
How Developers Document Pull Requests
with External References
Fiorella Zampetti1, Luca Ponzanelli2, Gabriele Bavota2,

Andrea Mocci2, Massimiliano Di Penta1, Michele Lanza2
1University of Sannio, Italy — 2Università della Svizzera italiana (USI), Switzerland

Abstract—Online resources of formal and informal
documentation–such as reference manuals, forum discussions
and tutorials–have become an asset to software developers,
as they allow them to tackle problems and to learn about
new tools, libraries, and technologies. This study investigates
to what extent and for which purpose developers refer to
external online resources when they contribute changes to
a repository by raising a pull request. Our study involved
(i) a quantitative analysis of over 150k URLs occurring in
pull requests posted in GitHub; (ii) a manual coding of the
kinds of software evolution activities performed in commits
related to a statistically significant sample of 2,130 pull requests
referencing external documentation resources; (iii) a survey with
69 participants, who provided feedback on how they use online
resources and how they refer to them when filing a pull request.
Results of the study indicate that, on the one hand, developers
find external resources useful to learn something new or to
solve specific problems, and they perceive useful referring such
resources to better document changes. On the other hand, both
interviews and repository mining suggest that external resources
are still rarely referred in document changes.

I. INTRODUCTION

Developers often peruse online resources [40] to acquire the
knowledge needed for a development task. These resources
include official documentation (e.g., reference manuals, API
documentation) and unofficial documentation such as Q&A
websites (e.g., Stack Overflow), video tutorials, or platforms
for online code snippet sharing, such as Gist1. Researchers
have leveraged online resources and conceived recommender
systems to support developers by mining API documentation
[29] [30], Q&A websites such as Stack Overflow [15] [25],
video tutorials [26], or by synthesizing code examples [2] [4]
[17] [21]. In summary, on the one side there is awareness
and common wisdom about the practical usefulness of various
forms of online resources, and on the other side there is effort
devoted to better recommend them to developers supporting
their activities.

In such a context, achieving a deeper understanding on
the way developers use online resources would be highly
desirable, to understand why developers use them, and the
exact scenarios in which such resources could be helpful.
Specifically, a number of questions emerge: Which kind of
online resources do developers refer to? In which context
are such online resources being referred to? What is the
main motivation for doing that? There could be at least two
ways for answering such questions. One is asking developers

1See https://gist.github.com

directly. Another is seeking for “self-admitted” usage of online
resources. As sometimes developers “self-admit” technical
debt [27], at the same time they explicitly refer resources being
used in various ways when making changes, possibly for better
documenting and justifying what done, or to acknowledge a
solution found elsewhere.

We present an empirical study, quantitatively and quali-
tatively investigating to what extent, and for what reasons
developers refer to online resources in pull requests. More
specifically, the study investigates (i) the usage of different
online resources (e.g., Q&A forums) and its evolution over
time, (ii) the reference context, i.e., the kind of development
activities in which the resource is being referred to, and (iii)
the developers’ declared purpose of browsing online resources
and referring to them in pull-requests. We analyzed pull
request descriptions rather than commit messages because
in a git-based development process the former are aimed at
documenting a change (or a set of changes) towards the whole
project community or towards people aimed at reviewing and
possibly accepting the pull requests, whereas the latter are
mainly intended for internal usage [10].

We mined from GitHub Archive2 references to external
URLs from 3 millions of pull requests belonging to 0.5
millions of projects. We manually classified the mined URLs
into different kinds of resources using a statistically significant
sample of 2,130 pull requests, with the aim of determining the
development/maintenance activity in which the resource has
been mentioned. We conducted a survey with the developers
who authored the pull requests, asking them about the purpose
of using and referring to online resources. Results of the study
have mainly an observational purpose, i.e., understanding the
usage developers make of online resources. However, at the
same time, they could be used to prioritize suggestions made
by eclectic recommenders based on multiple resources. Last,
but not least, we contribute a replication package of the 2,130
manually classified pull requests [44].

II. STUDY DEFINITION AND PLANNING

Our goal is to investigate how developers refer to online
resources when creating pull requests on GitHub. The context
of the study consists of objects, pull request descriptions
opened in the period 2011-2014 from projects hosted on

2https://www.githubarchive.org



GitHub, and subjects, i.e., 69 developers of these projects who
participated to a survey.

A. Research Questions

The study aims at addressing the following research ques-
tions:

• RQ1: What kinds of online resources do developers refer
to in pull requests? We aim at categorizing the online
resources referenced by developers in pull requests. The
categorization performed in RQ1 highlights the kinds of
referenced resources (e.g., Q&A websites, videos, etc.).
This tells us whether developers tend to privilege official
or informal documentation, whether they refer to code
examples, tutorials, or other resources. Moreover, we also
study how different resources are referenced over time to
understand whether such usage increases or not.

• RQ2: In what context are different resources being re-
ferred? This research question investigates the specific
software evolution activities (e.g., bug fixing, implemen-
tation of new features, etc.) during which online resources
are referenced. Knowing that a specific online resource
is frequently referenced during a specific activity (e.g.,
bug fixing) allows to better contextualize the studied
phenomenon. Also, it provides precious insights about
possible ways to exploit this information (e.g., to build a
recommender system aimed at crowdsourcing suggestions
from Twitter or API usage examples from Gist).

• RQ3: What is the purpose of browsing online resources
and referring to them in committed changes? We survey
developers to investigate why they browse and reference
online resources. The information gathered from the
survey serves (i) to corroborate our (mostly quantitative)
findings from the previous research questions and (ii) to
understand the rationale behind the inclusion of online
references in pull requests.

B. Dataset Creation

Identifying Pull Requests Referring to Online Documen-
tation. To collect the pull request descriptions, we exploited
the GitHub Archive dataset, which contains events generated
in GitHub repositories (e.g., forks, pull requests etc.) and
makes them available in JSON format. The GitHub Archive
dataset can be accessed via Google Big Query, a Google
service allowing fast SQL querying on large amounts of data.
When we collected the study data, it was possible to query
the GitHub Archive dataset containing events recorded in the
years from 2011 to 2014 (both extremes included).

We identified all pull requests having a non-empty descrip-
tion. This resulted in the extraction of 3,323,389 pull requests
from 497,359 projects. From these, we filtered out all pull
requests whose description did not contain any of the following
sequences of characters: http://, https://, and www.,
since our goal was to consider only pull request descriptions
referencing a URL. We then excluded URLs related to SVN
repositories from which the GitHub repository is mirrored,
e.g., URLs matching svn-url, as well as numerical URLs

and URLs pointing to localhost. This resulted in a total of
153,853 pull requests referencing URLs. Such pull requests are
related to a total of 44,997 projects developed in 113 different
programming languages/technologies (as inferred by GitHub).

