrective en-
gineering handles defects, errors and bug in the software.
Management activities are those unrelated to codification,
such as formatting code, cleaning up, and updating docu-
mentation.

Development Maintenance
Forward
Engineering

Reengineering Corrective
Engineering

Management

implement optimiz bug clean
add ajdust fix license
request update issue merge
new delet error release
test remov correct structure
start chang proper integrat
includ refactor deprecat copyright
initial replac broke documentation
introduc modif manual
creat (is, are) now javadoc
increas enhance comment

improv migrat
design change repository
renam code review
eliminat polish
duplicat upgrade
restrutur style
simplif formatting
obsolete organiz
rearrang TODO
miss
enhanc
improv

Table 2. Keywords used to classify comments

Table 2 presents the keywords selected for each activ-
ity. Some of them are only the radicals or parts of words.
We collected these keywords by first manually analyzing
the commits from ArgoUML and JHotdraw projects, and
then interactively applying, refining and reapplying the key-
words on the other projects. There is theoretically a fifth
category of commit comments, the empty ones, which of
course cannot be classified using our approach. To our sur-
prise their frequency is relatively high, even in the case of
larger commits. We discuss this point in the next section.

The algorithm we are currently using to classify commits
simply searches for keywords and classifies a commit as
soon as it finds any keyword in the text. It searches for com-
ments in the following order: empty messages, manage-
ment, reengineering, corrective engineering, and forward
engineering. A commit can embrace changes from more
than one activity, e.g., a developer can do a clean up on a
class while fixing a bug. For this case, our algorithm clas-
sifies the commit according to the first keyword found. We
performed a case study to assess this approach, which is
presented in the next section.

5 Experimental Study

In this experimental study we first assess the comment
classification presented in Section 4 by manually classify-
ing the commits of a period of three months of a Java and
a C++ project, and compare it with the results from the au-
tomatic classification in terms of precision and recall. We
then apply both size and comment classifications in the nine
open source projects and reason about the results obtained.

5.1 Case Study

To evaluate our proposed comment classification, we
manually classified a total of 1,088 commits from Ar-
goUML and aMSN, and compared them with the automatic
classification in terms of precision and recall. Given a set of
commits automatically classified A, and a set of manually
classifies commits M , we define theses two measures as:

Precision is the proportion of commits automatically
classified that was correct given the manual classification.

P =
| A

⋂
M |

| A |

Recall is the proportion of commits manually classified
that was correctly classified by our algorithm.

R =
| A

⋂
M |

|M |

The intersection A
⋂
M contains only commits that

were equally classified by the two methods. This means that
commits that had no classification assigned to it or commits
wrongly classified by the algorithm were left outside the
intersection. Finally, we calculate the F-measure from pre-
cision and recall to get an average result:

F =
2 ∗ P ∗R
P +R

For ArgoUML, we manually classified 601 commits and
the algorithm was able to automatically classify 529 of
them, with 395 correspondences. This gives a precision of
0.75 and a recall of 0.66, which means that 75% of the au-
tomatically classified commits were correct and 66% of the
correctly classified commits were automatically classified.
The F-measure was 0.70, e.g., every 7 out of 10 commits
were correctly classified. The result, in the light of the al-
gorithm’s simplicity is impressive and supports the fact that
lightweight approaches are viable in this context. Since
ArgoUML was initially used for choosing keywords, we
needed to investigate if this result is an exception. There-
fore, we applied the same measures on another project.

We chose aMSN, a project developed in a different pro-
gramming language to avoid conventions used for a partic-
ular language. We manually classified 487 commits and the
algorithm classified 415, with 345 correspondences. Preci-
sion was 0.83 and recall 0.71, which gives an F-measure of
0.76.

The effectiveness of our algorithm was proven by the re-
sults found for aMSN, being even superior to the ones found
for ArgoUML. Even though the algorithm is suitable for this
study, other approaches could be further investigated to in-
crease precision and recall values, such as semantic analysis
techniques [1].

5.2 Experimental classification

The classification of commits is presented in two differ-
ent charts, depicted in Figure 3 and Figure 4.

Figure 3 presents bar charts containing the distribution
of commits per size for each activity. Note that the y-axis
is presented in log scale. These charts give an overall view
of the absolute distribution of commits over the activities.
For example, the chart of Mantis shows that the number of
commits related to corrective activities is greater than the
others for tiny, small and medium commits.

Figure 4 shows the empirical cumulative distribution
function of commits for each activity. The vertical lines
are divisions for size segments. These charts show the rela-
tive distribution of commits for each activity. For example,
the chart of JHotDraw shows that approximately 35% of
commits related to management activities are tiny. We first
analyze the results for each project, individually, and then
we present an overall assessment.

