
Program Comprehension through Software Habitability

Richard Wettel and Michele Lanza
Faculty of Informatics - University of Lugano, Switzerland

Abstract

The comprehensive understanding of a large software
system is a daunting task because of the sheer size and com-
plexity that such systems exhibit. In this context software vi-
sualization is a widely used approach, since well-conceived
visual representations allow one to spot patterns. The large
majority of visualizations use 2D representations, because
they are easier to construct, navigate, and interact with. 3D
representations usually exploit the 3rd dimension as an ad-
ditional means to encode quantitative values, which is dis-
missed by many as a too small benefit in the light of the
added complexity in terms of navigation and interaction.

We argue that a well-constructed, interactive, and eas-
ily navigable 3D visualization can greatly help in program
comprehension tasks by supporting habitability. Habitabil-
ity transmits to a developer the notion that a software sys-
tem is a physical space with strong orientation points. This
can give developers the feeling of being “at home” in a
system. We propose a 3D visualization of software sys-
tems hinging on the city metaphor. It is useful for program
comprehension because it leads to clarity about the overall
structure of a system. We apply our visualization technique
on two large systems and discuss its benefits and drawbacks.

1 Introduction

There’s no place like home. Developers spend an impor-
tant part of their time constructing complex software sys-
tems, an activity termed as programming, which is accord-
ing to [22] “a kind of writing”. Writing code is a human and
mental activity. The more familiar we are with a program,
the easier it is to understand the impact of any modification
we may want to perform, i.e., familiarity has an important
influence on program comprehension strategies [18]. Fa-
miliarity is strongly related to habitability, which is what
makes a place livable, like home. R. Gabriel [9] states that
“habitability is the characteristic of source code that enables
programmers, coders, bug-fixers, and people coming to the
code later in life to understand its construction and inten-
tions [...]”.

We argue that habitability is a neglected but important
concept of program comprehension. While Gabriel’s posi-
tion stems from the point of view of language design, we
take the source code and its language as a given fact. How
can we make an existing system habitable in the context
of program comprehension and reverse engineering? In an
ideal world we would want to obtain a mental model of a
system like the one that a system expert has, who spends
large amounts of time reading and writing code. This may
take months or years, and since program comprehension
is usually performed under time pressure, is not a viable
option. A solution is proposed by the reengineering pat-
tern “Read all the code in hour” [4], a technique to as-
sess the state of a software system by means of a brief
but intensive code review, which helps in familiarizing with
the system code. Another program comprehension tech-
nique is visualization [16], which has been widely and suc-
cessfully used by the program comprehension community
[2, 7, 11, 12, 17, 19].

We claim that many of the proposed visualizations, de-
spite their proven usefulness, fail at transmitting to the
viewer a sense of habitability. In the case of 2D visualiza-
tions -the large majority- the viewer looks at a system like a
picture, without any notion of physical space. Many of the
3D visualizations (such as [12, 14]) on the other hand fail
at producing a notion of locality because the objects in the
3D space can be freely moved and the viewer is allowed too
much freedom of movement, leading to disorientation – one
of the main arguments against 3D visualizations.

We propose a 3D visualization technique which supports
the concepts of habitability and locality by using as cen-
tral city metaphor complemented by other decisions with
respect to appropriate visual representations. The viewer
perceives a system as a city with visual orientation points
and a diminished but more realistic freedom of movement
and interaction.

Using our technique we visualize two large software sys-
tems, namely ArgoUML and Azureus, and report on our
findings.

This article makes extensive use of color pictures. Please
read it on-screen or as a color-printed paper version.

1



Figure 1. ArgoUML as a CodeCity

2 The City Metaphor

A good visual metaphor is the key to support habitabil-
ity. Many 3D visualizations are undoubtedly appealing, but
fail at communicating relevant information about the system
and thus fail at supporting program comprehension tasks.
We focus on object-oriented programs, where the constructs
that need to be understood include packages, classes, meth-
ods, and attributes, and all their explicit and implicit rela-
tionships. After some experiments, which are not the focus
of this paper, we settled on a city metaphor: classes are rep-
resented as buildings located in city districts which in turn
represent packages, because of the following reasons:

• A city, with its downtown area and its suburbs is a fa-
miliar notion with a clear concept of orientation.

