
On the Uniqueness of Code Redundancies
Bin Lin, Luca Ponzanelli, Andrea Mocci, Gabriele Bavota, Michele Lanza

REVEAL @ Faculty of Informatics — Università della Svizzera Italiana (USI), Switzerland

Abstract—Code redundancy widely occurs in software projects.
Researchers have investigated the existence, causes, and impacts
of code redundancy, showing that it can be put to good use,
for example in the context of code completion. When analyzing
source code redundancy, previous studies considered software
projects as sequences of tokens, neglecting the role of the syn-
tactic structures enforced by programming languages. However,
differences in the redundancy of such structures may jeopardize
the performance of applications leveraging code redundancy.

We present a study of the redundancy of several types of code
constructs in a large-scale dataset of active Java projects mined
from GitHub, unveiling that redundancy is not uniform and
mainly resides in specific code constructs. We further investigate
the implications of the locality of redundancy by analyzing
the performance of language models when applied to code
completion. Our study discloses the perils of exploiting code
redundancy without taking into account its strong locality in
specific code constructs.

Keywords-code redundancy; code completion; empirical study

I. INTRODUCTION

Code redundancy, namely identical parts of code occurring
multiple times, is common in software projects [1], and man-
ifests itself in different forms. At a coarse-grained level, de-
velopers may explicitly duplicate code snippets with different
intentions, for example to break through given programming
language limitations, or to construct reusable coding templates
[2]. While literature often suggests that this kind of redundant
code, called code clones, is to be avoided as it can lead to code
bloat, not all code redundancies are harmful [3]. Moreover,
numerous practical applications leveraging code redundancy
have been implemented for different purposes, such as locating
bugs [4], supporting refactoring [5], detecting plagiarism [6],
and supporting code completion [7].

A particular kind of redundancy, considering code at the
token level, has been the subject of recent studies, and proven
to be effective for numerous applications. To understand how
redundant software is, at the token level, Gabel and Su [8]
fragmented source code into fixed-length sequences (i.e.,
token-level n-grams) and measured uniqueness of software by
quantifying the sequence redundancy. The authors examined
6,000 projects and found that software is highly repetitive
when the sequences are short, e.g., given sequences of six
tokens, more than half of the code is redundant. Also, Tu
et al. [9] reported on the localness of software, showing that
code exhibits repetitive forms in local contexts at the file level,
i.e., repetitions of a specific n-gram localized in few files.

Hindle et al. [7] showed that source code is “natural”, which
means it is highly repetitive and predictable, even more than
natural language.

This does not come as surprise: Unlike natural language,
programming languages are more constrained by syntax, and
these constraints are likely to correlate with repetitiveness.
Moreover, Ray et al. [10] studied a large set of bug fix com-
mits from 10 Java projects, and investigated the relationship
between buggy code and code “naturalness”. As a result, they
found that buggy code is less “natural”.

However, some constructs (e.g., method and class decla-
rations) are more constrained than others (e.g., sequences of
method calls) and thus one might wonder if every part of
the source code is equally redundant. Currently, there is no
detailed analysis regarding this particular matter. Understand-
ing where code redundancy resides is important as it might
improve the performance of applications that leverage code
redundancy.

Hindle et al. [7] developed a simple code completion engine
for Java based on an n-gram language model and examined
their engine on five Apache projects: Ant, Maven, Log4J,
Xalan, and Xerces. For each project, they trained a trigram
model from the corpus of the tokenized source code, and
used two tokens to predict the next token. They combined
this approach with the default Eclipse code recommendation
engine, and the results suggested that an n-gram language
model can effectively improve the performance of the rec-
ommendation engine. Since different parts of source code
might have different levels of redundancy, we are interested
in investigating whether the n-gram model based completion
performs equally well in different parts of code, from which
we can further infer whether unevenly distributed redundant
code impacts the applications leveraging code redundancy.

We address this problem with two different studies per-
formed on a large-scale dataset composed of 2,640 Java project
repositories. First, we analyze the overall redundancy rate of
the source code and then compare it with the redundancy rates
of 12 source code constructs (e.g.,import and class decla-
rations, catch blocks, etc.). Our results suggest that although
code redundancy is common in software, it is very localized
in specific code constructs (e.g., in package declarations).
Then, we explore the influence of the significantly different
code redundancy rates observed for the code constructs on the
performance of the language model based code completion.
We find that while the language model is very accurate when
recommending code tokens belonging to typically redundant
constructs, its performance strongly decreases when suggest-
ing tokens related to poorly redundant code constructs. In
essence, our findings highlight the importance of considering
the strong locality of code redundancy when exploiting it.

Structure of the paper. We describe our problem context
in Section II. Section III explores the redundancy of different
code constructs, and Section IV focuses on an application,
i.e., the language model based code completion, to analyze the
impact of the unequal code redundancy. Section V discusses
the threats that affect the validity of our studies. Finally,
Section VI illustrates the related work and Section VII outlines
the conclusions.

II. STUDY CONTEXT

Table I summarizes the dataset used for our studies.

TABLE I: Dataset Statistics

Overall Per Project
Mean Median St. Deviation

Java files 1,461,290 554 237 1,123
Tokens 1,079,112,838 4,087,549 152,873 970,681
ELOC 146,886,573 55,639 20,892 125,762
Forks 314,594 119 25 412
Stars 864,227 327 50 1,194

% Java code - 91.5 92.4 5.6

The study context consists of 2,640 open source Java
projects hosted on GitHub, mined on Nov 21 2016 using the
following constraints:

• Programming language. Projects need to have at least
80% of their effective lines of code (ELOC, lines of code
without comments and empty lines) [1] written in Java.
Java is the reference language for the infrastructure used
in this study.

• Activity level. To exclude inactive projects, they need to
have at least one commit in the three months preceding
the data collection.

