
The Code Time Machine
Emad Aghajani, Andrea Mocci, Gabriele Bavota, Michele Lanza

REVEAL @ Faculty of Informatics - Università della Svizzera italiana (USI), Switzerland

Abstract—Exploring and analyzing the history of changes is
an intrinsic part of software evolution comprehension. Existing
tools that exploit the data residing in version control repositories
provide only limited support for the intuitive navigation of code
changes from a historical perspective.

We present the Code Time Machine, a lightweight IDE plugin
which uses visualization techniques to depict the history of
any chosen file augmented with information mined from the
underlying versioning system. Inspired by Apple’s Time Machine,
our tool allows both developers and the system itself to seamlessly
move through time.
A video of the Code Time Machine can be found at: https:
//youtu.be/meblwFO95oA

I. INTRODUCTION

Software evolution comprehension is an integral part of
the software development process. According to Gı̂rba and
Ducasse [1], a class of techniques to support software evo-
lution analysis is version-centered. Such approaches target
answering questions of when something happened in the
history of a software project, and involve activities such as
comparing two different versions, in terms of source code
and/or runtime behavior. To perform such analyses, developers
must be able to easily revert the system back to any given
revision, perform static code inspections (i.e., visit the source
code and its corresponding metadata), compile and run the
project, and possibly inspect the behavior at runtime.

In practice, the common facilities exposed by version con-
trol systems are rather limited. In fact, carrying out version-
centered analyses is cumbersome, since it must be done
through repetitive procedures using default user interfaces,
such as the command line or applications with rather simple
GUIs like GitHub Desktop1.

Besides source code history, additional information such as
code metrics are the most important resources to understand a
system’s evolution. As opposed to reverse engineering where
one needs to understand the current version of a system, under-
standing a system’s evolution copes with such data multiplied
by the number of its revisions. Although code metrics and the
versioning system’s data are accessible separately, i.e., through
different tools, the user himself has to manually collect and
correlate them to perform a given evolutionary analysis.

According to Gonzalez-Torres et al. [2], understanding the
evolution of a software project can be effectively performed
with the support of a visual representation. Several approaches
have been proposed to understand a system evolution with the
help of software visualization, for example by combining it
with software metrics.

1See https://desktop.github.com/

Consequently, different tools have been developed, primar-
ily focusing on visualizing history to support the analysis of
system evolution. Gource [3], CodeSwarm [4], SVN time-lapse
View2 (and its Git3 version), CVSScan [5], and GitX4 are
some examples of them. Such tools provide a common core
of features, like a slide-bar for viewing different revisions of
a file and a diff-view of changes. Although these tools could
potentially be used to analyze a system’s evolution, they do
not uniformly integrate complementary information like code
metrics into their visualizations.

More importantly, these tools do not provide any intuitive
mechanism for previewing different versions of a system and
navigate through them. The current practice is to perform the
checkout operation for reverting to a specific version, which
in the case of uncommitted changes would be problematic. In
addition, in some scenarios, the developer analyzing a project’s
evolution needs to focus on a certain file in the course of
time, but this is not possible because some of the tools do
not provide a file-centric history view. Thus, to follow the
evolution of a particular file, developers must manually find
the commits which include the file.

To overcome the aforementioned problems, inspired by Ap-
ple’s Time Machine, we came up with the idea of supporting
the analysis of a system’s evolution with a visualization that
leverages the screen depth as the time axis. This concept brings
a uniform, version-centered, and seamless history exploration
experience to developers. Our visualization is file-centered,
and it augments the familiar code editor of the IDE by enabling
developers to navigate a file’s history along a depth-based,
perspective timeline, without losing the current context. In
addition, the visualization integrates the following features:

• a code metrics view to illustrate the evolution of metrics
like Lines of Code (LOC), number of methods, and
cyclomatic complexity;

• a zoomable timeline view that represents the history of
commits for the file, and where the user can select an
active range window;

• a detailed commit list view that enables inspection and
navigation through the commits in the selected active
range.

The visualization is implemented as the Code Time Ma-
chine, a lightweight language-independent plug-in for the
IntelliJ Idea IDE.