ArgoUML. The activities distribution is balanced for all
sizes. In other words, for every size the number of commits
assigned to one activity is close to the number of commits
assigned to the others. The only visible exception is the
number of large commits related to management, which is
notably higher than the number of commits of other three
activities. The great majority – around 80% – of classified
commits is tiny.

JEdit. Like in ArgoUML, the activities distribution is
balanced for all sizes. There is only one exception: there is
no large commit related to reengineering. Around 70% of
all classified commits are tiny, 25% are small, and less than
5% are distributed between medium and large commits.

Swig. In this project, the distributions are very balanced,
both proportionally (Figure 4) and absolutely (Figure 3).
However, there are no large commits related to reengineer-
ing and forward engineering.

Mantis. The empirical cumulative distribution functions
for this project show little proportional difference among
the activities. For example, there are more small and tiny
commits for corrective engineering than for management.

aMSN Firebird

ArgoUML JEdit

JHotDrawMantis Miranda

Spring Framework

Swig

1 to 5 6 to 25 26 to 125 126 up

!"

!#"

!##"

!###"

!####"

$%" &%" '%" (")" *+,"

!"

!#"

!##"

!###"

!####"

$%" &%" '%" (")" *+,"

!"

!#"

!##"

!###"

!####"

$%" &%" '%" (")" *+,"

!"

!#"

!##"

!###"

!####"

$%" &%" '%" (")" *+,"

!"

!#"

!##"

$%" &%" '%" (")" *+,"

!"

!#"

!##"

!###"

!####"

$%" &%" '%" (")" *+,"

!"

!#"

!##"

!###"

!####"

$%" &%" '%" (")" *+,"

!"

!#"

!##"

!###"

!####"

$%" &%" '%" (")" *+,"

!"

!#"

!##"

!###"

$%" &%" '%" (")" *+,"

Figure 3. Classification of commits based on their size and comment’s content. FE = Forward Engi-
neering. RE = Reengineering. CE = Corrective Engineering. M = Management. B = Blank Comments.
N/A = Unclassified Comments.

This is also true if we observe the absolute values, where
we can see that commits for corrective engineering prevail
for tiny, small and medium commits.

JHotDraw. Proportionally, there is a great difference
among the activities for tiny commits, because 80% of com-
mits related to corrective engineering are tiny, while there
are only 30% of commits related to management. Forward
engineering and reengineering are in between the previous
two. This behavior is also found for medium and large com-
mits. Looking at Figure 3, we understand why the propor-
tional value is so low for tiny commits, compared to other
projects. In this project, the number of large commits re-

lated to management is higher than large commits for other
activities, which provokes the unusual shape of the corre-
sponding empirical cumulative function.

Miranda. From the cumulative distribution function
chart we notice that the proportion of commits related to
forward engineering and reengineering is very similar. The
number of commits related to corrective engineering is
again notably high for tiny, small, and medium commits,
while there are no large commits.

aMSN. In this project, the number of tiny commits is
notably high. Around 95% of commits related to correc-
tive engineering, 90% of commits related to reengineering,

ecdf - ArgoUML ecdf - jEdit ecdf - Swig

ecdf - Mantis ecdf - JHotDraw ecdf - Miranda

ecdf - aMSN ecdf - Spring Framework ecdf - Firebird

Corrective
Engineering

Forward
Engineering

Reengineering Management

Number of Files (log scale) Number of Files (log scale) Number of Files (log scale)

Number of Files (log scale) Number of Files (log scale) Number of Files (log scale)

Number of Files (log scale) Number of Files (log scale) Number of Files (log scale)

Pr
ob

ab
ilit

y

Pr
ob

ab
ilit

y

Pr
ob

ab
ilit

y

Pr
ob

ab
ilit

y

Pr
ob

ab
ilit

y

Pr
ob

ab
ilit

y

Pr
ob

ab
ilit

y

Pr
ob

ab
ilit

y

Pr
ob

ab
ilit

y

Figure 4. Empirical cumulative distribution functions of each activity for all projects

and 85% of commits related to management and forward
engineering are tiny. This means that about 5% of commits
related to corrective engineering are spread around small,
medium and large commits. This is probably one case in
which an exponent around 2 would be more suitable to split
the size segments.

Spring. Similar to what happens with JEdit and Ar-
goUML, the proportion of activities is homogeneous for
each size classification. The same conclusion is drawn
when we analyze the bar chart.