Two of the authors manually analyzed the collected URLs
to produce a first classification of the kind of resource being
referenced. The analysis has been independently performed by
the two authors by looking at the URL domains. Then, they
discussed cases where the provided classification differed.

The goal of this classification was to identify the kind of
resource being referred, e.g., mailing list, issue tracker. In most
cases, this could be done by looking at the domain URLs or,
in a few cases, by opening the URLs and, after, identifying
regular expressions to support the classification. Hence, a
fully-fledged open coding was not necessary in this case. As
a result of this analysis, the URLs have been grouped using a
two-level categorization, as it will be reported in Section III.

Manual Coding of Development/Maintenance Activities
in Pull Requests. With the aim of determining the kinds of
development/maintenance activities in which external online
resources were used, all authors manually analyzed a randomly
selected sample of pull of pull requests. In this analysis, we
did not focus on all possible URLs being referred in pull
requests. Instead, we exploited results of the classification
performed in RQ1, and limit the analysis only to URLs likely
related to external resources of documentation: formal and
informal API documentation, Q&A forums, videos, forums,
microblogging and code examples. Indeed, we excluded other
kinds of URLs used to provide generic support in pull request
discussions, e.g., links to mailing lists and issue trackers,
internal project links, links to continuous integration and code
review platforms, etc.

In total we sampled 2,130 pull request descriptions (from a
total of 1,609 projects). This set of pull requests represents
a 95% statistically significant stratified sample with a 5%
confidence interval of the overall 17,684 pull requests object
of our study. The different strata here are represented by
the groups of different URL roots present in our dataset
(e.g.,twitter.com is in a different URL group with respect
to stackoverflow.com). The size of each strata is in
Table I. In other words, our sample is representative (with
significance 95%) of each group of URLs, making sure that
the higher the cardinality of a group Gx in the complete dataset
(i.e., the 17,684 pull requests) the higher the number of pull
requests referencing URLs from Gx in the randomly selected
sample (i.e., the manually classified 2,130 pull requests).

To analyze and categorize the pull requests in the sample
according to the “types” of development/maintenance activity
they referred to, we could have adopted a totally open cod-
ing procedure. However, this could make less sense in this
context, because some pretty consolidated categorization of
maintenance activities already exist, and it would be therefore
worthless to start from scratch. Therefore, we started from the
set of activities listed in the IEEE 1219 standard for software
maintenance [1] and by Swanson [38], complemented with
those proposed by Hindle et al. [14].



We adopted a coding process organized as follows. The
2,130 pull requests were randomly distributed among the
authors making sure that each pull request was classified by
two authors. The process was supported by a Web application
developed to classify the pull requests and solve conflicts
between the authors. Each author independently classified the
pull requests assigned to him/her into one of the previously
mentioned categories, or by creating a new category better
reflecting the activity in the pull request. The new categories
created were immediately visible in the Web application.

After each author completed the classification of his/her set
of pull requests, we started to solve conflicts (i.e., different
classifications of the same pull request). In particular, in cases
for which there was no agreement between the two evaluators
(ca. 40% of the classified pull requests) the pull request was
automatically assigned to an additional evaluator who could
confirm one of the previous categories or add a new one. The
process was iterated until all pull requests were classified by
the absolute majority of the evaluators with the same category.
The output of our open coding procedure is (i) a set of
development/maintenance categories, and (ii) the assignment
of the 2,130 pull request descriptions to a specific category.
To further elaborate on RQ2, we report and discuss examples
of different kinds of pull requests as well as the context (kind
of maintenance activity) in which they are being used.

Surveying developers. To answer RQ3 we surveyed the
1,370 developers of the pull requests we manually analyzed.
Each developer received an email with instructions on how to
participate in our study and a link to our survey. Developers
had 14 days to reply. We collected 88 responses, of which
we kept 69 (19 were incomplete). This is a small number,
as our response rate of 5% is lower than the suggested
minimum response rate of 10% [12]. However, it is in line with
similar surveys reported in the literature (e.g., [13], [18], [23]),
especially considering the targeted participants (developers
from GitHub-hosted projects).

The survey is composed of five questions. The first two
aimed at gathering basic information about the background
of the developers taking part in our study. We collected data
about their primary occupation (Q1) and their experience
(number of years) in programming (Q2). Q3 investigated the
tasks for which developers browse different online resources
while Q4 gathered information about the frequency with which
developers reference the different types of online resources in
pull request descriptions and commit messages. Finally, Q5
asked developers why they reference online resources in pull
requests and commits.

III. STUDY RESULTS

In the following we report results addressing the three
research questions formulated in Section II-A.

A. RQ1: What kinds of online resources do developers refer
to in pull requests?

Table I reports the distribution of the different kinds of
resources mentioned in the 3,323,389 analyzed pull requests.

TABLE I
ONLINE RESOURCES MENTIONED IN PULL REQUESTS.

MACRO CATEGORY CATEGORY INSTANCES PERCENTAGE
Developers’ Issue trackers 50,350 32.73%
communication Microblogging 1,041 0.68%

Mailing lists 780 0.51%
Reference API/framework documentation 21,738 14.13%
documentation Online encyclopaedia 2,357 1.53%
Forums Blogs and forums 7085 4.61%

Developers’ networks 6,796 4.42%
Q&A Forums 6,216 4.04%

Build & Build and integration platforms 15,353 9.98%
automation Code review platforms 5,833 3.79%
Project Projects’ URLs 11463 7.45%
repositories Code repository 5,585 3.63%
Search engine queries 13,120 8.53%
Code snippets 4,617 3.00%
Multimedia Videos 847 0.55%

Slides 47 0.03%
File sharing 625 0.41%
TOTAL 153,853 100%

As shown, we found a total of 153,853 URLs references:
“developers referenced an external resource in 4.63% of the
analyzed pull requests”. In the following, we discuss the dif-
ferent kinds of URLs starting from those belonging to macro
categories exhibiting the highest number of occurrences.

Developers’ communication. Not surprisingly, the largest
percentage (32.73%) of resources being referenced is repre-
sented by issues posted on various kinds of issue trackers
(e.g., Jira, Bugzilla). Indeed, many changes made in software
projects aim at fixing some issues and, as it usually happens
in commit messages already [8], also pull request descriptions
contain references to issue trackers. Instead, the percentage
of references to mailing lists is very low (below 1%) and in
line with references to microblogging (e.g., tweets related to
development topics). The former (emails) are indeed being
used less than in the past, being replaced by issue trackers
(which provide a more structured way of discussing topics)
or by other media such as forums where wider topics are
being discussed. The latter (tweets) represent for developers a
powerful communication mechanism [32]–[34], though so far
figures say it is not so widely referred in development activity
yet.