• A city, especially a large one, is still an intrinsically
complex construct and can only be incrementally ex-
plored, in the same way that the understanding of a
complex system increases step by step. Using an all
too simple visual metaphor (such as a large cube or
sphere) does not do justice to the complexity of a
software system, and leads to incorrect oversimplifi-
cations: Software is complex, there is no way around
this.

• Classes are the cornerstone of the object-oriented
paradigm, and together with the packages they reside
in, the primary orientation point for developers. We do
not display the class internals, because for a large-scale
understanding it is not necessary. Apart from over-
plotting problems, it is also contrary to the way one
explores a city: the person does not start by looking
into particular houses.

System ArgoUML Azureus
Lines of code 136’000 274’000
Methods 14’221 24’644
Classes/Interfaces 2’522 4’737
Packages 143 457

Table 1. Systems under study

Throughout the remainder of this paper we apply our
visualizations on two systems, ArgoUML (an open-source
Java project to draw and generate UML diagrams) and
Azureus (a widely used peer-to-peer Java application), with
a special emphasis on ArgoUML (version 0.23.4). We give
a rough outline of their size and complexity in Table 1.

2



Azureus ArgoUML

Figure 2. Comparing the code cities of Azureus and ArgoUML

2.1 Welcome to CodeCity

We see in Figure 1 ArgoUML, a 130+ kLOC Java system
visualized as a CodeCity. The buildings represent classes
and interfaces, placed in tiles representing the packages.
The height of the buildings represent their number of meth-
ods (NOM), while the width and length represents the num-
ber of attributes (NOA). The increasingly stronger satura-
tion of the tiles denotes the nesting level of the packages.
On the far end of the city we see two external suburbs,
which represent the parts of the Java standard and the Java
extended (javax) libraries that ArgoUML uses. They are not
important at a first stage of the program comprehension pro-
cess for exploring ArgoUML. The visualization allows us
to easily spot some patterns such as the two massive build-
ings (potential god classes [15]), some antenna-shaped con-
structs, a number of classes looking like parking lots, and a
large number of small houses. The visualization is interac-
tive and navigable using the keyboard, i.e., it is easy to zoom
in on details of the city or to focus on one specific district.
We focus on this aspects in a latter part of the article.

Another advantage is that using this visualization, sys-
tems can be compared to each other: In Figure 2 we see both
ArgoUML and Azureus. We see that Azureus is larger than
ArgoUML, but this information is already contained in the
respective LOC-measurements. More important is that the
visualization provides a sense of “OK, so this is what we are
dealing with”. Moreover, we see that although ArgoUML is
smaller, its buildings have more exceptional shapes, while
in Azureus there is only a small number of larger build-
ings. According to the more balanced proportions we see
throughout the city of Azureus, its functionality seems to
be more equally distributed among the classes.

2.2 The Buildings of CodeCity

However, the visualization presented so far is fundamen-
tally flawed, because in a real city, despite the sometimes
questionable mindset of architects, it is rare to have gigan-
tic buildings or buildings like the antennas of ArgoUML.
The linear mapping of the source code metrics, while being
helpful, leads to an unrealistic feeling. The large variety of
shapes also goes against one of the gestalt principles [8],
which shows that humans efficiently distinguish at most 4-
6 different shape sizes. If the city metaphor is to be fully
used, we need a better type of representation for the build-
ings. Our goal is to represent a limited number of building
types that better match the city metaphor.

Type Height Width/Length
House 1 1
Mansion 3 2
Apartment Block 6 4
Office Building 12 8
Skyscraper 40 12

Table 2. CodeCity building types

In Table 2 we list the types of buildings with their as-
signed sizes. The unit is “storey”, e.g., an apartment block
is a six-storey building. In Figure 3 you see an example
of the visual representation of the buildings. Since we map
two different metrics, it is possible to have different com-
binations, such as a one-storey house with the width and
length of an apartment block: It would be a class with few
methods and a large number of attributes. The metric val-
ues now need to be appropriately mapped on this building
types. We found two ways of doing so, namely boxplot-
based mapping and threshold-based mapping.