Firebird. This is the project with the lowest number of
commits. For this reason, medium and large commits only
appear in forward engineering and management, while large
commits appear exclusively in management. This can be
easily observed in the two corresponding empirical cumu-
lative distribution functions. For this reason, Firebird is also
a project in which a low exponent seems to be more suitable
to split the size segments.

Discussion. In general, tiny commits are approximately
80% of the total, small commits are 15%, medium commits
are less than 5% and large commits are less than 1%. Blank
comments appear in most projects, mainly associated with
tiny and small commits, but sometimes also on larger com-
mits. This finding is disturbing, as it hints at one of the
reasons why evolution is hard to control. Only one project
does not present blank comments: Firebird. Our algorithm
was unable to classify less than 20% of all commits.

Tiny commits are more related to corrective activities,
followed by forward engineering and reengineering, that al-
ternate positions. Management activities occupy the last
positions, with two exceptions: Spring, where they are the
most numerous, and Mantis. The distribution of activities
in small commits is heterogeneous. However, forward en-
gineering was the least frequent activity in five projects.
Medium commits are completely heterogeneous.

A surprising result appears in large commits: manage-
ment activities are the majority in five projects, but forward
engineering occupies the first position in four. In addition,
both activities appear in all projects, while forward engi-
neering and corrective engineering only appear in seven of
them. With this result, we confirm the findings by Hindle
et al. [8] that a great number of large commits is actually
related to the development of new functionalities. This also
points to one shortcoming of current versioning systems,
where a developer has to explicitly commit: the time be-
tween two commits is completely arbitrary and could be
very long, thus leading to a loss of fine-grained evolutionary
information [9, 15].

Another interesting observation is that the proportion of
management activities related to larger commits is greater
than the proportion of the other three activities. This in-
formation appears in Figure 4: the management line is the
lowest. Conversely, the proportion of larger commits is low
for corrective engineering activities. Hence, we can state
that management activities tend to generate larger commits,
while corrective activities tend to be small and localized.

Threats to validity. Although we tried to diversify the
characteristics of projects by carefully choosing nine dif-
ferent open source projects, some of the finding may not
be generalized to other open source projects. In addition,
these findings may not be generalized to industrial software
system, since open source projects have particular charac-
teristics, such as linear to superlinear growth rate [5, 6]. An-
other issue concerns the use of number of files as a measure
of the size of a commit. Even though Herraiz et al. [7] have
showed that in open source software SLOCs and number
of files are equivalent for evolutionary patterns, the results
found in our study may not be valid for the use of SLOCs
to measure the size of a commit.

6 Conclusions and Future Work

In this work we studied the nature of commits by con-
sidering two aspects: the number of files involved in each
commit, and the content of the log message.

We first investigated the distribution of commits accord-
ing to the number of files and confirmed that it follows a
Pareto distribution. This implies that the majority of com-
mits have very few files in it, while few commits contain a
large number of files. We also proposed size segmentation
into four groups of commits: tiny, small, medium and large.
For that, we used an exponential scale with value equals to
five. This division suited most projects, except the aMSN
project, from which more than 90% of the commits were
classified as tiny.

We also classified the commits according to develop-
ment and maintenance activities based on the content of
their comments. Instead of using a previous classification
of maintenance activities, we proposed a new classification
that is more suitable for open source projects, according to
a number of researches [5, 6, 7]. It takes into account that
an open source project is constantly adding new features to
the software and evolving, rather than only maintaining it.

Some important findings of this study are that the major-
ity of tiny commits are not related to development activities.
Corrective actions are the ones that generate more tiny com-
mits. Development activities are spread among all sizes of
commits. However, they appear with management as the
two most common activities for large commits. Together
with Hindle’s work [8] we demystify the assumption that
large commits are outliers, especially because they do not
represent dots far away from one project’s empirical distri-
bution function.

Since the great majority of commits are very small and
there is a significant number of large commits that actually
change the source code, the probability that lots of small
changes are committed in between the time a developer is
performing a large change is high. In the case of Subver-
sion and CVS, this implies that the developer who is per-
forming a major change, e.g., a structural change, will have
to synchronize his changes with other small changes before
committing then into the repository. Merging issues have
been a common complaint among developers that could be
avoided if versioning systems had a code-based mechanism
for automatically synchronizing fine-grained changes.

For future work, we intend to correlate the roles of
the developers with the size of the commits and the type
of comment. Moreover, since the projects analyzed had
initially used CVS as their versioning system and migrated
recently (from 2004 up) to Subversion, we would like to in-
vestigate projects that used Subversion since the beginning.
Subversion groups together files in a commit, while CVS
commits each file individually. Although Subversion tries

to reconstruct these commits when they are parsed from
CVS, there might be remarkable differences, like fewer
tiny commits in a project that uses Subversion.