2See https://code.google.com/archive/p/svn-time-lapse-view/
3See https://github.com/JonathanAquino/git-time-lapse-view
4See http://gitx.frim.nl/

https://youtu.be/meblwFO95oA
https://youtu.be/meblwFO95oA
https://desktop.github.com/
https://code.google.com/archive/p/svn-time-lapse-view/
https://github.com/JonathanAquino/git-time-lapse-view
http://gitx.frim.nl/


2

6

1

3

5

4

8 97

Fig. 1. Code Time Machine main window.

II. THE CODE TIME MACHINE IN A NUTSHELL

Figure 1 depicts the main window of the Code Time
Machine. A tab list represents the list of running Code Time
Machine instances on different files (Figure 1- 1 ). The com-
mits stack view (Figure 1- 2 ) depicts the history of underlying
commits for the file and enables developers to simultaneously
explore the evolution of source code and corollary code
metrics. In case the file has uncommitted changes, a virtual
commit is created for the sake of consistency. Each commit
window in the stack represents a single version of the file. By
hovering on a commit window, details about that commit are
displayed on the top of the window (Figure 2).

Fig. 2. Displaying commit information by hovering over one.

The perspective timeline view displays the commit’s time
(Figure 1- 3 ) and the metrics view shows the evolution of
values of code metrics (Figure 1- 4 ). The developer can pick
14 metrics such as Lines of Code (LOC), number of methods,
and cyclomatic complexity. The metric values are computed
on the fly with no need for any preprocessing.

The timeline view (Figure 1- 5 ) can be used to explore the
commits at different levels of granularity. At the highest level
(Figure 3- A ), a vertical bar represents the total number of
commits for each month.

By zooming in, the timeline gets more detailed and commits
are displayed individually (Figure 3- B ).

B

A

Fig. 3. Different levels of detail in timeline view

The commit list view (Figure 1- 6 ) along the timeline view
provides an alternative mechanism to explore commits. A
developer may select a specific period of time, i.e., an active
range displayed in green, by clicking and dragging on timeline
view. Thus, the commit list view gets updated to show only the
commits pertaining to the active range (Figure 4).

Fig. 4. Updating the commit list view by specifying active range.

A developer can hover over any commit in the commit list
view to inspect the commits’ details on top of the window.



A. History Exploration
Our tool supports many ways to explore commits. First, a

developer can use timeline view and commit list view to focus
on a specific range of commits. In addition, she may start
flying over all commits looking for interesting value changes
in any of the available code metrics. After finding a range of
interest, she can start navigating through commits one by one
either using the keyboard or the mouse wheel.

Diff view. In the commit stack view, commits can be marked
using keyboard keys ‘B’ and ‘N’: Figure 1- 2 shows an
example of marked commits, which are colored in cyan and
green. After marking any two commits and pressing the space
bar, a fully featured Diff window is displayed in a separated
window, without losing the current context (see Figure 5).

Marked commits

Diff Window 

Fig. 5. The Diff window.

Distinguishing Commit Authors. This feature allows de-
velopers to distinguish the commits made by a specific author.
After enabling it, the header of the commits stack windows
will be displayed in the same color when it belongs to the
same author (see Figure 6).

A B

Fig. 6. Example of commits stack view customizability and colorful mode.

Commits Stack view Customization. Using keyboard keys
‘I’/‘K’ and ‘O’/‘L’, a developer can adjust the perspective
of the commits stack view in terms of the maximum visible
depth and the distance between commits windows, respec-
tively. Figure 6 also shows two different configurations of the
perspective.

Commit Sync. The sync drop-down list (Figure 1- 7 ) can
be used to synchronize time between two Code Time Machine
instances representing two files. By pressing the “Sync” button
and choosing one of the other available instances, the current
view flies to the same commit (or the nearest one in the past
if it does not exist) where the other instance is focused on.

B. Time Traveling

Figure 1- 8 shows the UI components dedicated to time
traveling. Pressing the Revert File button reverts the under-
lying file to the currently selected commit, i.e., the topmost
window’s source code. The Revert Project button reverts the
whole project to the selected commit.

Both functionalities keep the developer’s uncommitted
changes safe. After clicking either buttons, the Code Time
Machine window will get closed to let developers compile and
run the project, for example to inspect the runtime behavior
of the application in the selected revision.

To revert the whole project back to the latest commit,
a developer can click the Checkout Latest Commit button
(Figure 1- 9 ). Any previously uncommitted change is still
available in the commit list, and a developer may restore it
for a single file or for the whole project by selecting the
corresponding virtual commit and using the revert buttons
(Figure 1- 8 ).