Official/informal documentation. We found that many pull
requests (14.13%) reference official documentation, with the
aim of justifying an implementation choice made. Examples
of documentation being mentioned include Oracle technol-
ogy (e.g., Java or MySQL, docs.oracle.com), PHP (php.net),
Python (python.org), Ruby (www.ruby-doc.org, www.ruby-
lang.org), or Ruby on Rails (api.rubyonrails.org). Also, we
found a small, yet non-negligible percentage (1.53%) of ref-
erences to Wikipedia pages.

Forums. About 13% of the URLs being referenced are
related to posts on various kinds of forums, almost equally
distributed among general development forums (e.g., forum.
xbmc.com, forum.dlang.org, blogs.msdn.com), developer net-
works (e.g., msdn.microsoft.com, developer.mozilla.org), and
Q&A forums (basically stackoverflow.com and stackexchange.
com). Indeed, posts on such kinds of developers’ forums
represent more and more a precious source of information
for developers, so that they complement and, in some cases,



replace official documentation.
Build & QA automation. Continuous integration (CI)

platforms (e.g., travis-ci.com) and modern code review in-
frastructures (e.g., gerrit.com) are quite referenced in pull
requests, with a percentage of 9.98% and 3.79% respectively.
CI platforms represent a natural complement to pull requests,
as pull requests are often proceeded by the CI pipeline, where
the latter is available. Modern code review platforms somewhat
represent an alternative to the pull request review performed
directly within GitHub. It is possible that many projects still
use them either for historical reasons or because developers are
used to the specific tool’s features not provided by GitHub.

Project repositories. About 11% of URLs being referenced
are either related to project webpages, or to projects code
repositories, either when such projects are hosted on GitHub,
or when they are hosted elsewhere, e.g., on BitBucket, or
SourceForge.

Search engine queries. In some cases (8.53%) pull requests
refer to results of queries to search engines (e.g., www.google.
com). We have manually analyzed these URLs, finding that
in most cases developers referred to Google Search Console
that provides data, tools, and diagnostics needed to create and
maintain Google-friendly websites and mobile apps.

Code examples and, specifically, code snippets posted on
gist.com are starting to be popular among developers [42] as
they use the Gist as a way to share code to be reused. In 3%
of the cases they are shown in the context of pull requests.
While code example repositories share commonalities with
Q&A forums, we keep the two categories separated, as Q&A
forums generally provide information beyond the posted code.

Multimedia content in form of video tutorials (e.g.,
YouTube) or slides (slideshare.net) are becoming a precious
source of information for developers [20]. Video tutorials are
present in 0.55% of pull requests, whereas slides are being
referred in only 0.03% of them.

File sharing. Finally, 0.41% of the references concern the
use of file sharing mechanisms (e.g., Dropbox, Streamfile)
used by developers to share generic artifacts.

Other than analyzing what the most “popular” resources
are, it is also interesting to see how their usage evolved
over time. We analyzed the number and percentage of pull
requests referencing URLs for period of times of year quarters
(three months). We found that, while the absolute number
of pull requests referencing URLs increases from 48 of Q1
2011 to 25,936 of Q4 2014, such an increase is perfectly
inline with the increase of the overall number of pull requests
(increasing from 1,018 of Q1 2011 to 514,709 of Q4 2014).
As a consequence, the percentage of pull requests referencing
URLs remains stable to about 5% in each quarter.

B. RQ2: In what context are different resources being re-
ferred?

To address RQ2 we studied how online resources have
been used in the context of different kinds of maintenance
activities. The analysis considers the pull requests referring

external resources of documentation, including reference doc-
umentation, forums, video tutorials, code snippets (i.e., gist),
and microblogging (given their increasing popularity in soft-
ware engineering empirical studies [32]–[34]). We excluded
resources for which we found less than 100 pull requests
referencing them (e.g., slides).

Fig. 1 reports, for each category of develop-
ment/maintenance activities obtained after the open coding
process, the percentage of the 2,130 manually analyzed pull
requests that fall in it. As the figure shows, the manual coding
activity resulted in a set of 14 categories.

0 5 10 15 20 25 30
% of Classified Pull Requests

Adaptive Maintenance

Code Formatting

Corrective Maintenance/Fix

Feature Addition

Feature Improvement

Language Compatibility

Library Compatibility

Module Management

New Release

No-source Code Change

SCS Management

Testing

Usage Example

DISCARDED

19.67

18.26

30.14

0.75

0.28

1.27

8.97

1.03

0.56

3.10

0.52

1.92

9.02

4.51

Sheet 1

Sum of Perc for each Type.

Fig. 1. Percentage of classified Pull Requests for each category identified

With respect to the categories defined by the Std. IEEE
1219 [1] and by Swanson [38] (Adaptive, Corrective, and
Perfective) and the categories identified by Hindle et al.
[14] (adding, with respect to Swanson, specific categories
for Feature Addition and Non Functional Changes), we also
considered the following categories:

— CODE FORMATTING: Changes related to aesthetic of the
source code to make it complying with a specific coding style;

— LANGUAGE COMPATIBILITY: Any change whose pur-
pose is to solve compatibility problems related to the pro-
gramming language used (e.g., compatibility changes needed
when a new version of the programming language is issued);

— LIBRARY COMPATIBILITY: All changes performed to
solve compatibility problems due to library/API evolution or
usage of unsuitable library releases;

— NEW RELEASE: Any change performed to delivery a
new system’s version, like pull requests in which the new
release of a system is announced;

— NON-SOURCE CODE CHANGE: All changes that do not
affect source code, but that are related to other entities (e.g.,
changes to documentation or licenses);

— SCS MANAGEMENT (also defined by Hindle et al. as
detailed category of Non-Functional changes): Changes related
to the source control system usage, but also to build scripts
(e.g., it includes fixing issues related to build failures);

— TESTING: Changes related to testing activities (e.g.,
add/delete/modify a test suite);

— USAGE EXAMPLE: Changes introducing code examples
in the repository (e.g., a class showing how to use an API).

The DISCARDED category refers to pull requests discarded
during the manual analysis. We categorized as such (i) pull
requests not written in English, (ii) irrelevant use of resources



TABLE II
RESULTS OF THE MANUAL CODING OF PULL REQUESTS INTO CHANGE CATEGORIES.

