
Towards Visual Reflexion Models
Marcello Romanelli, Andrea Mocci, and Michele Lanza

REVEAL @ Faculty of Informatics — University of Lugano, Switzerland

Abstract—Source code and models of a software system, like
architectural views, tend to evolve separately and drift apart
over time. Previous research has shown that it is possible to
effectively relate them through a reflexion model, defined as a
“summarization of a software system from the viewpoint of
a particular high-level model”. While effective, the process of
constructing and analyzing reflexion models was supported by
text-based tools with limited visual representation. With the
original approach, it was relatively hard to understand which
parts of the system were represented, and which parts of the
system contributed to specific relations in the reflexion model.

We present our vision on augmenting the construction and
analysis of reflexion models with visual support, effectively
providing the basis for visual reflexion models. We describe our
approach, implemented as a web-based application, and two
promising case studies involving two open-source projects.

I. Introduction
Despite long-lasting research on software architecture, the

typical vehicle to describe the high-level structure of a soft-
ware system often consists of informal diagrams drawn on
paper or on the whiteboard [1]. Since they represent a devel-
oper’s mental model, such diagrams are better communicated
with simple visual metaphors, rather than be forced to adhere
to a specific architectural description language, that is rarely
adopted in practice despite the success in academia [2].

A fundamental issue is that there is no automatic way to
relate source code artifacts and the high-level model of a
developer. For this reason, the source code and the model
of a system evolve separately and tend to drift apart over
time [3]. Murphy et al. introduced reflexion models to solve
this problem and effectively relate source code and high-
level abstractions of a system [4]. A reflexion model is a
“summarization of a source model of a software system from
the viewpoint of a particular high-level model”.

Our vision is to investigate how visualization and visual
features may enrich both the expression and construction
of reflexion models, providing full-fledged visual reflexion
models. As an initial outcome of this investigation, we show
how simple interactive visualization techniques may help to
construct reflexion models, understand the coverage of the
models with respect to the original system, and enable an
effective consistency analysis between the high-level model
and the reflexion model. As an early assessment of our
approach, we constructed two case studies from two well-
known open-source projects, JHotDraw and ArgoUML, by
extracting, analyzing and refining two respective architectural
views. The contributions we make with this paper are (1) a
novel visual approach for building and analyzing reflexion
models, and (2) a web-based implementation of the visual
reflexion model approach.

II. ReflexionModels and RelatedWork

The reflexion model approach unifies reverse architecting
a software system model and its comparison with a high-
level model, following 5 steps: (1) The developer specifies
a high-level model of the system as it is present in her own
mind. (2) She extracts a source model from the source-code
artifacts by taking into account the structure of the repository
in the file system and the textual content of the source code.
(3) The developer describes a mapping between the source
model entities and the entities in the high-level model. (4)
The reflexion model is computed. (5) The reflexion model is
inspected/analyzed by the developer.

The original approach by Murphy et al. has been success-
fully applied to very complex systems [4], such as understand-
ing the architecture of Microsoft Excel. A developer reported
that in 2 weeks he was able to understand concepts of the
system that with documentation-based approaches would have
taken more than 2 years. The reflexion model approach was
supported by text-based tools with limited visual representa-
tion. We believe that some limitations, like the difficulty to
understand which parts of the system were represented, and
which parts of the system contributed to specific relations in
the reflexion model, can benefit from a visual approach.

The reflexion model approach is related to “reverse ar-
chitecting”, described by Krikhaar as “a flavor of reverse
engineering that concerns all activities for making existing
(software) architectures explicit” [5]. In Riva’s reverse archi-
tecting approach, the analysis starts from code and moves
towards the architecture, to extract models of a software
system starting from its implementation [6]. Bowman et al.
call those two models respectively conceptual and concrete
architecture [7]. The former represents “how developers think
about the system” while the latter represents “the relationships
that exist in the implemented system”. Riva’s approach aimed
at assisting the activities of software architecture recovery
trough six macro-phases, from the definition of architectural
concepts to the construction and analysis of the architectural
view. Mens et al. proposed an approach to document and co-
evolve high-level structural regularities in code [8]. Among
the tools developed, the Intensional View Editor can be used
to produce intensional views, i.e., a set of source-code entities
(e.g., classes) which share a common structure. An intention
is an executable description that when evaluated produces the
set of entities (i.e., the extension) belonging to the view.

We create a bridge between these two streams of research,
by extending the original reflexion model approach [4] with
interactive visualization to enable “visual reflexion models”.



Fig. 1: Mapping Construction View

III. Visual ReflexionModels

We adapted and reimplemented the original approach by
integrating and providing visual support for reflexion models
in a web application (see Figure 1). We use the Famix meta-
model [9] to represent object-oriented systems. While the use
of Famix enables detailed querying and reasoning of source
models, the core contribution of this paper focuses on the
visual support for the construction of mappings (step 3 of the
original approach) and reflexion models analysis (step 5).

