
The Plague Doctor:
A Promising Cure for the Window Plague

Roberto Minelli, Andrea Mocci, Michele Lanza
REVEAL @ Faculty of Informatics — University of Lugano, Switzerland

Abstract—Modern Integrated Development Environments
(IDEs) are often affected by the “window plague”, an overly
crowded workspace with many open windows and tabs. The main
cause is the lack of navigation support in IDEs, also due to the
many—and not always obvious—complex relationships that exist
between program entities.

Researchers have shown that it is possible to mitigate the
window plague by exploiting the data obtained by monitoring
how developers interact with the user interface of the IDE.
However, despite initial results the approach was never fully
integrated in an IDE.

In our previous work, we implemented DFLOW, an automatic
interaction profiler that monitors all the fine-grained interactions
of the developer with the IDE. Here we present a first prototype of
the PLAGUE DOCTOR, a tool that seamlessly detects the windows
that are less likely to be used in the future and automatically
closes them. We discuss our long term vision on how to fully
exploit the interaction data recorded by DFLOW to provide a
more effective cure for the window plague.

I. INTRODUCTION

Modern language paradigms, such as object oriented pro-
gramming, introduced a number of benefits in terms of how
software systems are developed, structured, and organized:
Better separation of concerns, modularity, and reusability are
mere examples. However, this comes at a cost: Program
entities are organized in hierarchies, stored over complex
repositories, and thus there can be complex, hidden, and
transitive relationships among them [1], [2]. This significantly
hampers program comprehension that, among other objectives,
aims to explore and understand such complex relationships.

Integrated Development Environments (IDEs) are the pri-
mary means developers use to manipulate source code. To
explore source code artifacts, IDEs provide two main user
interface (UI) paradigms: window-based, like in the PHARO
IDE1, or tab-based, like in the ECLIPSE IDE2. Neither of
the two paradigms effectively supports the navigation of the
complex software space [3]. In fact, both paradigms force
developers to open one tab (or window) per program entity,
leading to what researchers called “window plague” [4]. The
window plague is the tendency of IDEs to quickly become
overcrowded by unused windows (or tabs). Figure 1 shows
an IDE after only a few minutes of development manifesting
the window plague. Moreover, IDEs do not keep track of
relationships among windows and provide little or no support
to automatically maintain a low level of entropy inside the
IDE, e.g., by closing unused windows.

1See http://pharo.org
2See http://eclipse.org

Researchers have shown that it is possible to mitigate the
window plague by monitoring how developers interact with
the UI of the IDE and exploiting such data [4]. Röthlisberger
et al. developed a preliminary cure for the window plague
in Autumn Leaves. Autumn Leaves is an extension for the
PHARO IDE that detects windows that are unlikely needed for
further use and closes them. It also adds visual clues to the
more important ones to provide cognitive feedback to the IDE.
The authors conducted a benchmark evaluation with promising
results. Unfortunately, Autumn Leaves remained a prototype,
it was never integrated in the IDE and no one could take
advantage of its potential benefits. We believe that one of the
reasons for this was overly coarse grained data leveraged by
Autumn Leaves, and it remains an open issue to quantify how
much the window plague hinders development.

Fig. 1. A screenshot of the PHARO IDE manifesting the window plague.

In our previous work, we implemented DFLOW, a silent
interaction profiler that automatically monitors all the fine-
grained interactions of the developer with the IDE [5]. Util
now we only used the recorded interactions a posteriori to
visualize development sessions [6] or to study the behavior of
developers, e.g., measuring how developers spend their time in
the IDE [5]. Our long-term goal is to leverage interaction data
to better support the workflow of developers [7]. The current
work is our first step towards this vision. Since the window
plague is a relevant problem for the PHARO community, we
devised and implemented a doctor for this plague. In this paper
we present the PLAGUE DOCTOR, a tool inspired by Autumn
Leaves, that exploits the data collected by DFLOW to mitigate
the window plague. We also discuss how to fully exploit fine-
grained interaction data to provide a more effective cure for
the window plague.



Importance Pinned

Normal windows

Low High

Candidate for closure

Age
Young Old

2

1

4
3

Fig. 2. A screenshot of the PHARO IDE with the PLAGUE DOCTOR installed depicting the same environment as in Figure 1.