• Popularity. The number of forks1 and stars2 of a reposi-
tory are two proxies for its popularity on GitHub. Forking
a repository means getting a copy of the repository to
implement changes not affecting the original project.
Starring a repository allows GitHub users to express their
appreciation for the project. Projects with less than ten
stars and no forks are excluded from the dataset, to avoid
the inclusion of likely irrelevant projects.

• Size. Projects must have at least 50 files and 5,000 ELOC.
Again, the goal is to filter out irrelevant projects.

2,714 projects satisfy these constraints. We removed 74
projects that could not be correctly parsed by the tools we
use (e.g., Antlr, srcML). Table I reports descriptive statistics
for size and popularity of the selected projects, showing a
high degree of diversity of the dataset in terms of both these
attributes. The complete list of projects considered in the
studies is available in our replication package [11].

III. STUDY I: SOURCE CODE REDUNDANCY

The goal of the study is to assess to what extent source
code is redundant both when considering it as a whole (i.e.,
the complete code base of a software project) as well as when

1https://help.github.com/articles/fork-a-repo/
2https://help.github.com/articles/about-stars/

focusing on specific code constructs (e.g., when considering
import declarations). The context of the study consists of
the 2,640 Java projects detailed in Section II. While previous
research already investigated the source code redundancy
phenomenon [8][7][12], to the best of our knowledge there
are no studies (i) run on such a scale3, and (ii) analyzing the
redundancy rate of different code constructs.

A. Research Questions

We aim at answering the following research questions (RQ):
RQ1: How redundant is source code? This RQ aims at

assessing to what extent source code is redundant. In the
context of RQ1 we analyze the code redundancy when consid-
ering the complete code base of a software project. RQ1 will
corroborate/confute the findings of previous studies reporting
the high redundancy of source code [8], [7], [12]. Moreover,
the results of RQ1 serve as a reference for RQ2, in which we
assess the redundancy rate of different code constructs.

RQ2: To what extent are different code constructs redun-
dant? This RQ sheds light on the redundancy rate of different
code constructs, missing in the current literature. Knowing
the redundancy rate of different constructs is necessary to
design techniques and tools assuming the high repetitiveness
of code, e.g., language models supporting code completion [7].
While these techniques work fairly well in general, they might
perform poorly when dealing with specific parts of the code
being always unique or rarely repetitive.

B. Data Extraction

To answer our research questions and measure code redun-
dancy we adopt a methodology similar to the one used by
Gabel and Su [8]. In particular, for each project Pi in our
dataset, we perform the following steps:

Code sequencing. We tokenize the Pi’s source code and
extract tokens’ sequences of length l (i.e., token-level l-
grams). The sequences extraction is performed in each Pi’s
Java file starting from its first token (e.g.,package) and
using a sliding window of length l advancing at steps of
one token. For example, assuming l = 9, from the code
statement for(i=0; i<n; i++) the following sequences
are extracted: “for(i=0; i<n”, “(i=0; i<n;”, “i=0;
i<n; i”, “=0; i<n; i++”, “0; i<n; i++)”. We an-
alyze code redundancy for sequences of different lengths by
varying l from 3 to 60 in steps of 3 (i.e., 3, 6, 9, etc.). This
process resulted in the extraction of over 1 billion tokens and
around 1 billion sequences. Also, we tokenize each sequence
at two different abstraction levels: no abstraction and token
type only. For the no abstraction approach, the sequence if
(a > b) is tokenized into the list of tokens “if, (, a, >, b,
)”. For token types only, the same sequence is tokenized into
a list of lexical classes “IF, LB (left bracket), ID (identifier),
GT (greater than), ID, RB (right bracket)”. Token types are
generated with Antlr4 [13].

3The study by Gabel and Su [8] is run on 6,000 projects. However, they
sample a limited number of tokens (∼1,500) from each project, while we
analyze all tokens from each project (on average, 432,290 tokens per project).

2

https://help.github.com/articles/fork-a-repo/
https://help.github.com/articles/about-stars/

Sequence redundancy detection. We mark each of the
extracted sequences as either “redundant” (i.e., there exists at
least one repetition of the sequence in Pi) or “not redundant”
(i.e., the sequence is unique in Pi). Differently from Gabel
and Su [8], we look at code redundancy within the scope of
each single project: We do not consider a sequence sj ∈ Pi as
redundant if it also appears in another project Pk. This choice
is dictated by the fact that some “practical” applications of
code redundancy make more sense when only considering the
code from a single project.

For example, in the case of the language model used to
support code completion [7], the authors built a different
model for each system. This is needed since each project
has its own domain and thus its own vocabulary. Since in
our second study we investigate if and how the differences
in the redundancy rate of different code constructs impact the
performance of such techniques, we decided to focus on the
code redundancy within each single project.

Linking tokens to code constructs. To address RQ2 we
need to identify the code construct to whom the analyzed
tokens belong. To this aim, we parse the source code by
relying on the srcML infrastructure [14] and assign each token
to one of the twelve code constructs listed in Table II (in
bold the tokens belonging to the specific code construct). We
extract matched code constructs without considering whether
they contain other constructs or not. For example, the code
sequence “for(int i=0; i<n; i++)” is classified as
a “for control” construct, although it contains a variable
declaration “int i=0;”.

TABLE II: Identified code constructs

Construct Example
package package com.abc;
import import java.io.*;
if condition if(a == b) {. . .}
while condition while(a > n) {. . .}
for control for(int i=0; i<n; i++) {. . .}
class declaration class Square extends Shape {. . .}
method declaration public int getX {. . .}
method call System.out.println("Hello!");
method body public int getX { return x; }
variable declaration int x = 0;
catch parameter catch (Exception e) {. . .}
catch block catch (Exception e) {break;}

While other code constructs could be extracted, we maintain
that the number and diversity of constructs considered in our
study to be sufficient to observe differences in the redundancy
rate of different parts of the source code.