Type of Change Q&A Code Snippets Microblogging Videos Reference Forums
Documentation

Adaptive Maintenance 4 (36.36%) 2 (18.18%) 2 (18.18%) 0 (0%) 1 (9.09%) 2 (18.18%)
Code Formatting 5 (18.52%) 1 (3.70%) 0 (0%) 1 (3.70%) 20 (74.07%) 0 (0%)
Corrective Maintenance/Fix 156 (24.30%) 106 (16.51%) 50 (7.79%) 57 (8.88%) 115 (17.91%) 158 (24.61%)
Feature Addition 43 (11.05%) 94 (24.16%) 54 (13.88%) 79 (20.31%) 64 (16.45%) 55 (14.14%)
Feature Improvement 69 (16.47%) 82 (19.57%) 47 (11.22%) 50 (11.93%) 104 (24.82%) 67 (15.99%)
Language compatibility 6 (14.63%) 4 (9.76%) 3 (7.32%) 0 (0%) 26 (63.41%) 2 (4.88%)
Library compatibility 18 (18.75%) 10 (10.42%) 20 (20.83%) 1 (1.04%) 17 (17.71%) 30 (31.25%)
Module Management 3 (18.75%) 1 (6.25%) 0 (0%) 3 (18.75%) 7 (43.75%) 2 (12.50%)
New Release 1 (16.67%) 1 (16.67%) 1 (16.67%) 2 (33.33%) 0 (0%) 1 (16.67%)
Non-source Code Change 24 (12.57%) 12 (6.28%) 57 (29.84%) 17 (8.90%) 48 (25.13%) 33 (17.28%)
SCS Management 14 (21.21%) 14 (21.21%) 9 (13.64%) 1 (1.52%) 6 (9.09%) 22 (33.33%)
Testing 4 (18.18%) 9 (40.91%) 6 (27.27%) 2 (9.09%) 1 (4.55%) 0 (0%)
Usage Example 2 (16.67%) 2 (16.67%) 4 (33.33%) 4 (33.33%) 0 (0%) 0 (0%)
DISCARDED 15 (7.81%) 21 (10.94%) 48 (25.00%) 65 (33.85%) 22 (11.46%) 21 (10.94%)
Total 364 359 301 282 431 393

(e.g., YouTube videos or tweets not related to the development
activity), (iii) tangled changes, i.e., pull requests related to a
mix of commits belonging to different categories.

Not surprisingly, the CORRECTIVE MAINTENANCE/FIX ac-
tivity predominates with the largest percentage (30.14%). Fur-
thermore, both FEATURE IMPROVEMENT and FEATURE AD-
DITION categories have a relatively high percentage (19.67%
and 18.26%, respectively). Instead, activities like MODULE
MANAGEMENT (0.75%), USAGE EXAMPLE (0.56%), ADAP-
TIVE MAINTENANCE (0.52%) and NEW RELEASE (0.28%)
are poorly represented in the analyzed sample of pull requests.

Table II shows the distribution of all resources across
the 14 defined categories. The table highlights for each de-
velopment/maintenance activity, the most referenced online
resource (i.e., the highest value in each row is highlighted in
bold face). Furthermore, analyzing data reported in Table II
it is possible to identify, for each resource, the develop-
ment/maintenance activity in which it is most referenced.
More in detail, Forums, in conjunction with Q&A Forums,
are the most referenced source while performing CORRECTIVE
MAINTENANCE/FIX—158 references (156 for Q&A Forums).
This result is not surprising, since it is reasonable to think that
developers tend to look for solutions/ask for help in Forums
during corrective maintenance.

Code Snippets are the most referenced during CORRECTIVE
MAINTENANCE/FIX and are also predominant while adding or
improving features. This is expected, since Code Snippets are
source code fragments one could use to implement or improve
a feature, as well as to fix issues in the code.

Furthermore, with a percentage of 40.91% code snippets are
the resource most referenced during TESTING ACTIVITY.

URLs that refer to microblogging (e.g., Twitter) have a sub-
stantial impact on all those changes that are not directly related
to source code (29.84%) such as documentation’s updates or
changes. Furthermore, as URLs related to Video tutorials, they

are the most referenced to show USAGE EXAMPLE.
Videos are mostly used when there is a FEATURE ADDI-

TION in the system (20.31%) or a FEATURE IMPROVEMENT
activity (11.93%). In this case developers reference videos to
show how the new functionality added works or to explain how
an improved functionality has been implemented by following
the steps described in a tutorial.

Concerning URLs referred to online reference documenta-
tion, they are greatly used in all changes related to non func-
tional requirements such as CODE FORMATTING (74.07%),
MODULE MANAGEMENT (63.41%), LIBRARY COMPATIBIL-
ITY issues (43.75%) and FEATURE IMPROVEMENT (24.82%).

Finally, URLs that refer to Forums have a substantial impact
on changes related to LANGUAGE COMPATIBILITY issues and
also to SCS MANAGEMENT activities.

To understand why developers use different online re-
sources, other than relying on the answers provided to the
online survey, it is of paramount interest to qualitatively
discuss some exemplar cases of resource usages for different
purposes. This is done on an exemplar set of 14 pull requests
whose URLs are reported in Table III. For each resource
type we also highlight what is main takeaway, i.e., in which
situations developers tend to reference such a resource. Note
that the takeaway is not distilled by only looking at the
discussed qualitative examples, but as the outcome of what
we learned from our manual analysis.

Q&A Forums. PR #1 regards the need to guarantee the
portability of the “script/test” file on different operating sys-
tems. The referenced Stack Overflow question explains how
to solve the issue related to the use of double brackets in
scripts’ invocations. PR #2, related to the backbone project,
represents a reference to Q&A Forums made in the context
of FEATURE IMPROVEMENT. The discussion provides useful
information on how to improve the execution time of a
project’s feature. PR #3, related to the gitlabhq project, falls



TABLE III
LIST OF PULL REQUESTS ANALYZED (OMITTING HTTPS://GITHUB.COM/)

# Resource Pull request URL Pull Request Title
1 Q&A Forums octokit/octokit.rb/pull/302 Make script/test portable
2 Q&A Forums documentcloud/backbone/issues/1511 Use Array.slice() method for slicing arguments inside the

Events.trigger()
3 Q&A Forums gitlabhq/gitlabhq/issues/3894 Configure git global settings in installation docs
4 Forums amazonwebservices/aws-sdk-for-

php/pull/49
Fix Proxy support header parsing problem

5 Code Snippets sunscrapers/djet/pull/6 A few ORM instance-related test assertions
6 Code Snippets joyent/node/issues/8342 refactor normalizeArray, improve performance
7 Code Snippets Theano/Theano/issues/1700 Added the cumsum and cumprod functions similar to numpy’s ones
8 Microblogging fluent/fluent-plugin-sql/pull/11 Document out sql
9 Microblogging jsbin/jsbin/issues/1877 update ember to latest release
10 Videos nikolaykhodov/clipperz-password-

manager/issues/3
Exercise # 2

11 Videos cryptocat/cryptocat/pull/379 Fix aliased text when animating login #bubble
12 Videos cocos2d/cocos2d-html5/pull/929 GC Optimizations/ Reduction of Memory Footprint
13 Documentation hlamer/enki/issues/104 Finish with semicolon according to spec
14 Documentation Hexxeh/spotify-websocket-api/issues/3 Restructuring to distribute as python package and .deb

in the SCS MANAGEMENT category. In particular, it concerns
a build failure generated by an incorrect setting of git’s global
“user.name” and “user.email”. The external reference shows
how to solve the issue, explaining the Gitlab setup. Q&A
Forums are mostly referenced to (i) justify why a specific
solution has been adopted while applying a change, (ii)
document the advantages provided by a newly implemented
piece of code, and (iii) explain why a change is needed.