II. THE PLAGUE DOCTOR

Figure 1 shows the PHARO IDE affected by the window
plague after a few minutes of development. The UI presents
the following problems:

• It is overcrowded by a significant number of apparently
similar, overlapping windows;

• A developer cannot easily identify which windows are
most relevant for the current development context and
for her next task;

• Some of the opened windows—probably—deserve to be
closed, but the IDE does not provide means to automat-
ically lower its level of entropy, e.g., closing windows.

Figure 2 shows the same environment depicted in Figure 1
with the PLAGUE DOCTOR enabled. The tool uses interaction
data to compute the importance of windows, and thus the
likelihood that they will be used again in the future. For
example, a window becomes more important when a user types
on it, or when she uses its UI components to perform a task.

The PLAGUE DOCTOR decorates the windows to keep the
developer aware of their computed importance. A heat-scale
from light blue (i.e., less important, see Figure 2.1) to bright
red (i.e., more important, see Figure 2.2) reduces the cognitive
load of a developer that faces this IDE: It is likely that she
can concentrate her focus on the most warmer (important)
windows and ignore the colder windows.

In addition to the color scale for the important windows,
the PLAGUE DOCTOR lets the user identify the windows that
are less likely to be used in the future. When less important
windows become candidates for closure, the PLAGUE DOC-
TOR uses a gray scale from dark to bright gray to indicate their
age, i.e., in terms of how many user actions happened after the
window became a candidate (see Figure 2.3). By default, the
PLAGUE DOCTOR has a grace period of 5 user actions before
closing a window that has been marked as a candidate. When
the grace period expires, the doctor automatically closes the
window, asking for user confirmation if configured to do so.

For some tasks, the developer may become aware that an
unused window is still important for a future task, and thus
she might require to avoid its closure in an explicit manner.
The PLAGUE DOCTOR provides the ability to pin a window,
that is, exclude it from the potential candidates for closure.
Pinned windows are colored in light yellow (see Figure 2.4).

The PLAGUE DOCTOR is just the tip of the iceberg. Below
the water silently lies DFLOW, our non-intrusive interaction
data profiler [5]. While the developer programs, it observes all
the user interactions, from UI events such as moving a window,
to meta events such as the creation of a new class, down
to the granularity of mouse and keyboard events. DFLOW
then generates events that other tools, such as the PLAGUE
DOCTOR, can intercept, process, and exploit.



A. Models and Strategies

The PLAGUE DOCTOR defines the “importance” (or
weight) of a window in the current development context.
To compute it, it maintains two weight models: the window
interaction model and the program entity model. The global
weight of a window, is computed by combining its weight from
the window interaction model and the weight of the program
entity displayed in the window itself (if any). To update these
models the doctor uses a weighting strategy. Closing strategies,
instead, determine which windows are candidates for closure.
The user selects one weighting strategy and one or more
closing strategies, i.e., we call them active strategies. After
every interaction the active strategies are applied: Models are
updated, windows are decorated and closed, if needed.

The Program Entity Model associates a weight to each
program entity (i.e., class or method) observed during a
development session. Every time the developer interacts with
an entity (e.g., observe, modify) its weight gets updated,
according to the defined weighting strategy. The weight of a
program entity is persisted even if all the windows that display
that entity get closed. This allows the doctor to keep track of
the entities that are relevant in the current development session.

Similarly, the Window Interaction Model associates a
weight to each open window during a development session.
The weight gets updated at each interaction with the specific
window (e.g., on window focus, minimization, movement),
and depends on the active weighting strategy. When a window
is closed, its weight is removed from the model.

A Weighting Strategy determines how weights are up-
dated. In the original Autumn Leaves strategy, every user
interaction brings a particular, fixed, weight update. The doctor
implements this strategy, and uses the original parameters and
weight updates suggested by Röthlisberger et al. [4]. However,
we will investigate the effectiveness of the original parameters.
The original strategy prescribes that 50% of the weight updates
of program entities is propagated following structural source
code relationships (i.e., method propagates to its defining class,
class to its direct superclasses and subclasses). Currently, only
one weighting strategy at the time could be active.