C. Data Analysis

We answer RQ1 by reporting box plots depicting the redun-
dancy rate of tokens belonging to sequences (i) tokenized by
using both the no abstraction and the token type only represen-
tation and (ii) having different lengths l. The redundancy rate
is computed as the number of tokens belonging to sequences
marked as “redundant” divided by the total number of tokens
in the analyzed sequences [8].

To answer RQ2, we compare via box plots the redundancy
rate of tokens belonging to different code constructs. We
also statistically compare the redundancy rate of the different
constructs by exploiting the Mann-Whitney test [15] with
results intended as statistically significant at α = 0.05.

To control the impact of multiple pairwise comparisons
(e.g., the redundancy of tokens belonging to the package
construct is compared against the redundancy of tokens be-
longing to the if condition, the while condition, etc.), we adjust
p-values using the Holm’s correction [16]. We also estimate
the magnitude of the differences by using the Cliff’s Delta (d),
a non-parametric effect size measure [17] for ordinal data. We
follow well-established guidelines to interpret the effect size:
negligible for |d| < 0.10, small for 0.10 ≤ |d| < 0.33, medium
for 0.33 ≤ |d| < 0.474, and large for |d| ≥ 0.474 [17].

D. Results

We discuss the achieved results according to the two RQs.
1) RQ1: How redundant is source code? Fig. 1 shows the

boxplots depicting the tokens’ redundancy rate for sequences
having increasing lengths, both when no abstraction is used
as well as when considering only the token type.

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
Sequence length

0.0

0.2

0.4

0.6

0.8

1.0

R
e
d
u
n
d
a
n
cy

 r
a
te

(a) no abstraction

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60
Sequence length

0.0

0.2

0.4

0.6

0.8

1.0

R
e
d
u
n
d
a
n
cy

 r
a
te

(b) token type only

Fig. 1: Redundancy rate for sequences having different lengths

The red square in each boxplot represents the mean value
of the distribution. We draw three main conclusions:

1) When considering the project’s code as a whole,
source code is highly redundant. For tokens belonging
to sequences of length 3, the redundancy rate is very
high, also without abstraction (i.e., when considering
exact copies of the 3 tokens), with a median of 0.95.
High redundancy rates (> 0.5) are generally observed
for sequences of length up to 15.

2) The longer the sequences the lower the redundancy
rate. The trend depicted in Fig. 1 is clear, and high-
lights a sort of logarithmically decreasing function when
observing the median values of the boxplots from left
(short sequences) to right (long sequences).

3

This is to be expected, since it is much less likely to find
duplications of long sequences as compared to shorter
ones.

3) When only considering the token type, the redun-
dancy rate substantially increases. Again, this is an
expected results, considering the abstraction level intro-
duced when only looking for token types. For example,
while the two sequences if(a > b) and if(c >
d) are considered as different in the no abstraction
approach, they are considered as redundant from the
token type only perspective.

Our findings thus corroborate the observations by Gabel and
Su [8], and confirm the high redundancy of source code. Our
next RQ investigates where the redundancy is, when looking
more closely at the source code.

2) RQ2: To what extent are different code constructs re-
dundant? Fig. 2 shows the boxplots depicting the redundancy
rate for different types of code constructs when considering
sequences of different lengths without applying abstraction4.
Concerning the impact of the sequence length on the redun-
dancy rate, all code constructs follow the same trend previ-
ously observed for the whole project. However, it is evident
that tokens belonging to different types of code constructs do
not exhibit the same redundancy rate.

Fig. 3 compares the redundancy rate of code constructs
when the sequence length is 9. The redundancy rate of the
whole project is also shown in Fig. 3 (boxplot on the right),
serving as a baseline for comparison. The main message
highlighted by Fig. 3 is that the redundancy rate of different
code constructs significantly differs. This is clear, for example,
when comparing import declarations (median=0.97) and
while conditions (median=0.57). Such strong differences are
confirmed by the statistical analysis in Fig. 45.

In the heatmap in Fig. 4, a white block indicates that
the difference in terms of redundancy rates of two code
constructs is not statistically significant (adjusted p-value ≥
0.05). Blocks with four different grayscale values from light
to dark represent a significant difference accompanied by
a negligible, small, medium and large effect size, respec-
tively. Confirming what can previously observed, import,
package, and catch parameter constructs are significantly
more redundant than other constructs. All of the statistical
comparisons result in a significant difference, and 74% of the
cases have medium or large effect sizes. Thus, the statistical
analysis confirms the high variability of redundancy rate for
different types of code constructs.

Up to now we considered as redundant a token from a
sequence repeated at least once [8]. We also investigated
the frequency of redundant sequences (i.e., how many times
sequences are repeated in the code). Indeed, the frequency with
which a sequence is repeated in the code impacts techniques
leveraging code redundancy, like language models that need
to learn what the likely sequences of code tokens are.

4Results for the token type only approach is in our replication package [11].
5Results for sequences of different lengths are in [11].

The analysis being computationally expensive, we per-
formed it on 30 randomly selected projects. Fig. 5 shows,
using a logarithmic scale, the frequency of the 144,494 unique
tokens sequences of length 9 extracted from Microsoft Thrifty.

While the code redundancy, measured as explained in
Section III-B, is quite high for this system (0.80)—indicating
that most of tokens belong to redundant sequences—the
median frequency of the redundant sequences is just 2,
with a third quartile of 4. This means that at least 75%
of the redundant sequences in this system are repeated
at most 4 times in the code, while there are very few
sequences repeated hundreds of times (leading to the
long tailed distribution in Fig. 5). The most redundant
sequence (743 repetitions) is (org.apache.thrift.-
protocol., generally used in catch statements
(e.g.,catch (org.apache.thrift.protocol.-
TProtocolException)). Other very frequent sequences
are those related to import statements (e.g.,import
com.microsoft.thrifty.schema.—161 times).

When looking at the frequency of redundant sequences,
most of the code redundancy is in very specific parts of the
code. Indeed, we observed a long tailed frequency distribution
shown in Fig. 5 for all the 30 selected systems6. Such a char-
acteristic of code redundancy can strongly impact approaches
leveraging it. This is the focus of our second study.