III. THE CODE TIME MACHINE IN ACTION

Consider a scenario where a developer, Emma, wants to
analyze the evolution of a class within the Apache Commons
Math5 project. As part of a reviewing activity, she focuses on
the Complex.java file, that contains the class with the same
name modeling a complex number.

By using the Code Time Machine she analyzes the evolution
of specific code metrics in the history of the file: Starting from
the very beginning of the file evolution, she spots a dramatic
increase in the LOC, as shown in Figure 2. Comparing the
source code using the Diff window, she notices that the change
relates to a major refactoring, moving methods from the
ComplexUtils class to the Complex class.

To understand more, Emma decides to open the related files,
the ComplexUtils.java file which is merged with the subject
class, and the corresponding test classes ComplexTest.java and
ComplexUtilsTest.java. She moves to the same commit time
corresponding to the refactoring in the subject class using the
“Sync” button in all of them.

Comparing the ComplexUtils.java at that moment, she finds
out that a large number of methods have been deprecated
and are refactored to call back the Complex methods, as she
expected. Besides, she finds out that the moved methods’ unit
tests have been added to ComplexTest class correspondingly.

However, she notices that the ComplexUtilsTest.java file was
not modified, though the unit tests there could be safely deleted
as ComplexUtils methods are just recalling the Complex’s
methods and ComplexTest is now covering them.

To find out whether this class is refactored later or the
developers forgot, she decides to move through ComplexU-
tilsTest.java LOC evolution. She spots the moment when the
ComplexUtilsTest.java LOC has a dramatic drop. Comparing
the source code, she confirms that the unit tests are deleted at
this moment, 5 months after the fusion.

5https://github.com/apache/commons-math

https://github.com/apache/commons-math


At this moment, Emma is wondering whether there was
some logic behind the decision of keeping ComplexUtilsTest
unit tests or not. She speculates that the developers forgot to
delete them. To support her hypothesis, she decides to run
the pruned ComplexUtilsTest on the ComplexUtils class of
the early refactoring time. Thus, first, she reverts the project
to the commit time corresponding to the fusion time. She
runs the tests and they all pass, as it is expected. Then,
she reverts the ComplexUtilsTest.java file to the 5-months-
newer commit when unit tests are removed. By running the
tests again, she observes that the tests still pass, which it
means most probably the developers could have refactored the
ComplexUtilsTest.java right after fusion.

IV. RELATED WORK

There are a number of studies that leverage visualization
techniques to understand system evolution. The Revision Tow-
ers approach [6] models the evolution of a file telling by
whom and to what extent a file has been changed. The
RepoGrams [7] provides a metric-based visualization model
to understand the metrics evolution during the history of a
software project. Khan et al. [8] surveyed the research related
to software architecture visualization. Ogawa and Ma [9] use
a heuristic approach to present repository evolution focusing
on the developers which are involved.

Some researchers have used the matrix as the baseline
for their visualizations, such as a two-dimensional matrix to
present metrics changes and to improve the software evolution
comprehension [10], [11], [12]. Tymchuk et al. [13] propose
a visualization to detect quality fluctuations using a three
dimensional matrix.

A popular technique has been the leveraging of a city
metaphor to depict software systems in 3D [14]. There are also
a number of other works that use the time concept to enable
one to move back and forth through changes [15], [16].

To the best of our knowledge, our tool is the first to bring
the code and code metrics seamlessly next to each other for
system evolution understanding.

V. CONCLUSION AND FUTURE WORK

The Code Time Machine aims to help system evolution
comprehension with the support of visualization, fully inte-
grated in the IntelliJ IDE. It provides a uniform code and code
metrics history exploration and enables developers to revert a
file or a system to a specific version seamlessly.

The main view of the tool integrates a variety of different
code metrics right next to the source code. The tool also
enables developers to mark two versions and compare their
source code to figure out how or why the value of a code
metric has changed at some point in time.

As part of our future work, we plan to extend the file history
view and enable developers to have the same seamless history
navigation experience in terms of package and project scope.

ACKNOWLEDGEMENTS

We gratefully acknowledge the financial support of the
Swiss National Science foundation for the project “HI-SEA”
(SNF Project No. 146734).