A Closing Strategy is responsible to determine which
windows are candidate for closure. For example, a strategy
that involves the weight models can define a threshold (i.e.,
sensitivity) on the weight of windows. As in the case of
Autumn Leaves, we implemented a strategy that closes all the
windows whose weight is below a customizable threshold. The
default approach uses a percentage of the average weight of all
the windows. An innovation with respect to Autumn Leaves is
that the user can activate more than one closing strategy at the
time. A strategy could consider the weight models or ignore
them, e.g., one might want to have a maximum number of
open windows per window type. In an IDE, often, there are
different kinds of windows: workspaces, code browsers, test
runners, etc. We also implemented a strategy that closes the
windows with lowest weight of a given type, when the IDE
reaches the maximum amount of open windows for that type.

Fig. 3. The settings of the PLAGUE DOCTOR.

B. Advocatus Diaboli

In this section we play the devil’s advocate and address
some criticisms that can be raised against our approach.

It only works for window-based IDEs. Even though our
prototype has been implemented in PHARO, a window-based
IDE, the approach is not specific to such environments.
The default weighting and closing strategies can be applied
directly to tab-based IDEs such as ECLIPSE.
The Plague Doctor does not differ from Autumn Leaves.
Our tool is indeed inspired by Autumn Leaves, and mimics
all its functionalities, but it has a number of advantages:
. It exploits more and better interaction data. The doctor

can leverage all the fine-grained data recorded by DFLOW.
For example, using the code browser to navigate source
code might increase the weight of a window and all the
visited entities. Debugging events can be leveraged to
increase the weight of the entities being investigated.

. It is extensible. The PLAGUE DOCTOR is designed to
be extensible. For example, adding a new weighting (or
closing) strategy requires minimal effort, i.e., a new class
copied from a template and a method that implements
the strategy per se. The new strategy will immediately
appear in the settings of the PLAGUE DOCTOR (depicted
in Figure 3) and can replace the current one right away.

. It is customizable. The PLAGUE DOCTOR has a number
of settings, depicted in Figure 3, that the developer can use
to customize it. For example, all the colors are contained
in a theme class that can be duplicated and changed to
have a novel and more appealing color scheme.

. It is real. Differently from Autumn Leaves, the PLAGUE
DOCTOR is currently available3 and can be installed in
the PHARO IDE. Currently, we are working with the
community and gathering qualitative feedback towards the
integration of the PLAGUE DOCTOR in the PHARO image.

3See http://goo.gl/wUtd7O



III. LONG-TERM VISION

The prototype of the PLAGUE DOCTOR described in Sec-
tion II is only the first step towards fully exploiting the data
collected by DFLOW while the developer is programming.
This section discusses our future plans to provide a more
effective cure for the window plague leveraging DFLOW data.

Fine-tuning the existing strategies. Weighting and closing
strategies are parametrizable. The value of the weight update
after a particular user interaction, for example, is a parameter
of the weighting strategy. The usefulness of the PLAGUE
DOCTOR strictly depends on how good the strategies are. Until
now, we reused the values proposed by the authors of Autumn
Leaves [4]. The authors used a benchmark evaluation to devise
such values. We are in contact with the core developers of the
PHARO community, and we plan to conduct a detailed user
evaluation with them to fine-tune these parameters backing
them up with evidence from interaction data.

Novel Strategies. Our initial PLAGUE DOCTOR prototype
makes it easy to add new strategies to weight or close windows
in different ways. Our plan is to devise a number of different
strategies and test them in real settings scenarios, i.e., involving
real developers. A qualitative study where we can get feedback
from developers about our approach could also trigger new
ideas for novel strategies. Since the PLAGUE DOCTOR allows
multiple closing strategies to be enabled, we should also
investigate which combinations of strategies perform better.

Self-Adaptation. Our long term vision focuses on the self-
adaptability of IDEs [7]. We believe that tools should also be
subject to self-adaptation. In this context, for example, strate-
gies could be self-adaptable. Consider the closing strategy that
uses a threshold to decide which windows to close. Suppose
that, when the developer realizes that the PLAGUE DOCTOR
wants to close a window, she pins that window to force the
doctor to leave it open. The doctor must lose confidence in
itself and relax its sensitivity. In the opposite case, if the doctor
closes windows without the user playing against, it should
slightly increase its confidence and increase its sensitivity.