IV. STUDY II: LANGUAGE MODELS & CODE COMPLETION

The goal of this study is to investigate the performance of
an n-gram language model aimed at recommending the next
code token to write (i.e., the nth token) given n − 1 written
tokens. Basically, we assess the accuracy of the language
model proposed by Hindle et al. [7] for code completion both
overall (i.e., when used in any part of the source code) as well
as when focusing on specific code constructs.

A language model is a probability distribution that es-
timates how often a sentence occurs in a textual dataset.
Language models are widely employed in many domains
such as speech recognition and code completion. The n-gram
model is one of the most commonly used language models
and it determines the probability of having a word wi given
the previous n-1 words. Such a probability is denoted by
p(wi|wi−1, wi−2, . . . , wi−n+1), where wi−n+1, . . . , wi−1, wi

are n continuous words. The probability that wi follows
wi−n+1, . . . , wi−2, wi−1 is estimated by training the language
model on a training test, composed of textual documents.
When applying the language model to software-related tasks,
the training set is composed of code documents.

The most common way to evaluate the performance of a
n-gram model is instead to run it on an previously unseen
set of test documents (again, code documents in the case of
software-related tasks) known as the test set, and assess its
ability to predict the actual word wi following a sequence
of n − 1 consecutive words extracted from the test set (this
process is repeated for many sequences) [18].

6Results available in our replication package [11].

4

6 12 18 24 30 36 42 48 54 60
0.0

0.2

0.4

0.6

0.8

1.0
import

6 12 18 24 30 36 42 48 54 60
0.0

0.2

0.4

0.6

0.8

1.0
package

6 12 18 24 30 36 42 48 54 60
0.0

0.2

0.4

0.6

0.8

1.0
method body

6 12 18 24 30 36 42 48 54 60
0.0

0.2

0.4

0.6

0.8

1.0
if condition

6 12 18 24 30 36 42 48 54 60
0.0

0.2

0.4

0.6

0.8

1.0
while condition

6 12 18 24 30 36 42 48 54 60
0.0

0.2

0.4

0.6

0.8

1.0
for control

6 12 18 24 30 36 42 48 54 60
0.0

0.2

0.4

0.6

0.8

1.0
method declaration

6 12 18 24 30 36 42 48 54 60
0.0

0.2

0.4

0.6

0.8

1.0
class declaration

6 12 18 24 30 36 42 48 54 60
0.0

0.2

0.4

0.6

0.8

1.0
method call

6 12 18 24 30 36 42 48 54 60
0.0

0.2

0.4

0.6

0.8

1.0
catch block

6 12 18 24 30 36 42 48 54 60
0.0

0.2

0.4

0.6

0.8

1.0
catch parameter

6 12 18 24 30 36 42 48 54 60
0.0

0.2

0.4

0.6

0.8

1.0
variable declaration

Fig. 2: Redundancy rate for different types of code constructs when no abstraction is applied.

import package method
body

if
condition

while
condition

for
control

method
declaration

class
declaration

method
call

catch
block

catch
parameter

variable
declaration

project

Code construct type

0.0

0.2

0.4

0.6

0.8

1.0

R
e
d
u
n
d
a
n
cy

 r
a
te

Fig. 3: Redundancy rate of different code constructs when no abstraction is applied and the sequence length is 9.

5

im
po

rt

pa
ck

ag
e

m
et

ho
d

bo
dy

if
co

nd
iti

on

w
hi

le
 c

on
di

tio
n

fo
r c

on
tro

l

m
et

ho
d

de
cl

ar
at

io
n

cl
as

s
de

cl
ar

at
io

n

m
et

ho
d

ca
ll

ca
tc

h
bl

oc
k

ca
tc

h
pa

ra
m

et
er

va
ria

bl
e

de
cl

ar
at

io
n

variable declaration

catch parameter

catch block

method call

class declaration

method declaration

for control

while condition

if condition

method body

package

import

negligible

small

medium

large

Fig. 4: Statistical comparisons for the redundancy rates of
different types of code constructs for sequences of length 9.

10

100

1000

10
,0

00

20
,0

00

30
,0

00

40
,0

00

50
,0

00

60
,0

00

70
,0

00

80
,0

00

90
,0

00

10
0,

00
0

11
0,

00
0

12
0,

00
0

13
0,

00
0

14
0,

00
0

5,0
00

15
,0

00

25
,0

00

35
,0

00

45
,0

00

55
,0

00

65
,0

00

75
,0

00

85
,0

00

95
,0

00

10
5,0

00

11
5,0

00

12
5,0

00

13
5,0

00

14
5,0

00

fre
qu

en
cy

cumulative number of sequences of length 9

1

Fig. 5: Microsoft Thrifty: Cumulative frequency for sequences
of length 9.

Our conjecture is that the substantially different redundancy
rates observed in Study I for the different code constructs
might influence the performance of the language model and
suggest its applicability only to specific parts of the code (i.e.,
the ones having high redundancy).

A. Research Questions

The study aims at answering the following RQs:
RQ3: How effective is the language model in supporting

code completion? This RQ assesses the performance of the n-
gram language model when applied to code completion. The
evaluation approach followed in this study is similar to the
one of Hindle et al. [7], where they evaluated the a 3-gram
language model on five systems. We (i) run a much larger
evaluation involving 2,640 subject systems, and (ii) study the
impact of the n parameter on the model performance.

RQ4: How effective is the language model in supporting
code completion for different code constructs? This RQ in-
vestigates whether and how the predictive performance of the
n-gram language model varies on different code constructs
(i.e., the same 12 constructs considered in Study I). To the
best of our knowledge, this is the first study running such an
analysis.

RQ4’s findings will shed some light on the importance of
considering the strong locality of code redundancy.