Forums. PR #4 falls in the CORRECTIVE MAINTE-
NANCE/FIX category. It regards a problem parsing the proxy
header that is manifested by means of a parse error. The
referenced discussion is used to explain and document the
issue. Forums are mostly referenced to identify a discussion
in which users ask for help to solve a bug (i.e., fix a bug that
broke the overall functionality).

Code Snippets. PR #5 related to the djet project falls
in the TESTING category. The main goal is the addition of
new tests to the project. The latter is simply obtained by
rewriting the test case in the referenced Gist. PR #6, related
to the node project, contains a Gist code snippet referenced in
the context of a FEATURE IMPROVEMENT activity. The pull
request author, taking into account the suggestions reported in
Gist, rewrites the “normalizeArray()” function with the goal of
improving the system’s performance. PR #7 is an example of
Gist code snippet used for a FEATURE ADDITION. This pull
request reports the addition of two new features, “cumsum”
and “cumprod”, whose implementation takes into account the
examples reported in the referenced Gist. Code Snippets are
mostly referenced to acknowledge the source from where a
given implementation has been taken/adapted.

Microblogging. An example of NON-SOURCE CODE
CHANGE is reported in PR #8 of project fluent-plugin-sql.

The author is referencing a tweet reporting undocumented
features. The documentation is updated to include the descrip-
tion of the missing features. Concerning LIBRARY COMPAT-
IBILITY, PR #9 of project jsbin performs an upgrade of the

ember library after following a suggestion from the referenced
tweet. A noticeable use of microblogging is to advertise new
library releases and pinpoint possible (compatibility) issues
they can create.

Videos. PR #10 of the clipperz-password-manager project
references a YouTube video showing what the newly im-
plemented notification feature looks like at runtime (USAGE
EXAMPLE category). PR #11 related to the cryptocat project is
an example of videos referenced in the context of a CORREC-
TIVE MAINTENANCE/FIX activity. The video reported in it
shows how the bug (i.e., font-smoothing caused by animations)
manifests at runtime. Videos are often referenced to explain
how code changes have been performed. An example is PR
#12 of the project cocos2d-html5. It includes a number of opti-
mizations for the memory/gc profile of the PARTICLE system
(FEATURE IMPROVEMENT activity) implemented by follow-
ing the steps described in the referenced tutorials. Videos are
mostly referenced to (i) show how an implemented/improved
feature looks like at runtime, (ii) show how a bug manifests
during the execution of the system, and (iii) document the steps
performed to implement a change.

Reference Documentation. Online reference documenta-
tion, including standards, is highly used in those changes that
only reformat the code to guarantee that it complies with a spe-
cific coding style/guidelines. An example is PR #13 of project
enki that reformats the code taking into account the standards’
specification being referenced. More in detail, the guideline
enforces that each source code line shall be terminated by
a semicolon. Furthermore, Reference Documentation is used
in changes related to MODULE MANAGEMENT as shown in
PR #14 of project spotify-web-socket API. It restructures the
packages in the repository and converts the API in a Python
package, as suggested by the Python documentation. Reference
documentation is generally linked to justify, by providing a
reference to an official document, why a specific change is
needed.



C. RQ3: What is the purpose of browsing online resources
and referring to them in committed changes?

The vast majority (81.16%) of the people involved in the
survey are professional developers, more than an half (50.72%)
also declared to be an open source developer, 8.70% declared
to be a PhD Student, 5.80% are students (Graduate and Under-
graduate), and only 1.45% declared to be a faculty member.
These percentages overlap. For example, all the open source
developers except three declared themselves as professional
developers too, and all graduate and undergraduate students
result to be either professional or open source developers. By
removing these overlaps, more than 88% of participants can be
considered as professional or open source developers. There
were no novices (<1 year) involved in the survey.

The majority of the population (82.50%) is composed of
experienced developers, where 50.72% declared 5-10 years,
and 31.88% 3-5 years of programming experience.

Fig. 2 summarizes the answers provided by participants
when being asked about how they use external resources.
Respondents were allowed to check multiple answers for each
resource or to skip the question (i.e., no answer).

When asking about the usage of the different resources
during different activities (Q3), the reference documentation
turned out to be the swiss army knife of developers since it is
used across all the type of tasks proposed in the survey, with
an agreement of 94.20% concerning learning new concepts. In
this question we are interested in the general usages of these
resources, and not in how they are referenced during changes.

Q&A websites exhibit a similar popularity across all the
task typologies, with major focus on solving programming
task (95.65%) and fixing bugs (88.41%). They also resulted
to be the most favored means to support discussion with
teammates. Blogs and code repositories turned out to be
popular choices to learn new concepts, while they are less
important for solving programming tasks, fixing bugs, or to
justify a change. Note that projects’ code repositories have
not been considered in our mining study (RQ1 and RQ2) as
we focused on resources generally providing specific solutions
rather than generic project Software Configuration Manage-
ment repositories. 52.17%, 73.91% and 36.23% of developers,
respectively, use videos, code example websites, and social
media when learning something new related to programming.

When asked about how many times they referenced one the
aforementioned external resources (Q4), the trends in the usage
are somehow reflected as shown in Fig. 2. Most developers
declared to never reference videos (71.01%) and social media
(65.22%) in pull requests and commits, while code example
websites (30.43%), and blogs (27.54%) are rarely referenced.
There is a wide group of resources that fall in the “sometimes”
range: Q&A websites, documentation, and blogs are the most
representative with 34.78%, 27.64%, and 24.54%, respectively.

Our quantitative analysis reported in Table II also showed
the reference documentation as the most referenced resource
(431 references), followed by Q&A Forums (364). The less
referenced resources were instead microblogging (301) and
Videos (280). However, differently from what can be derived

by Q4’s answers, the collected quantitative data did not show a
very strong difference in the diffusion of the different resources
when it comes to referencing them during pull requests.

Finally, the last question of the survey (Q5) asked de-
velopers to indicate the purpose of referencing an external
resource in a pull request or commit. Also for this question,
participants were allowed to express multiple purposes for
each listed resource. According to the replies, reference docu-
mentation (73.91%) is meant to improve documentation of the
pull request. Q&A websites improve documentation as well
(56.52%), but they are more meant to support the motivation
with pro and cons of a change (69.57%), together with code
example websites (46.38%).