3



Skyscraper

Office
Building

Apartment
Block

Mansion
House

Figure 3. CodeCity building types

Median
Lower

Quartile

Upper
Quartile

Highest
non-outlier

Lowest
non-outlier

Apartment
Block

Lower 
extreme

Upper 
extreme

Office
Building

Mansion

House

Skyscraper

Figure 4. Boxplot-based mapping

Boxplot-based Mapping. The boxplot is a widely used
technique in statistics to reveal the center of the data,
its spread, its distribution, and the presence of outliers.
The construction of a boxplot requires obtaining the mini-
mum and the maximum non-outlier value, and the quartiles
(lower quartile Q1, median, upper quartile Q3) [20,21]. We
use the lower extreme limit, lower quartile, upper quartile,
and upper extreme limit to split the population of the soft-
ware artifacts with respect to one of the used metrics (e.g.,
number of methods) into 5 groups (see Figure 4) which rep-
resent the building types. Two metric values within the
same type range, even if they greatly differ, are mapped
on the same building type. An important property of the
boxplot is that the interquartile range (between Q1 and Q3)
hosts the middle 50% of the data, thus insuring a well-
balanced city in terms of buildings: at least half of them
are apartment blocks.

2

1

1

1

2

2

3

3

3

4

4

4

NOA NOMClass/Interface nameLabel
0

0
204

9124

85
146

152

org.argouml.language.java.generator.JavaRecognizer

org.argouml.language.cpp.reveng.STDCTokenTypes

org.argouml.language.java.generator.JavaTokenTypes
org.argouml.language.cpp.reveng.CPPParser

4
3
2
1

Figure 5. Linear, boxplot-based, and
threshold-based mapping applied to
org.argouml.language

Threshold-based Mapping. The boxplot-based mapping
has the advantage of creating balanced cities with few types
of buildings. However, it makes a comparison of systems
impossible, because the mapping thresholds for the building
types depend on the metric values present in a system. A
mapping to compare cities with few building types requires
some “magic numbers” for the thresholds that hold across
system boundaries. We took the values presented in [11]
where the authors measured many widely different systems
in terms of sizes, domain, and type (commercial vs. open-
source). They produced threshold values for many software
metrics. For Java systems the NOM threshold values are 4
(low), 7 (average), 10 (high), and 15 (very high). We use
these thresholds as categorical boundaries for the building
types for their height, and the boxplot-based mapping for
the width and length.

4



1 1 1

2

2

23 3

3

NOA NOMClass/Interface nameLabel
45

337
3493

1

35org.argouml.model.mdr.MDRModelImplementation

org.argouml.model.Facade
org.argouml.model.mdr.FacadeMDRImpl

3
2
1

Figure 6. Linear, boxplot-based, and threshold-based mapping applied to org.argouml.model

Comparison of Mappings. The results of applying the
three presented mappings on the same system varies signif-
icantly. We use two examples taken from ArgoUML to dis-
cuss this issue (see Figure 5 and Figure 6). In each example,
the interfaces are colored yellow and the classes brown, the
most extreme-sized buildings are annotated. In both figures
the mapped metrics are NOM for the height and NOA for
length and width.

While with linear mapping one can visually compare the
actual metric values by looking at the heights of the build-
ings, this apparent advantage disappears in front of the large
number of different sizes that are hard to distinguish. An-
other drawback of linear mapping is that classes with very
small metric values are so small in the visualization that it
is difficult to spot them.

The two other mappings we propose are highly depen-
dent on the 5 thresholds for each of the building types. A
building with a moderate value for NOM and an high value
for NOA should look moderately high and somewhat wider
than the average buildings. With respect to proportions, a
building with extremely high NOM and NOA should look
gigantic, yet proportional (a massive skyscraper), while a
building with extremely low NOA and NOM should resem-
ble a small, yet visible, house.