B. Data Extraction

To answer our research questions we perform the following
steps for each project Pi in our dataset:

1. Create training and test sets. We randomly split the Pi’s
Java files into a training set accounting for 90 % of Pi’s
ELOC, and a test set composed by the remaining 10%. Our
training/testing strategy is different with respect to the one
adopted by Hindle et al. [7]. They randomly selected 200
files from each subject system, using 160 for training and 40
for testing. Such an approach does not consider the whole
project’s code base, and does not provide a clear indication of
the “amount of code”, intended as ELOC, actually used for
training and testing; indeed, this strongly depends on the size
of the specific files selected for training and testing.

2. N-grams extraction. As done in Study I, we tokenize the
Pi’s Java source code in both training and test set. Note that
no abstraction is used in this study, since we want to support
code completion by recommending to the developer the exact
token to write given the previous n − 1 tokens (as done in
[7]). We vary n from 3 (the original value used in [7]) to 15
at steps of one (i.e., 3, 4, 5, etc.).

3. Linking tokens to code constructs. As done in Study I, we
map each token to one of the code constructs listed in Table II.
This allows us to answer RQ4, by reporting the performance
of the language model when predicting tokens belonging to
different code constructs.

After collecting this data, for each project Pi and for each
considered value of n, we train the language model on the n-
grams extracted from the Pi’s training set, obtaining a model
MPi,n. Then, we run MPi,n on the n-grams extracted from the
Pi’s test set, trying to predict for each n-gram the nth token
given the n − 1 continuous tokens preceding it. Overall, this
resulted in the testing of the language model on a minimum
of 104,953,587 n-grams (for n = 15) and a maximum of
106,726,166 (for n = 3).

C. Data Analysis

We answer RQ3 by showing boxplots reporting the percent-
age of tokens correctly predicted by the language model (i.e.,
its accuracy) for each of the experimented n values. Since
the language model provides a ranked list of tokens likely
following the provided n − 1 tokens (with the most likely
on top), we compute the model accuracy when considering
the top t recommendations it generates, varying t from 1 to
10 at steps of one. For example, when considering t = 1, we
consider a recommendation as correct only if the correct token
appears in the first position of the ranked list, while for t = 10
the recommendation is tagged as correct if the correct token
appears in the top-10.

Concerning RQ4, we compare the accuracy of the language
model when predicting tokens belonging to different code
constructs. This is done via boxplots and statistical tests,
following the same procedure adopted in RQ2.

6

0 3 4 5 6 7 8 9 10 11 12 13 14 15
Sequence length

0.0

0.2

0.4

0.6

0.8

1.0

P
re

d
ic

ti
o
n
 a

cc
u
ra

cy

Fig. 6: Prediction accuracy rates of the language model when supporting code completion (top 1 recommendation).

3 5 7 9 11 13 15
0.0

0.2

0.4

0.6

0.8

1.0
import

3 5 7 9 11 13 15
0.0

0.2

0.4

0.6

0.8

1.0
package

3 5 7 9 11 13 15
0.0

0.2

0.4

0.6

0.8

1.0
method body

3 5 7 9 11 13 15
0.0

0.2

0.4

0.6

0.8

1.0
if condition

3 5 7 9 11 13 15
0.0

0.2

0.4

0.6

0.8

1.0
while condition

3 5 7 9 11 13 15
0.0

0.2

0.4

0.6

0.8

1.0
for control

3 5 7 9 11 13 15
0.0

0.2

0.4

0.6

0.8

1.0
method declaration

3 5 7 9 11 13 15
0.0

0.2

0.4

0.6

0.8

1.0
class declaration

3 5 7 9 11 13 15
0.0

0.2

0.4

0.6

0.8

1.0
method call

3 5 7 9 11 13 15
0.0

0.2

0.4

0.6

0.8

1.0
catch block

3 5 7 9 11 13 15
0.0

0.2

0.4

0.6

0.8

1.0
catch parameter

3 5 7 9 11 13 15
0.0

0.2

0.4

0.6

0.8

1.0
variable declaration

Fig. 7: Accuracy of the language model when supporting code completion on different constructs (top-1 recommendation)

7

D. Results

1) RQ3: How effective is the language model in supporting
code completion? Fig. 6 shows the accuracy of the n-gram
language model when used to support code completion. In
particular, Fig. 6 reports the accuracy achieved when only
considering the top ranked suggestion (i.e., the token having
the highest probability of following the n − 1 tokens) when
varying n between 3 and 15.

The language model achieves its maximum accuracy (me-
dian = 0.48) when n = 3, and its performance regularly
decreases with the increasing of n (worst accuracy achieved at
n = 15). Such a finding might seem counterintuitive. Indeed,
one would expect that the more information is fed into the
language model, i.e., the higher the number of n−1 subsequent
tokens provided to the model, the easier is for the model
to guess the nth following token. Increasing the number of
tokens fed into the model does also (i) increases the possible
noise provided to it, and (ii) reduces to “locality” of the n-
1 fed tokens (i.e., increases the likelihood of having tokens
belonging to different statements). Let us discuss this using
the following example statements:
import org.program-comprehension.*;
import java.io.*;
public static void main ...

Considering our experimental design, when using n=3, we
start reading the first two tokens (import org) and ask the
language model to recommend the third one (.). Then, we
feed (org.) and again ask the language model to suggest the
third token (program-comprehension). This process is
continued until we reach the last token in the file. As we can
see, for low values of n we provide very localized sequences
of n − 1 tokens to predict the nth one. In other words, the
n − 1 tokens are generally part of the same code statement
and narrow down the possible tokens that can follow them.

When n = 15, in the example above we provide as input to
the language model the whole first two import statements (for
a total of 14 tokens), asking the language model to predict
the 15th token (i.e., public). In this case it is challenging
for the language model to guess the correct token, due to the
poor localization of the fed information (the 14 input tokens
belong to statements unrelated with the one in which we ask
the language model to support the auto completion).