For referring issues, Q&A websites (46.38%), and code
repositories (43.48%) resulted the most preferred. Videos
are meant to demonstrate newly implemented or improved
features. On a side note, when participants checked the “other”
option, in most of the cases they reported authorship as the
purpose of referencing code examples or blogs. The results of
Q5 are in line with what observed in Section III-B.

IV. THREATS TO VALIDITY

Threats to construct validity concern the relationship be-
tween theory and observation. In our study they are related
to the measurements being performed. RQ1’s results can be
affected by imprecision, since in Table I we only restrict to
such resources that, after a manual analysis and based on
previous research in the area of software archive mining, we
deemed to be potential resources being used by developers.
Some references could be false positives (e.g., references
to irrelevant tweets). We partially mitigated this threat by
excluding some clear cases of false positives such as self-
references to the same project, to GitHub, or, for example
references to YouTube in multimedia projects or to Twitter
in Twitter clients. RQ2 addresses the threat by leveraging a
pull request classification performed by multiple people, and
a voting mechanism to resolve conflicts. This allowed to get a
reliable classification of pull requests into change categories,
but also to detect the presence of a 9.02% of pull requests to
be discarded. The analysis performed in RQ2 is related to a
(statistically significant) sample of 2,130 pull requests.

Threats to internal validity concern factors that could
have influenced our results. One aspect could be related to
the selection of projects being considered. As explained by
Kalliamvakou et al. [16] mining GitHub can be risky because
projects may no longer be active or contain very few commits.
However, this has limited or no effect on our study, because we
are only interested to understand the content of a pull request,
and not the consequent project activity. In RQ2, we have
chosen to perform the stratified sampling over the different
kinds of resources, to ensure them enough representativeness.
We could have considered strata over projects’ characteristics,
but this had for us less priority than the kinds of resources.

Threats to external validity concern the generalizability of
our findings. Our study tries to achieve a high generalizability
in terms of mined projects. However, RQ2 analysis is limited



Code Repositories Forums Microblogging Online Code Examples Q&A Websites Reference
Documentation Video

0% 50% 100% 0% 50% 100% 0% 50% 100% 0% 50% 100% 0% 50% 100% 0% 50% 100% 0% 50% 100%

Better documenting the
commit/pull request

Providing evidence about
pros/cons of given solutions

Referring issues

Showing the new/improved
feature working (e.g., through ..

Other

Q5 - What is the main purpose of referencing external resources of information in your pull requests/commits?

Code Repositories Forums Microblogging Online Code Examples Q&A Websites Reference
Documentation Video

0% 50% 100% 0% 50% 100% 0% 50% 100% 0% 50% 100% 0% 50% 100% 0% 50% 100% 0% 50% 100%

Very Often

Often

Sometimes

Rarely

Never

NA

Q4 - Have you ever referenced (i.e., via a link) one of the following resources (e.g., a Stack Overflow discussion) in a pull re-
quests/commits that you performed?

Code Repositories Forums Microblogging Online Code Examples Q&A Websites Reference
Documentation Video

0% 50% 100% 0% 50% 100% 0% 50% 100% 0% 50% 100% 0% 50% 100% 0% 50% 100% 0% 50% 100%

Learning something new
related to programming

Solving a particular
programming task

Fixing bugs

Justify changes applied in the
code

Support the discussion with
other teammates

Q3 - Have you used any of the following resources of information to assist you in any of these activities?

Fig. 2. Answers Summary for Q3, Q4 and Q5.

to a specific set of resources. We intendedly excluded general
resources being used in a development context (e.g., issue
trackers, mailing lists), and those possibly referring to varied
kinds of information depending on the case (file sharing,
search engine queries). Because of this decision, and because
we have set a threshold of 100 pull requests, we have surely
omitted some relevant resource to be better investigated in
future. Last, our study is related to pull requests from open
source projects (RQ1 and RQ2) and a questionnaire answered
by developers working for open source projects (RQ3), the
majority of which classify themselves as “professional devel-
opers” which makes them representative enough.

V. RELATED WORK

This section discusses related work concerning (i) rec-
ommenders based on the analysis of formal and informal
documentation, (ii) analysis of developers’ communication,
and (iii) pull requests.

A. Recommenders of formal and informal documentation

Several approaches mine online documentation to identify
documents, discussions, and code samples relevant for a given
task. Chatterjee et al. [5] and Keivanloo et al. [17] used
textual similarity to return a ranked list of abstract examples
relevant to a natural language query formulated by the user and
expressing her task at hand. Bajracharya et al. [3] combined
heuristics based on structural and textual aspects of the code
to generate API usage examples. Chatri and Robillard [30]
focused on identifying relevant portions of documentation with
the aim of supporting developers when seeking information,
while Rigby and Robillard [29] recovered traceability links
between API descriptions and source code being mentioned.

Other work focused on suggesting relevant documents,
discussions and code examples from the web to fill the gap
between the IDE and the Web browser.

Examples are DORA [19], CODETRAIL [9], FISHTAIL [31],
and MICA [36]. Subramanian et al. [37] presented an approach



to link webpages of different nature (e.g., Javadoc, Stack
Overflow) by harnessing code identifiers. They recommend
augmented web pages by injecting code that modifies the
original page. Among the various resources available, Q&A
websites — and in particular Stack Overflow — have been
the basis of many recommender systems [6], [25], [39].

Researchers have also started to mine video tutorials with
the goal of generating useful recommendations for software
developers. MacLeod et al. [20] pioneered the study of such
resources by investigating how and why developers create
video tutorials and host them on YouTube.

Recent work has investigated online code resources related
to code snippets. Wang et al. [42] investigated how developers
use Gists to share code snippets. They found that, even
if a small portion of GitHub users use Gist snippets, they
exploit it for a variety of reasons such as temporarily saving
code fragments, or creating and making available reusable
components. Our study provides evidence of the extent to
which Gist is being used across the whole GitHub, and in
which context it is being used.

B. Analysis of developers’ communication

We are interested in approaches studying communication
means used by developers to share knowledge [20] [35], [45].
Squire [35] measured the utility of social media for developers
support by focusing the attention on Stack Overflow. He
showed that the majority of software projects are no longer
using internal discussion forums and mailing lists, and are
directing developers to use dedicated tags on Stack Overflow.

Zhou et al. [45] presented a tool to automatically identify
and categorize API discussions in forums, while Parnin et
al. [24] showed that developers use blog posts to share knowl-
edge and announce progress of the projects they contribute to.

Recently, researchers have investigated the use of “mi-
croblogging” by developers [32]–[34]. Singer et al. [34] stud-
ied how and why developers use Twitter. Their results show
that developers mainly use Twitter to share knowledge, to stay
aware of technology trends, and to network with teammates
and other developers. Also, in line with what observed in
our study, they found several tweets announcing the issue
of new releases of the software projects they contribute to.
Sharma et al. [33] studied software engineering related events
in Twitter. This work confirms the usage of Twitter as a media
to announce product updates. Sharma et al. [32] also proposed
NIRMAL, a tool to automatically identify software relevant
tweets from a collection or stream of tweets.