In Figure 6 we see that with linear mapping, even on
such a small subsystem it is already very difficult to have
an overview and yet be able to see all the small entities.
The best visibility is obtained with the boxplot-based map-
ping, where there is a visible balance in the clusters, due
to the local context considered with the boxplot mapping.

While the difference between the classes of the same cate-
gory is not visible anymore, the very small buildings are still
reasonably sized, so that they do not risk to become invisi-
ble in the overview. The threshold-based mapping (only on
the height) is a good compromise, with a better overview
than the linear mapping and yet still giving a sense of the
distribution of the very large and very small classes. The
same relation between the three mappings can be observed
in Figure 5, representing the package org.argouml.model. It
contains two very wide buildings and several tall buildings,
including the most massive building in the system.

Summarizing, while the linear mapping is a represen-
tation of the real metric values, the boxplot-based and the
threshold-based make the cities look more realistic, thus
supporting habitability. The drawback of losing the real val-
ues is made up by the user interface of our tool (discussed
later) which for each building we look at displays the actual
metric values.

2.3 The CodeCity Layout

The final ingredient to the city metaphor is the layout.
How can we obtain a city-like disposition of the classes in
the system? We implemented a variety of layouts, such
as simple grid or spiral layouts, not discussed here due to
lack of space. We finally chose a rectangle-packing layout
that takes into account the nesting of the packages, visual-
ized as city districts containing buildings which represent
the classes residing in them.

5



Legend:
 1 - org.argouml.model.Facade
 2 - org.argouml.model.mdr.FacadeMDRImpl
 3 - org.argouml.uml.reveng.java.JavaTokenTypes
 4 - org.argouml.uml.reveng.java.JavaRecognizer
 5 - org.argouml.uml.cognitive.critics.Init
 6 - org.argouml.language.cpp.reveng.STDCTokenTypes
 7 - org.argouml.language.cpp.reveng.CPPParser
 8 - org.argouml.language.java.generator.JavaTokenTypes
 9 - org.argouml.language.java.generator.JavaRecognizer
10 - org.argouml.uml.diagram.ui.FigNodeModelElement

2

1

3

4
6

7

8

10

5

9

Figure 7. Overview of ArgoUML, with some tagged points of interest

3 A Walk through ArgoUML City

To exemplify the various concepts we introduced in this
paper, we inspect and discuss the city of ArgoUML.

First impression are lasting impressions: The first view
of a system influences the decision on where to start the
investigation. It has to help us obtain a picture of the mag-
nitude and structural complexity of the system. We use a
rectangle packing algorithm for the layout of the classes and
packages to improve the compactness of the first view. In
Figure 7 you see the code city of ArgoUML, using the lin-
ear mapping technique. The annotated buildings represent
the classes that we decided to look into after taking a cruise
flight around the city.

There are several eye-striking buildings: the two tallest
buildings are also very thin (buildings 1 and 2), there is a
number of other tall buildings (4, 7, 9, 10) and there are
some very wide, but flat buildings (3, 5, 6, 8) looking like
parking lots. This view points out the mentioned outliers
which represent a good starting point for our investigation.

The two antenna-like skyscrapers, representing a
class and an interface with an enormous number of
methods and very few attributes, are related: The
class called org.argouml.model.mdr.FacadeMDRImpl
(349 methods, 3 attributes) implements the interface
org.argouml.model.Facade (337 methods, 1 attribute).
Strangely, it is the only one implementing this enormous
interface, which makes us assume that either in earlier
versions of ArgoUML there were other classes implement-
ing the interface, which eventually disappeared, or that
designers’ intend to provide support for polymorphism, or
that it was just a bad design decision. To be sure which
of these assumptions is true, we would need to look at
evolutionary information about the system.