REFERENCES

[1] T. Gı̂rba and S. Ducasse, “Modeling history to analyze software evo-
lution,” Software Maintenance and Evolution: Research and Practice,
vol. 18, pp. 207–236, 2006.

[2] A. González-Torres, F. J. Garcı́a-Peñalvo, and R. Therón, “A framework
for the evolutionary visual software analytics process,” in Proceedings
of WSKS 2011 (4th World Summit on the Knowledge Society). Springer,
2011, pp. 439–447.

[3] A. H. Caudwell, “Gource: visualizing software version control history,”
in Proceedings of OOPSLA 2010 (25th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications).
ACM, 2010, pp. 73–74.

[4] M. Ogawa and K.-L. Ma, “code swarm: A design study in organic soft-
ware visualization,” IEEE Transactions on Visualization and Computer
Graphics, vol. 15, no. 6, pp. 1097–1104, 2009.

[5] L. Voinea, A. Telea, and J. J. Van Wijk, “Cvsscan: visualization of code
evolution,” in Proceedings of SOFTVIS 2005 (2nd ACM Symposium on
Software Visualization). ACM, 2005, pp. 47–56.

[6] C. M. Taylor and M. Munro, “Revision towers,” in Proceedings of VIS-
SOFT 2002 (1st IEEE International Workshops on Visualizing Software
for Understanding and Analysis). IEEE, 2002, pp. 43–50.

[7] D. Rozenberg, I. Beschastnikh, F. Kosmale, V. Poser, H. Becker,
M. Palyart, and G. C. Murphy, “Comparing repositories visually with
repograms,” in Proceedings of MSR 2016 (13th International Conference
on Mining Software Repositories). ACM, 2016, pp. 109–120.

[8] T. Khan, H. Barthel, A. Ebert, and P. Liggesmeyer, “Visualization
and evolution of software architectures,” in Proceedings of IRTG 1131
Workshop 2011, VLUDS 2011 (2nd Visualization of Large and Unstruc-
tured Data Sets: Applications in Geospatial Planning, Modeling and
Engineering), ser. OpenAccess Series in Informatics (OASIcs), vol. 27.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2012, pp. 25–42.

[9] M. Ogawa and K.-L. Ma, “Software evolution storylines,” in Proceed-
ings of SOFTVIS 2010 (5th ACM symposium on Software visualization).
ACM, 2010, pp. 35–42.

[10] M. Lanza, “The evolution matrix: Recovering software evolution using
software visualization techniques,” in Proceedings of IWPSE 2001 (4th
International Workshop on Principles of Software Evolution). ACM,
2001, pp. 37–42.

[11] M. Lanza and S. Ducasse, “Understanding software evolution using a
combination of software visualization and software metrics,” in Proceed-
ings of Langages et Modèles à Objets (LMO’02). Lavoisier, 2002, pp.
135–149.

[12] M. Lanza, S. Ducasse, H. Gall, and M. Pinzger, “Codecrawler — an
information visualization tool for program comprehension,” in Proceed-
ings of ICSE 2005 (27th IEEE International Conference on Software
Engineering). ACM, 2005, pp. 672–673.

[13] Y. Tymchuk, L. Merino, M. Ghafari, and O. Nierstrasz, “Walls, pillars
and beams: A 3d decomposition of quality anomalies,” in Proceedings
of VISSOFT 2016 (4th IEEE Working Conference on Software Visual-
ization). IEEE, 2016, pp. 126–135.

[14] R. Wettel and M. Lanza, “Codecity: 3d visualization of large-scale
software,” in ICSE Companion ’08: Companion of the 30th ACM/IEEE
International Conference on Software Engineering. ACM, 2008, pp.
921–922.

[15] L. Hattori, M. Lungu, and M. Lanza, “Replaying past changes on multi-
developer projects,” in Proceedings of IWPSE-EVOL 2010 (Joint 11th
International Workshop on Principles of Software Evolution and 5th
ERCIM Workshop on Software Evolution), 2010, pp. 13–22.

[16] L. Hattori, M. D’Ambros, M. Lanza, and M. Lungu, “Software evolution
comprehension: Replay to the rescue,” in Proceedings of ICPC 2011
(19th IEEE International Conference on Program Comprehension),
2011, pp. 161–170.