The goal of our study is different, since it aims to investigate
how developers use external resources (including social media
like Twitter, Stack Overflow, etc.) in pull requests.

C. Studies on pull requests

Pull-based development has been studied by Gousios et al.
[10], [11] and [41]. Gousios et al. [10] investigated pull request
usage in the context of distributed software development show-
ing that, while the number of pull requests is increasing over
time, the proportion of repositories using them is relatively

stable. Furthermore, Gousios et al. identified common factors
that affect pull request lifetime and merging.

In a follow-up qualitative study, Gousios et al. [11] inves-
tigated the integrator’s perspective in pull-based development,
analyzing the factors that integrators consider in their decision
making process to accept or reject a contribution. They found
that the importance of the targeted area, the existence of test
cases, and the code quality are important factors influencing
the pull request acceptance. They also found that a major
challenge is how to prioritize contributions to be merged. To
solve the latter issue, Gousios et al. [41] proposed a prototype
pull request prioritization tool called PRIORITIZER.

Researchers have also focused on pull request latency, an
understudied and complex facet of pull request evaluation. Yu
et al. [43] found that latency is a complex issue related to
many independent variables such as the number of comments
and the size of a pull request (e.g., lines added or commits).

Our study differs from the previous ones since we focus on
how, why and when developers reference external resources
in their pull requests.

VI. CONCLUSION

Online resources are nowadays the de facto premier re-
sources used by developers to learn new technologies and to
find solutions for specific problems. This paper investigates
how, when, and why developers refer such online resources,
other than just using them, in the context of pull request
descriptions.

One clear finding of the study is that, while developers
perceive such resources useful and in some cases told us they
often refer them, we found that among the mined GitHub pull
requests only 5% contain references to online resources.

How could researchers and practitioners benefit from our
study? Referred resources—and this is true for resources
providing very specific insights (Q&A websites, or code ex-
amples), but to some extent also more general resources such
as reference documentation and video tutorials—represent
“proven” and possibly successful usages of solutions avail-
able/discussed online. This could favor the creation of better
code/discussion recommenders that not only recommend an
online solution relevant to a query [6], [25], [39], but actually
recommend solutions that proved to be useful in contexts
similar to the one a developer is working on.

Also, since developers claimed to use online resources for
documentation purposes, every time one refers them in a
change the resource could be exploited to generate commit
notes and change documentation in general, as opposed to
existing approaches that, instead, rely on the analysis of the
change itself [7], [22], [28].

Basically, we believe that the findings of our study
and the availability of such links between changes/pull re-
quests and online resources favor the development of better
documentation/code example recommenders and change re-
documentation approaches.



ACKNOWLEDGEMENTS

The authors would like to thank all developers who took
part to the survey study. Ponzanelli and Lanza thank the Swiss
National Science foundation for the financial support through
SNF Project “ESSENTIALS”, No. 153129.

REFERENCES

[1] IEEE Standard for Software Maintenance. IEEE Std 1219-1998, pages
i–, 1998.

[2] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API patterns as partial
orders from source code: from usage scenarios to specifications. In
Proceedings of ESEC/FSE 2007 (6th joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering), pages 25–34.
ACM, 2007.

[3] S. K. Bajracharya, J. Ossher, and C. V. Lopes. Leveraging usage
similarity for effective retrieval of examples in code repositories. In
Proceedings of the 18th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 2010, Santa Fe, NM, USA, Novem-
ber 7-11, 2010, pages 157–166. ACM, 2010.

[4] R. P. L. Buse and W. Weimer. Synthesizing API usage examples. In
Proceedings of ICSE 2012 (34th International Conference on Software
Engineering), pages 782–792. IEEE, 2012.

[5] S. Chatterjee, S. Juvekar, and K. Sen. SNIFF: A search engine for
java using free-form queries. In Fundamental Approaches to Software
Engineering, 12th International Conference, FASE 2009, Held as Part
of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, Lecture Notes
in Computer Science, pages 385–400. Springer, 2009.

[6] J. Cordeiro, B. Antunes, and P. Gomes. Context-based recommendation
to support problem solving in software development. In Proceedings of
RSSE 2012, pages 85–89. IEEE Press, 2012.

[7] L. F. Cortes-Coy, M. L. Vásquez, J. Aponte, and D. Poshyvanyk. On
automatically generating commit messages via summarization of source
code changes. In 14th IEEE International Working Conference on Source
Code Analysis and Manipulation, SCAM 2014, Victoria, BC, Canada,
September 28-29, 2014, pages 275–284, 2014.

[8] M. Fischer, M. Pinzger, and H. C. Gall. Populating a release history
database from version control and bug tracking systems. In 19th
International Conference on Software Maintenance (ICSM 2003), The
Architecture of Existing Systems, 22-26 September 2003, Amsterdam,
The Netherlands, page 23, 2003.

[9] M. Goldman and R. Miller. Codetrail: Connecting source code and web
resources. Journal of Visual Languages & Computing, pages 223–235,
2009.

[10] G. Gousios, M. Pinzger, and A. van Deursen. An exploratory study
of the pull-based software development model. In 36th International
Conference on Software Engineering, ICSE ’14, Hyderabad, India - May
31 - June 07, 2014, pages 345–355, 2014.

[11] G. Gousios, A. Zaidman, M. D. Storey, and A. van Deursen. Work
practices and challenges in pull-based development: The integrator’s
perspective. In 37th IEEE/ACM International Conference on Software
Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1,
pages 358–368, 2015.

[12] R. M. Groves. Survey Methodology, 2nd edition. Wiley, 2009.
[13] A. Hindle, C. Bird, T. Zimmermann, and N. Nagappan. Do topics make

sense to managers and developers? Empirical Software Engineering,
pages 1–37, 2014.

[14] A. Hindle, D. German, M. Godfrey, and R. Holt. Automatic classification
of large changes into maintenance categories. In In Proceedings of ICPC
2009 (17th IEEE International Conference on Program Comprehension),
pages 30–39. IEEE Press, 2009.

[15] R. Holmes and G. C. Murphy. Using structural context to recommend
source code examples. In Proceedings of ICSE 2005 (27th International
Conference on Software Engineering, pages 117–125. ACM, 2005.

[16] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. Germán, and
D. Damian. The promises and perils of mining github. In 11th Working
Conference on Mining Software Repositories, MSR 2014, Proceedings,
May 31 - June 1, 2014, Hyderabad, India, pages 92–101, 2014.