A. Visual support for Mapping Construction

The original reflexion model approach [4] adopted regular
expressions to specify mappings. We also adopt regular expres-
sions, but we exploit the more detailed structural information
of Famix to construct more specific queries that can identify
entities both by name and by logical relationships (e.g., all the
classes contained in a namespace with a given name).

Figure 1 shows the main view for the construction of
mappings, supported by visualizing the source code with a
squarified treemap. Treemaps have become a de facto method
to visualize large, tree-structured information spaces using
nested rectangles [10]. Each branch of the tree is a rectangle,
which is then sub-divided in smaller rectangles representing
the various sub-branches. The area of the leaf nodes is
proportional to a specified dimension of the data. We adopt the
squarified treemaps layout algorithm by Bruls et al., which,
by working on both dimensions (horizontal and vertical), tries
to approximate each sub-rectangle to the shape of a square.
With this algorithm a treemap acquires a more understandable
layout. While the use of treemaps for software visualization is
not novel (e.g., [11]), in the context of mapping construction,
the treemap contributes in two main aspects: (1) It gives an
immediate view of which parts of the system are covered
by the mappings; and (2) it helps to relate the high level
mental-model entities with the source code logical structure,
like namespace/package organization.

Mappings are constructed as union of queries, correspond-
ing to disjoint sets of entities. When editing a specific mapping
for a high-level entity, the view is specialized into the query
view, which shows each query with a different color (Figure 2).

(a) Mapping view.

(b) Query view.

Fig. 2: Mapping and detailed query view.

The separation between these different views is fundamental
to decompose the mapping construction and visualize the
different components that characterize each mapping. It is
also important when analyzing the reflexion model. We also
devised two functionalities that further help the construction
of mappings: elision and focus.

Elision hides all the entities of a mapping from the treemap.
It is effective when the developer is confident of a mapping,
i.e., that it represents a given high-level entity (e.g., after
checking the covered source entities). Elision reduces the
number of entities shown in the treemap,the effort of looking
for entities in the source model that may need to be included in



another mapping, and alleviates the effort of constructing new
mappings when the previous ones have been consolidated.

Focus instead forces the treemap to show only the entities
of a particular mapping. When the developer wants to refine
a mapping and check if all the entities pertain to it, it may be
hard to have all the system shown in the treemap. Focusing
facilitates this task, since the developer can check fewer
entities while keeping their logical organization in the system.

B. Visual Support for Reflexion Model Analysis
The last step exploits visualization to support analysis. Fig-

ure 3 shows an example of reflexion model: Arrows represent
relations (e.g., calls) between high-level model entities. When
an arrow is present in both the high-level and the reflexion
model, it is called convergent and it is solid and colored in
green; when it is present in the reflexion model but not in
the high-level model it is called absent and it is dashed and
red; when it is present in the high-level model but not in the
reflexion model it is called divergent and it is red and solid.

Fig. 3: A Reflexion Model.

In the original approach [4], the user could inspect the
original relations in the source model as a list. We provide
two ways to visually inspect the reflexion model at two levels
of abstraction: the arc-to-query and the query-to-entities view.

The arc-to-query view (Figure 4) details a convergent or
absent arc by showing which queries in each single entity
contribute to the arc. Each box represents a query contained
in a separate convex hull, representing its high-level entity.

Fig. 4: Relations between mappings in the arc-to-query view.

The query-to-entities view (Figure 5) details a relation
between two queries through a treemap and a list of relations
between the related entities in the source model (e.g., method
calls). The user can select a specific relation between two en-
tities and the view gets updated by highlighting the respective
entities in the treemap.

(a) Default view

(b) A single relation highlighted

Fig. 5: Inspection of a relation between entities in two queries.

Summing Up. We discussed the visual support to con-
struction and analysis of reflexion models provided by our
approach. We illustrated how squarified treemaps can help in
the construction of mappings, and how specialized, dedicated
visualizations can help to understand convergent and absent
arcs in reflexion models. In the next section, we discuss two
preliminary case studies constructed with our approach.

IV. Case Studies

JHotDraw. We apply our approach to construct a reflex-
ion model of the model-view-controller (MVC) architectural
pattern [12] of JHotDraw, a Java framework to create draw-
ing editors. As pointed out in the official documentation of
JHotDraw, it implements MVC. We considered a partial UML
diagram extracted from the documentation, shown in Figure 6,
as a reference for the reflexion model construction.

Fig. 6: A UML diagram of JHotDraw.

The diagram above is partial, so we can immediately see
from the treemap view that the coverage of the system is low
and so we expected the reflexion model to contain (at least)
absent edges. By inspecting the packages where the classes
from Figure 6 are located, we found that many subclasses
do not belong to any entity in the reflexion model. We



started refining the reflexion model mapping by adding such
subclasses and we obtained the mapping shown in Figure 1,
that shows also the classes pertaining to the Java library. All
the remaining classes are essentially utility classes.