Exploiting more interactions. The PLAGUE DOCTOR cur-
rently exploits only a few more user interactions with respect
to Autumn Leaves. Potentially, it can leverage all the fine-
grained interactions collected by DFLOW [5]. Mouse events,
for example, can be factored in the weighting strategies. In
fact, developers might use the mouse as a reading device,
i.e., by following the source code that they are reading with
the mouse cursor. Another source of information collected by
DFLOW are debugging events. If a developer spends time in
debugging a piece of code, it is likely that the program entities
contained in this code snippet are relevant for the current
development session, thus their weights should increase.

Evaluation Plan. With DFLOW we recorded more than
1,000 development sessions from more than 20 developers. To
validate the PLAGUE DOCTOR, we plan to do a benchmark
evaluation and feed the recorded sessions to the tool. The
idea is to define the level of entropy of the IDE (i.e., how
many unused windows are left open) and measure if and

how it varies with the support of the PLAGUE DOCTOR. We
also aim to obtain further evidence of the importance of the
window plague in practice. Our expectation is that the tool is
effective to reduce the level of entropy while being as precise
as possible. By precise we mean that the PLAGUE DOCTOR
should only close windows that the developer would not reuse
in the future. There is a trade-off between precision and
effectiveness that remains to be investigated and optimized.
Another study could focus on the time spent by developers
in program understanding tasks. From a previous analysis
of recorded interaction data, we found that developers spent
a considerable amount of time (ca. 15%) in fiddling with
the UI of the IDE (e.g., by rearranging windows that create
confusion in the IDE). Since the window plague is one possible
reason behind this, we should investigate if approaches such
as Autumn Leaves or the PLAGUE DOCTOR reduce the time
wasted by developers in fiddling with the UI of the IDE. Last
but not least, we also plan to conduct a qualitative evaluation
to gather direct feedback from developers.

IV. CONCLUSIONS

Developers construct and evolve software systems using
IDEs, which offer little support to navigate the complex and
implicit relationships among program entities. IDEs force
developers to open one window (or tab) per program entity,
leading to what researchers called “window plague”, an overly
crowded workspaces with many open windows (or tabs).

To mitigate this plague, we implemented the PLAGUE
DOCTOR, a tool that leverages fine-grained interaction data
collected by DFLOW. It computes the importance of windows,
decorates them to reduce the cognitive load of a developer
facing the IDE, and closes the windows that are less likely
to be used again in the future. We also discussed our future
plans towards a more effective cure for the window plague.

Acknowledgements
We gratefully acknowledge the financial support of the

Swiss National Science foundation for the project “HI-SEA”
(SNF Project No. 146734).

REFERENCES

[1] A. Dunsmore, M. Roper, and M. Wood, “Object-oriented inspection in the
face of delocalisation,” in Proceedings of ICSE 2000 (22nd International
Conference on Software Engineering), 2000, pp. 467–476.

[2] N. Wilde and R. Huitt, “Maintenance support for object-oriented pro-
grams,” IEEE Transactions on Software Engineering, vol. 18, no. 12, pp.
1038–1044, 1992.

[3] J. Singer, R. Elves, and M.-A. Storey, “Navtracks: Supporting navigation
in software,” in Proceedings of IWPC 2005 (13th International Workshop
on Program Comprehension), 2005, pp. 173–175.

[4] D. Roethlisberger, O. Nierstrasz, and S. Ducasse, “Autumn leaves: Curing
the window plague in IDEs,” in Proceedings of WCRE 2009 (16th
Working Conference on Reverse Engineering), 2009, pp. 237–246.

[5] R. Minelli, A. Mocci, M. Lanza, and T. Kobayashi, “Quantifying program
comprehension with interaction data,” in Proceedings of QSIC 2014 (14th
International Conference on Quality Software), 2014, pp. 276–285.

[6] R. Minelli, A. Mocci, M. Lanza, and L. Baracchi, “Visualizing developer
interactions,” in Proceedings of VISSOFT 2014 (2nd IEEE Working
Conference on Software Visualization), 2014, pp. 147–156.

[7] R. Minelli, “Towards Self-Adaptive IDEs,” in Proceedings of ICSME
2014 (30th International Conference on Software Maintenance and
Evolution), Doctoral Symposium, 2014, p. 666.