Changing org.argouml.model.Facade is a difficult and
dangerous operation: In Figure 8 we tagged the potentially
affected classes using a dark color, and we see that they are
spread all over the system. For this figure we chose a com-
bined mapping (threshold-based for the height and boxplot-
based for the width and length), because even very small

6



Figure 8. Change impact for interface
org.argouml.model.Facade

buildings are easy to spot.
The buildings that look like parking lots, have many at-

tributes and few methods. We are interested in the classes
that use all that data. One of these buildings is an inter-
face called org.argouml.uml.reveng.java.JavaTokenTypes,
with 173 attributes and no methods. The only class
that accesses the interface’s attributes is one called
org.argouml.uml.reveng.java.JavaRecognizer, in the same
package. This huge class not only uses the interface’s 173
attributes, but also it’s own 79 attributes within the 176
methods it provides. We assume that the developers wanted
to isolate everything that has to do with parsing Java code
in as few classes as possible.

The next flat building represents the class
org.argouml.uml.cognitive.critics.Init with 91 attributes
accessed exclusively internally by the only method this
class provides, namely init(). This initialization class is less
problematic, since it is well encapsulated.

Moving over to the next flat building,
we discover another token-related interface
(org.argouml.language.cpp.reveng.STDCTokenTypes),
having 152 attributes and no method. Similarly
to the Java parsing part, this interface’s attributes
are exclusive data for another huge class, called
org.argouml.language.cpp.reveng.CPPParser, with 204
methods and 85 attributes. The same observations we made
in the case of the Java parsing pair also apply here.

With some expectations of finding a third parsing cou-
ple, we turn our attention to the last large and flat building
and, to our surprise, we learn that the interface is called
org.argouml.language.java.generator.JavaTokenTypes
(containing 146 attributes and no meth-
ods) and its unique data accessor is called
org.argouml.language.java.generator.JavaRecognizer
(24 attributes and 91 methods). A possible reason for the
presence of the class JavaRecognizer and of the interface
JavaTokenTypes in two different packages may be the

Figure 9. ArgoUML PackageRules suburb

incremental migration of a hierarchy of classes from one
package to another, with both source and destination
co-habiting in the same version of the system. To be sure
of this, we would have to look into the system’s history.

The last massive building in Figure 7 is the abstract class
org.argouml.uml.diagram.ui.FigNodeModelElement, which
provides common data for the numerous node types. Since
the nodes are core elements of any UML diagrams, there is
a great amount of functionality in this class.

The last part of the city we want to investi-
gate is the suburban area, such as the package
org.argouml.ui.explorer.rules depicted in Figure 9, an
entire district composed exclusively of small houses. The
root of the main hierarchy implemented in this package is
the interface PerspectiveRule1 implemented by the abstract
class AbstractPerspectiveRule, the superclass of 72 classes,
all located in this package.

The only class of ArgoUML implementing the interface
PerspectiveRule is the class AbstractPerspectiveRule. This
is odd, because if there was no common functionality, the
interface would suffice, while in the opposite case the ab-
stract class could take over the contract from the interface.
Given that the abstract class overrides Object’s toString()
method (concrete functionality is not possible in an inter-
face) and superfluously declares as abstract methods two of
the three methods already declared in the interface, the ob-
vious solution is to declare the remaining method from the
interface as an abstract method in the abstract class and re-
move the interface PerspectiveRule. The vast majority of
the 72 subclasses of AbstractPerspectiveRule just provides
an implementation for the three abstract methods in their su-
perclass. At a second glance in the code, in spite of the low
complexity, it seems that there are a lot of design problems
revealed by this package. First, there are some NOP imple-
mentation of methods (return null), which makes us ques-
tion the structure of this class hierarchy, since some of the

1We omit the preceding qualifier org.argouml.ui.explorer.rules in
the class names mentioned up to the end of this section.

7



subclasses need that method, while others do not. Second,
there is a lot of type checking in these methods, both di-
rect (i.e., the instanceof operator) and indirect, by using the
methods of the notorious org.argouml.model.Facade. On
a closer look at org.argouml.model.Facade’s code, we see
that it provides dozens of methods that do only type check-
ing, with names such as: isAStereotype, isAState, isAAs-
sociationRole, isANode, etc. It looks as if there has been a
convention to keep type checking code (which can be easily
replaced using overriding methods and polymorphism) in
one place only, in spite of the few direct uses of instanceof
introduced by programmers probably not fully aware of this
convention.