ArgoUML is an open-source round-trip modeling tool for
UML. Despite an active community, the official manual of Ar-
goUML1 does not contain an official description of the system
architecture. We considered a possible architecture shown in
Figure 7, taken from a Software Tools and Techniques course
taught at the University of Auckland2.

Fig. 7: High-level architecture of ArgoUML.

For space reasons, we consider only a subset of the possible
entities: the ArgoUML UI, GEF, Design Critics, UML Meta-
Model and Code Generation. One of the positive aspects of
ARGOUML is that the architecture is related to the logical
organization of classes in packages. From the documentation
we discovered that each component in ARGOUML must place
its UI classes in a package ending with UI. Thus, we define
a single mapping for the ArgoUML UI entity matching every
class contained in a package ending in UI. This matched a
large portion of the system. Similar structural conventions
hold for code generators and design critics. The GEF com-
ponent and the meta-model are located in specific packages.
Figure 8 shows the computed reflexion model of ARGOUML
for the reference architecture. It mostly matches the reference
architecture, except for some absent arcs. Such absences are
consistent after checking the involved source code entities.

V. Conclusion

We presented a preliminary approach, implemented as an
interactive web application, to augment the construction and
analysis of reflexion models with ad-hoc visualizations, pro-
viding the basis for visual reflexion models.

While our preliminary results look promising, we plan
to research on two missing pieces on our long-term vision.
First, we will refine the mechanisms used to analyze reflexion
models to support a better workflow for refinement. Second,
we plan to augment the expression of reflexion models with
more than just boxes and arrows, for example by using well
established visual metaphors typical of architectural descrip-
tion languages. Finally, we plan to fully evaluate our approach

1See http://argouml-stats.tigris.org/documentation/manual-0.32/
2See http://tinyurl.com/law2r6g

Fig. 8: Reflexion Model of ArgoUML.

through more case studies, possibly involving industry, at a
level of complexity close to the one used to assess the original
reflexion model approach by Murphy et al. [4].

Acknowledgments. We gratefully acknowledge the finan-
cial support of the Swiss National Science foundation for the
project “ESSENTIALS” (SNF Project No. 153129).

References

[1] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, “Let’s go to
the whiteboard: How and why software developers use drawings,” in
Proceedings of the ACM SIGCHI Conference on Human Factors in
Computing Systems (CHI ’07). ACM, 2007, pp. 557–566.

[2] J. Kramer, “Whither software architecture? (keynote),” in Proceedings
of the 34th International Conference on Software Engineering (ICSE
2012), ser. ICSE 2012. IEEE Press, 2012, pp. 963–963.

[3] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software architecture:
foundations, theory, and practice. Wiley Publishing, 2009.

[4] G. Murphy, D. Notkin, and K. Sullivan, “Software reflexion models:
bridging the gap between design and implementation,” IEEE Transac-
tions on Software Engineering, vol. 27, no. 4, pp. 364–380, Apr 2001.

[5] R. Krikhaar, “Reverse architecting approach for complex systems,” in
Proceedings of the 13th International Conference on Software Mainte-
nance (ICSM ’97), Oct 1997, pp. 4–11.

[6] C. Riva, “Reverse architecting: An industrial experience report,” in
Proceedings of the 7th Working Conference on Reverse Engineering
(WCRE’00). IEEE Computer Society, 2000, pp. 42–.

[7] I. T. Bowman, R. C. Holt, and N. V. Brewster, “Linux as a case study: Its
extracted software architecture,” in Proceedings of the 21st International
Conference on Software Engineering (ICSE ’99), 1999, pp. 555–563.

[8] K. Mens, A. Kellens, F. Pluquet, and R. Wuyts, “The intensional view
environment.” in Proceedings of the 21st International Conference on
Software Maintainance (ICSM ’05), 2005, pp. 81–84.

[9] S. Demeyer, S. Tichelaar, and S. Ducasse, “FAMIX 2.1 - The FAMOOS
Information Exchange Model,” Univ. of Bern, Tech. Rep., 2001.

[10] B. Johnson and B. Shneiderman, “Tree-maps: A space-filling approach
to the visualization of hierarchical information structures,” in Proceed-
ings of the 2nd IEEE Conference on Visualization (VIS ’91). IEEE
Computer Society Press, 1991, pp. 284–291.

[11] J. J. Van Wijk and H. van de Wetering, “Cushion treemaps: Visualization
of hierarchical information,” in Proceedings of the 1999 IEEE Sympo-
sium on Information Visualization (INFOVIS ’99). Washington, DC,
USA: IEEE Computer Society, 1999, pp. 73–78.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Pearson, 1994.