[17] I. Keivanloo, J. Rilling, and Y. Zou. Spotting working code examples. In
Proceedings of ICSE 2014 (36th International Conference on Software
Engineering), pages 664–675. ACM, 2014.

[18] A. J. Ko, R. DeLine, and G. Venolia. Information needs in collocated
software development teams. In Proceedings of the 29th International
Conference on Software Engineering, pages 344–353, Minneapolis, MN,
USA, 2007. IEEE Computer Society.

[19] O. Kononenko, D. Dietrich, R. Sharma, and R. Holmes. Automatically
locating relevant programming help online. In Proceedings of VL/HCC
2012, pages 127–134, 2012.

[20] L. MacLeod, M.-A. Storey, and A. Bergen. Code, camera, action:
How software developers document and share program knowledge using
YouTube. In Proceedings of ICPC 2015 (23rd IEEE International
Conference on Program Comprehension), 2015.

[21] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, and A. Marcus. How
can I use this method? In Proceedings of ICSE 2015 (37th IEEE/ACM
International Conference on Software Engineering), pages 880–890,
2015.

[22] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, and
G. Canfora. Automatic generation of release notes. In Proceedings
of the 22Nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2014, pages 484–495. ACM, 2014.

[23] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D. Poshyvanyk, and
A. De Lucia. Mining version histories for detecting code smells. IEEE
Trans. Software Eng., 41(5):462–489, 2015.

[24] C. Parnin, C. Treude, and M.-A. Storey. Blogging developer knowledge:
Motivations, challenges, and future directions. In Program Comprehen-
sion (ICPC), 2013 IEEE 21st International Conference on, pages 211–
214, May 2013.

[25] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza.
Mining StackOverflow to turn the IDE into a self-confident programming
Prompter. In Proceedings of MSR 2014 (11th Working Conference on
Mining Software Repositories), pages 102–111. ACM Press, 2014.

[26] L. Ponzanelli, G. Bavota, A. Mocci, M. Di Penta, R. Oliveto, M. Hasan,
B. Russo, S. Haiduc, and M. Lanza. Too long; didn’t watch! extracting
relevant fragments from software development video tutorials. In
Proceedings of ICSE 2016 (38th ACM/IEEE International Conference
on Software Engineering), 2016.

[27] A. Potdar and E. Shihab. An exploratory study on self-admitted technical
debt. In 30th IEEE International Conference on Software Maintenance
and Evolution, Victoria, BC, Canada, September 29 - October 3, 2014,
pages 91–100, 2014.

[28] S. Rastkar and G. C. Murphy. Why did this code change? In
35th International Conference on Software Engineering, ICSE ’13, San
Francisco, CA, USA, May 18-26, 2013, pages 1193–1196, 2013.

[29] P. C. Rigby and M. P. Robillard. Discovering essential code elements
in informal documentation. In Proceedings of ICSE 2013 (35th Inter-
national Conference on Software Engineering), pages 832–841. IEEE
Press, 2013.

[30] M. P. Robillard and Y. B. Chhetri. Recommending reference API
documentation. Empirical Software Engineering, pages 1–29, 2014.

[31] N. Sawadsky and G. Murphy. Fishtail: from task context to source code
examples. In Proceedings of TOPI 2011, pages 48–51. ACM, 2011.

[32] A. Sharma, Y. Tian, and D. Lo. NIRMAL: automatic identification
of software relevant tweets leveraging language model. In 22nd
IEEE International Conference on Software Analysis, Evolution, and
Reengineering, SANER 2015, Montreal, QC, Canada, March 2-6, 2015,
pages 449–458, 2015.

[33] A. Sharma, Y. Tian, and D. Lo. What’s hot in software engineering
Twitter space? In 2015 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2015, Bremen, Germany, September
29 - October 1, 2015, pages 541–545, 2015.

[34] L. Singer, F. M. F. Filho, and M. D. Storey. Software engineering
at the speed of light: how developers stay current using Twitter. In
36th International Conference on Software Engineering, ICSE ’14,
Hyderabad, India - May 31 - June 07, 2014, pages 211–221, 2014.

[35] M. Squire. ”should we move to stack overflow?” measuring the utility
of social media for developer support. In 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015, Florence, Italy, May
16-24, 2015, Volume 2, pages 219–228, 2015.

[36] J. Stylos and B. A. Myers. Mica: A web-search tool for finding api
components and examples. In Proceedings of VL/HCC 2006, pages
195–202, 2006.

[37] S. Subramanian, L. Inozemtseva, and R. Holmes. Live api documenta-
tion. In Proceedings of ICSE 2014 (36th International Conference on
Software Engineering), ICSE 2014, pages 643–652. ACM, 2014.



[38] E. B. Swanson. The dimensions of maintenance. In Proceedings of the
2nd International Conference on Software Engineering, San Francisco,
California, USA, October 13-15, 1976., pages 492–497, 1976.

[39] W. Takuya and H. Masuhara. A spontaneous code recommendation
tool based on associative search. In Proceedings of SUITE 2011, pages
17–20. ACM, 2011.

[40] M. Umarji, S. Sim, and C. Lopes. Archetypal Internet-Scale source code
searching. In B. Russo, E. Damiani, S. Hissam, B. Lundell, and G. Succi,
editors, Open Source Development, Communities and Quality, volume
275 of IFIP The International Federation for Information Processing,
pages 257–263. Springer US, 2008.

[41] E. van der Veen, G. Gousios, and A. Zaidman. Automatically prioritizing
pull requests. In 12th IEEE/ACM Working Conference on Mining
Software Repositories, MSR 2015, Florence, Italy, May 16-17, 2015,
pages 357–361, 2015.

[42] W. Wang, G. Poo-Caamaño, E. Wilde, and D. M. Germán. What is

the Gist? understanding the use of public Gists on GitHub. In 12th
IEEE/ACM Working Conference on Mining Software Repositories, MSR
2015, Florence, Italy, May 16-17, 2015, pages 314–323, 2015.

[43] Y. Yu, H. Wang, V. Filkov, P. T. Devanbu, and B. Vasilescu. Wait for
it: Determinants of pull request evaluation latency on github. In 12th
IEEE/ACM Working Conference on Mining Software Repositories, MSR
2015, Florence, Italy, May 16-17, 2015, pages 367–371, 2015.

[44] F. Zampetti, L. Ponzanelli, G. Bavota, A. Mocci, M. Di Penta,
and M. Lanza. Do developers document pull requests with exter-
nal references? Replication Package http://home.ing.unisannio.it/fiorella.
zampetti/datasets/ICPC 2017-resource-doc-pull-replication.tgz.

[45] B. Zhou, X. Xia, D. Lo, C. Tian, and X. Wang. Towards more
accurate content categorization of API discussions. In 22nd International
Conference on Program Comprehension, ICPC 2014, Hyderabad, India,
June 2-3, 2014, pages 95–105, 2014.