Our results support the findings by Bruch et al. [19] and
Nguyen et al. [20], and highlight the importance of exploiting
contextual information when supporting code completion. The
accuracy obtained when considering the top t recommenda-
tions with t going from 2 to 10 is available in our replication
package [11] and is consistent with the same observations.

1) RQ4: How effective is the language model in supporting
code completion for different code constructs?: Fig. 7 shows
the accuracy of the n-gram language model (for different
values of n) when used to support code completion on
different code constructs (again, when the top recommendation
is considered, other results in [11]). Overall, the trend is the
same previously observed for the whole project: The model
performs better for small n values.

What heavily varies is the performance of the language
model when applied to the different types of code constructs.
To zoom into this analysis, Fig. 8 and 9 compare the per-
formance of the 3-gram language model on the different con-
structs via boxplots and statistical tests, respectively. Hereafter,
we discuss the results for n = 3 as in the original paper
by Hindle et al. [7], while results for other values of n are
available in the replication package [11]. The achieved results
highlight that:

• The performance of the language model varies a
lot across different types of code constructs. This is
clear both in the boxplots (Fig. 8) as well as from the
results of the statistical analysis (Fig. 9), in which several
significant differences accompanied by a medium/large
effect size are observed. For example, the performance
of the language model is very good when supporting
code completion for import and package statements
(median=0.76), while it strongly drops when working on
while conditions (median=0.36).

• There is a clear correlation between the redundancy
rate of code constructs, and the performance of the
language model when applied on them. While this
is evident when putting together the results of our two
studies, we also compute the correlation between the re-
dundancy rate of code constructs and the accuracy of the
language model in predicting tokens belonging to them
by using the Spearman rank correlation analysis [21]. We
obtained a correlation coefficient of ρ = 0.71, highlight-
ing a strong correlation on the basis of the guidelines
provided by Cohen [21].

We further dig into the results by looking for the code tokens
correctly predicted by the language model when setting n = 3
on the same 30 randomly selected systems used in Study I.
We discuss in detail the results for Microsoft Thrifty, on which
13,176 out of 29,763 tokens have been correctly predicted
(44% accuracy).

The top ten correctly predicted tokens on this system
are: “.”, “(”, “)”, “;”, “}”, “{”, “public”, “thrift”,
“apache”, “=”, accounting for a total of 9,494 (72%) of the
correctly predicted tokens. Only two of the top-10 correctly
predicted tokens are project specific (i.e., “thrift” and
“apache”) and they are correctly predicted since, as shown
in Study I, frequently used in catch statements. In addition,
1,073 correctly predicted tokens (a further 8%) is represented
by Java keywords. The results obtained from other 29 systems
are in line with these findings and confirm that most of the
correctly predicted tokens are not project specific.

We believe that these findings are of paramount importance
when considering the use of language models for supporting
code completion. Indeed, while the performance of the lan-
guage model could be overall acceptable (e.g., 44% accuracy
on Microsoft Thrifty), it is mostly effective in recommending
tokens (i) belonging to very specific parts of the code (e.g.,
import and catch statements), and (ii) mainly representing
syntactic sugar of the programming language.

8

import package method
body

if
condition

while
condition

for
control

method
declaration

class
declaration

method
call

catch
block

catch
parameter

variable
declaration

project

Code construct type

0.0

0.2

0.4

0.6

0.8

1.0
P
re

d
ic

ti
o
n
 a

cc
u
ra

cy

Fig. 8: Accuracy of the 3-gram model when supporting code completion on different constructs (top-1 recommendation)

im
po

rt

pa
ck

ag
e

m
et

ho
d

bo
dy

if
co

nd
iti

on

w
hi

le
 c

on
di

tio
n

fo
r c

on
tro

l

m
et

ho
d

de
cl

ar
at

io
n

cl
as

s
de

cl
ar

at
io

n

m
et

ho
d

ca
ll

ca
tc

h
bl

oc
k

ca
tc

h
pa

ra
m

et
er

va
ria

bl
e

de
cl

ar
at

io
n

variable declaration

catch parameter

catch block

method call

class declaration

method declaration

for control

while condition

if condition

method body

package

import

negligible

small

medium

large

Fig. 9: Statistical comparisons for the accuracy of the 3-gram
language model on different code constructs

Our results indicate that language models alone cannot
effectively support code completion and that, as proposed by
Hindle et al. [7], they can only complement recommendations
generated by other techniques. Also, our findings clearly
highlight the strong impact that unevenly redundancy rates of
code constructs can have on applications assuming the high
redundancy of source code.

V. THREATS TO VALIDITY

Threats to construct validity concern the relation between
theory and observation. In this work they are mainly due to
the measurements we performed.

In Study II, we assess the performance of the language
model presented by Hindle et al. [7] in supporting code com-
pletion by using their same experimental design. In particular,
given a project Pi, we train the language model on a set of
Pi’s files and test it on all the n-grams (as explained, we
experimented with different values of n) extracted from files
belonging to the test set. As done in [7], each file in the test
set was scanned from the beginning to the end to extract all
its n-grams on which the language model was then evaluated.

Such an approach aims at simulating the code writing by
the developer: She writes the first n− 1 tokens, and uses the
code completion to recommend the nth token, then she writes
other n−1 tokens, and again uses code completion to suggest
the next token, etc. Clearly, developers do not write code by
following such a linear approach from the beginning to the
end, and we acknowledge such a threat.

Note also that the performance we report for the language
model cannot be directly compared with the one reported in
the original paper by Hindle et al. [7]. Indeed, while we report
the raw accuracy of the language model when used to support
code completion, in [7] the authors show the gain in terms of
accuracy obtained over the Eclipse built-in code completion
module. Since our primary goal was to show how the different
redundancy rates of code constructs impact the performance
of techniques exploiting such a redundancy, we preferred to
report the language model accuracy by itself.