Acknowledgments. We gratefully acknowledge the fi-
nancial support of the Swiss National Science foundation
for the project “REBASE” (SNF Project No. 115990).

References

[1] Feature location using probabilistic ranking of methods
based on execution scenarios and information retrieval.
IEEE Trans. Softw. Eng., 33(6):420–432, 2007. Denys
Poshyvanyk and Yann-Gael Gueheneuc and Andrian Mar-
cus and Giuliano Antoniol and Vaclav Rajlich.

[2] K. Ayari, P. Meshkinfam, G. Antoniol, and M. D. Penta.
Threats on building models from cvs and bugzilla reposito-
ries: the mozilla case study. In CASCON ’07: Proceedings
of the 2007 conference of the center for advanced studies
on Collaborative research, pages 215–228, New York, NY,
USA, 2007. ACM.

[3] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law
distributions in empirical data, Jun 2007.

[4] H. Gall, M. Jazayeri, and J. Krajewski. Cvs release history
data for detecting logical couplings. In IWPSE ’03: Pro-
ceedings of the 6th International Workshop on Principles of
Software Evolution, page 13, Washington, DC, USA, 2003.
IEEE Computer Society.

[5] M. W. Godfrey and Q. Tu. Evolution in open source soft-
ware: A case study. In ICSM ’00: Proceedings of the Inter-
national Conference on Software Maintenance (ICSM’00),
page 131, Washington, DC, USA, 2000. IEEE Computer So-
ciety.

[6] I. Herraiz, J. M. Gonzalez-Barahona, and G. Robles. To-
wards a theoretical model for software growth. In IC-
SEW ’07: Proceedings of the 29th International Conference
on Software Engineering Workshops, page 21, Washington,
DC, USA, 2007. IEEE Computer Society.

[7] I. Herraiz, G. Robles, and J. M. Gonzalez-Barahon. Compar-
ison between SLOCs and number of files as size metrics for
software evolution analysis. In CSMR ’06: Proceedings of
the Conference on Software Maintenance and Reengineer-
ing, pages 206–213, Washington, DC, USA, 2006. IEEE
Computer Society.

[8] A. Hindle, D. M. German, and R. Holt. What do large com-
mits tell us?: a taxonomical study of large commits. In
MSR ’08: Proceedings of the 2008 international workshop
on Mining software repositories, pages 99–108, New York,
NY, USA, 2008. ACM.

[9] M. Kersten and G. C. Murphy. Using task context to im-
prove programmer productivity. In SIGSOFT ’06/FSE-14:
Proceedings of the 14th ACM SIGSOFT international sym-
posium on Foundations of software engineering, pages 1–11,
New York, NY, USA, 2006. ACM.

[10] B. Livshits and T. Zimmermann. Dynamine: finding com-
mon error patterns by mining software revision histories.
SIGSOFT Softw. Eng. Notes, 30(5):296–305, 2005.

[11] A. Mockus and L. G. Votta. Identifying reasons for software
changes using historic databases. In ICSM ’00: Proceedings
of the International Conference on Software Maintenance
(ICSM’00), page 120, Washington, DC, USA, 2000. IEEE
Computer Society.

[12] M. E. J. Newman. Power laws, pareto distributions and
zipf’s law. Contemporary Physics, 46:323, 2005.

[13] R. Purushothaman. Toward understanding the rhetoric of
small source code changes. IEEE Trans. Softw. Eng.,
31(6):511–526, 2005. Dewayne E. Perry.

[14] J. Ratzinger, T. Sigmund, and H. C. Gall. On the relation
of refactorings and software defect prediction. In MSR ’08:
Proceedings of the 2008 international workshop on Mining
software repositories, pages 35–38, New York, NY, USA,
2008. ACM.

[15] R. Robbes and M. Lanza. Versioning systems for evolution
research. In IWPSE ’05: Proceedings of the Eighth Interna-
tional Workshop on Principles of Software Evolution, pages
155–164, Washington, DC, USA, 2005. IEEE Computer So-
ciety.

[16] D. Schuler and T. Zimmermann. Mining usage expertise
from version archives. In MSR ’08: Proceedings of the
2008 international workshop on Mining software reposito-
ries, pages 121–124, New York, NY, USA, 2008. ACM.

[17] E. B. Swanson. The dimensions of maintenance. In ICSE
’76: Proceedings of the 2nd international conference on
Software engineering, pages 492–497, Los Alamitos, CA,
USA, 1976. IEEE Computer Society Press.

	Introduction
	Related Work
	Size Classification
	Comment Classification
	Experimental Study
	Case Study
	Experimental classification

	Conclusions and Future Work