Threats to internal validity concern external factors we did
not consider that could affect the variables and the relations
being investigated. In Study I, when assessing software re-
dundancy, we did not experiment with all possible sequence
lengths, but we limited our analysis to sequences going from
3 to 60 tokens at steps of 3. Still, the trend observed in the
achieved result is quite clear, and shows that, as expected, the
redundancy rate decreases with the increase of the sequence
length (see Fig. 2). We do not expect to observe anything
different by further increasing the sequence length.

In both our studies, we did not consider all possible code
constructs that can be extracted from Java systems. However,
the number and diversity of the considered constructs have
been sufficient to observe differences in the redundancy rate
and in the accuracy of the language model.

Threats to conclusion validity concern the relation between
the treatment and the outcome. Although this is mainly an
observational study, wherever possible we used an appropriate
support of statistical procedures, integrated with effect size
measures that, besides the significance of the differences
found, highlight the magnitude of such differences.

9

Threats to external validity concern the generalizability
of our findings. While our two studies have been performed
on a large code base including 2,640 projects, we are aware
that (i) all subject projects are written in Java, thus calling
for the need of analyzing software projects written in other
programming languages, and (ii) we limited our analysis to
open source projects ignoring industrial systems.

VI. RELATED WORK

A. Code Redundancy

Code clones, i.e., code fragments similar to other ones by
some given definition of similarity [22], are a common form of
code redundancy, and have been widely studied. We limit our
discussion to few of the works focusing on clones. Baker [23]
inspected two systems and tried to find maximal sections of
code over a certain length which are exactly the same or only
differ in parameter names. Their results indicate that around
20% of the code is duplicated or near-duplicated. Roy and
Cordy [24] examined 15 Java and C systems, and reported
that ∼15% of the Java methods and 2.5% of the C functions
are exact clones. Kapser and Godfrey [25] conducted two case
studies and reported that 50% of the clones were related to
function clones. With another case study on the Apache web
server, they later showed the existence of “cloning hotspots”:
17% of the code contained 38% of the clones [26].

Mockus [27] analyzed 13.2 million source code files from
open source projects, and reported that over 50% of files were
reused across projects. While our work is naturally related to
code clones, we focus on the code redundancy phenomenon at
a lower granularity level, with the goal of investigating (i) how
it varies in code constructs, and (ii) how this variations impacts
the performance of techniques leveraging code redundancy.

Other studies have explored code redundancy from a dif-
ferent perspective. Barr et al. [28] found that 42% of the
code changes can be largely reconstituted from existing code.
Nguyen et al. [29] reported that 12.1% of the routines (i.e., a
portion of code that performs a specific task, such as methods)
are repeated between 2 and 7 times in projects. Finally, the
study by Gabel and Su [8] is certainly the most related to our
work. Indeed, Study I represents a differentiated replication
of the investigation presented in [8], featuring a different and
larger code base and investigating at a fine-grained level how
code redundancy changes across code constructs.

B. Code Completion

Code completion is one of the killer features of modern
IDEs, and researchers have proposed different methods to
improve code completion accuracy. Again, due to the lack of
space we focus our discussion on a few representative works.

By mining existing code, Bruch et al. [19] (i) filter out
candidates from the list of tokens recommended by the IDE
that are not relevant to the current working context and (ii)
rank candidates based on how relevant to the context they are.
These features help in substantially improve the standard IDE
code completion engine.

Also Nguyen et al. [20] exploited context-sensitive infor-
mation in their GraPacc approach, showing its effectiveness
in supporting code completion. GraPacc models API usage
patterns by relying on a graph representation, where nodes
represent actions (e.g., method calls) and controls (e.g., while)
points, and edges represent control and data flow dependencies
between nodes. Context information such as the relation
between API elements and other code elements is considered
for ranking most fitted API usage patterns.

Raychev et al. [30] extracted sequences of method calls
from a large codebase and trained a language model on them.
They applied this model to support the autocompletion of
method calls, achieving an accuracy of 90% when considering
the top three results. We experimented in Study II the previ-
ously discussed language model proposed by Hindle et al. [7],
showing that its performance substantially varies when applied
to constructs characterized by different redundancy.

The language model proposed by Hindle et al. was im-
proved by Nguyen et al. [31], [29] and by Tu et al. [9].
Nguyen et al. [31] presented a statistical semantic language
model for source code extending the standard language model
by annotating each token with its type and semantic role.
Also, they exploit a more advanced n-gram topic model to
support code completion. In a related work of the authors,
they also proposed the use of an AST-based language model
instead of the n-gram language model to recommend the
next valid syntactic template and detect common syntactic
templates [29].

Tu et al. [9] enriched the language model with a cache
exploiting a specific localness of software, i.e., repetitions
of a specific n-gram localized in few files. Other approaches
[9], [31], [29] achieve improvements over the language model
proposed by Hindle et al. [7].

In our study we chose to adopt the simplest approach (i.e.,
Hindle et al. [7]) since our goal was not to experiment with
the best code completion tool available, but to show that
approaches leveraging code redundancy should consider its
strong locality in specific code constructs.

VII. CONCLUSION

We examined the redundancy of code constructs, and inves-
tigated the impact of its inequality on an application leveraging
code redundancy, namely n-gram based code completion.

Our results indicate that while software is quite redundant
when considered as a whole, the redundancy is localized
in specific code constructs. Such a characteristic of code
redundancy strongly impacts the performance of application
exploiting code redundancy, like n-gram based completion.

Our future work will focus on the definition of smarter code
completion tools leveraging our findings, and on customizing
the use of the language model on the basis of the specific code
constructs on which it is applied.

ACKNOWLEDGEMENTS

We gratefully acknowledge the financial support of the
Swiss National Science foundation for the project “HI-SEA”
(SNF Project No. 146734).

10

REFERENCES

[1] S. Ducasse, M. Rieger, and S. Demeyer, “A language independent
approach for detecting duplicated code,” in Proceedings of ICSM 1999
(15th IEEE International Conference on Software Maintenance). IEEE,
1999, pp. 109–118.

[2] M. Kim, L. Bergman, T. Lau, and D. Notkin, “An ethnographic study
of copy and paste programming practices in oopl,” in Proceeding of
ISESE 2004 (2004 International Symposium on Empirical Software
Engineering). IEEE, 2004, pp. 83–92.

[3] C. Kapser and M. W. Godfrey, “‘cloning considered harmful’ considered
harmful,” in Proceeding of WCRE 2006 (13th Working Conference on
Reverse Engineering). IEEE, 2006, pp. 19–28.

[4] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: Finding copy-paste
and related bugs in large-scale software code,” Transactions on Software
Engineering, vol. 32, no. 3, pp. 176–192, 2006.

[5] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis,
“Advanced clone-analysis to support object-oriented system refactoring,”
in Proceeding of WCRE 2000 (7th Working Conference on Reverse
Engineering). IEEE, 2000, pp. 98–107.

[6] S. Burrows, S. M. Tahaghoghi, and J. Zobel, “Efficient plagiarism
detection for large code repositories,” Software-Practice and Experience,
vol. 37, no. 2, pp. 151–176, 2007.

[7] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the nat-
uralness of software,” in Proceedings of ICSE 2012 (34th International
Conference on Software Engineeering), 2012, pp. 837–847.

[8] M. Gabel and Z. Su, “A study of the uniqueness of source code,” in
Proceedings of FSE 2010 (18th SIGSOFT International Symposium on
Foundations of Software Engineering), 2010, pp. 147–156.

[9] Z. Tu, Z. Su, and P. Devanbu, “On the localness of software,” in Pro-
ceedings of FSE 2014 (22nd International Symposium on Foundations
of Software Engineering), 2014, pp. 269–280.

[10] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and P. De-
vanbu, “On the naturalness of buggy code,” in Proceedings of ICSE 2016
(38th International Conference on Software Engineeering). ACM, 2016,
pp. 428–439.

[11] B. Lin, L. Ponzanelli, A. Mocci, G. Bavota, and M. Lanza, “Replication
package.” https://icpc-redundancy.github.io/icpc-2017.zip.

[12] M. Allamanis and C. Sutton, “Mining idioms from source code,” in Pro-
ceedings of FSE 2014 (22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering). ACM, 2014, pp. 472–483.

[13] T. Parr, The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.
[14] M. L. Collard, M. J. Decker, and J. I. Maletic, “srcml: An infrastructure

for the exploration, analysis, and manipulation of source code: A tool
demonstration,” in Proceedings of ICSM 2013 (29th IEEE International
Conference on Software Maintenance). IEEE, 2013, pp. 516–519.

[15] W. J. Conover, “Practical nonparametric statistics,” 1999.
[16] S. Holm, “A simple sequentially rejective multiple test procedure,”

Scandinavian journal of statistics, pp. 65–70, 1979.
[17] R. J. Grissom and J. J. Kim, “Effect sizes for research: A broad practical

approach,” Mahwah, NJ: Earlbaum, 2005.
[18] S. F. Chen and J. Goodman, “An empirical study of smoothing tech-

niques for language modeling,” in Proceedings of ACL 1996 (34th
annual meeting on Association for Computational Linguistics). As-
sociation for Computational Linguistics, 1996, pp. 310–318.

[19] M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples to
improve code completion systems,” in Proceedings of ESEC/FSE 2009
(7th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software
engineering). ACM, 2009, pp. 213–222.

[20] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, A. Tamrawi, H. V. Nguyen,
J. Al-Kofahi, and T. N. Nguyen, “Graph-based pattern-oriented, context-
sensitive source code completion,” in Proceedings of ICSE 2012 (34th
International Conference on Software Engineeering), 2012, pp. 69–79.

[21] J. Cohen, Statistical power analysis for the behavioral sciences, 2nd ed.
Lawrence Earlbaum Associates, 1988.

[22] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470–495, 2009.

[23] B. S. Baker, “On finding duplication and near-duplication in large soft-
ware systems,” in Proceeding of WCRE 1995 (2nd Working Conference
on Reverse Engineering). IEEE, 1995, pp. 86–95.

[24] C. K. Roy and J. R. Cordy, “An empirical study of function clones
in open source software,” in Proceeding of WCRE 2008 (15th Working
Conference on Reverse Engineering). IEEE, 2008, pp. 81–90.

[25] C. Kapser and M. W. Godfrey, “Aiding comprehension of cloning
through categorization,” in Proceedings of IWPSE 2004 (7th Interna-
tional Workshop on Principles of Software Evolution), pp. 85–94.

[26] C. J. Kapser and M. W. Godfrey, “Supporting the analysis of clones
in software systems,” Journal of Software Maintenance and Evolution:
Research and Practice, vol. 18, no. 2, pp. 61–82, 2006.

[27] A. Mockus, “Large-scale code reuse in open source software,” in
Proceedings of FLOSS 2007 (1st International Workshop on Emerging
Trends in FLOSS Research and Development). IEEE, 2007, pp. 7–7.

[28] E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and F. Sarro, “The plastic
surgery hypothesis,” in Proceedings of FSE 2014 (22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering).
ACM, 2014, pp. 306–317.

[29] A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “A large-scale
study on repetitiveness, containment, and composability of routines in
open-source projects,” in Proceedings of MSR 2016 (13th International
Workshop on Mining Software Repositories). ACM, 2016, pp. 362–373.

[30] V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical
language models,” in Proceedings of PLDI 2014 (35th ACM SIGPLAN
Conference on Programming Language Design and Implementation),
vol. 49, no. 6. ACM, 2014, pp. 419–428.

[31] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “A
statistical semantic language model for source code,” in Proceedings
of ESEC/FSE 2013 (9th Joint Meeting on Foundations of Software
Engineering), 2013, pp. 532–542.

11

https://icpc-redundancy.github.io/icpc-2017.zip