We stop here our tour through ArgoUML and reflect on
our findings in the next section.

4 Discussion

Before we discuss the advantages and disadvantages of
our approach, we briefly present our tool support, which is
a crucial part of the approach.

4.1 Tool Implementation

We implemented the visualizations presented in this
paper in a tool called CodeCity (Figure 10), written in
Smalltalk and built on top of the Moose reengineering
framework [5, 6], which makes it language-independent,
i.e., Moose currently supports the modeling of Java, C++,
Smalltalk, and Python programs.

Figure 10. The CodeCity User Interface

CodeCity provides flexibility in configuring the views
and supports all the three types of metric mappings we have
presented. CodeCity provides full interaction with any el-
ement of the city (such as coloring, making it transparent,
eliding, etc.). We provide a highly-flexible query mecha-
nism to search for elements. Right-clicking any of the items

brings up a popup context menu, which allows one to per-
form a variety tasks, such as inspecting the model entity,
accessing the represented source code, etc.

While investigating a part of the system, the user is
able to visually mark the territories already explored, by
changing visual properties of the buildings and districts,
such as color and transparency. To illustrate this, we will
look closer into one of the core packages of ArgoUML,
called org.argouml.uml.diagram, which contains the figures
needed to draw the UML diagrams. To avoid the possible
occlusions from other classes that do not make the object of
our interest, we spawn a new view containing this district
only (see Figure 11).

Label Legend:
1 - org.argouml.uml.diagram.ui.FigNodeModelElement
(superclass of the red hierachy)
2 - org.argouml.uml.diagram.ui.FigEdgeModelElement
(superclass of the yellow hierarchy)

1

2

Figure 11. Tagged district of package
org.argouml.uml.diagram

In this new local view, the highest build-
ings (containing the largest number of meth-
ods) are ui.FigNodeModelElement2 (NOM=94) and
ui.FigEdgeModelElement (NOM=73). We are interested in
the subclass hierarchies of these two classes, we colorize
each subclass hierarchy in a different color. By clicking on
the highest building, we select ui.FigNodeModelElement.
From CodeCity’s menu, we choose the “Select subclass
hierarchy of selected classes” and on this new selection we
choose from the menu “On selection...” the item “Modify
base color” and change the color to a dark red. Similarly
we do the same for the edges, with a yellow color. If we
are less interested in the classes that are not part of these
two hierarchies, we can select the two superclasses and
choose to select the subclass hierarchies for the current

2We omit the preceding qualifier org.argouml.uml.diagram in the
class names mentioned in this section.

8



selection. This triggers an aggregated query having as
a result the selection of the classes from any of the two
hierarchies. Then we make a selection inversion, since
we want to change the appearance of all the other classes
in the view. On this new selection we choose to “Modify
alpha” and bring the value closer to 0, such as 0.4 (i.e., 60%
transparency). The end result of these interactions with
the diagram district of the ArgoUML city can be seen in
Figure 11. To further amplify our lack of interest on these
classes, we could also modify their color to a neutral one
such as gray. The color tagging of groups of building can
be used as described here, but it is also useful in a city-wide
view to denote the parts of the city that we have already
explored.

4.2 Reflections

Habitability & Locality. While the linear mapping best
reflects the actual values of the chosen metrics for the soft-
ware artifacts in a software system, it hampers habitability
due to the extreme proportions that some of the buildings
may have. For this reason, we looked into two other map-
pings that increase the habitability. The boxplot-based map-
ping, on the one hand, cannot be used to compare systems.
The threshold-based mapping overcomes this disadvantage,
and is also able to produce fairly habitable cities. The price
we pay in this case is the difficulty of finding reliable thresh-
olds for the categories. Another factor that influences the
aspect and proportions of the buildings in the city are the
dimensions assigned to each of the categories. After exper-
imenting with different values, we chose values close to the
ones in a real city, so that the representation of an average
class in terms of the chosen metrics resembles an average
building in a city.

Scalability. Because we settled our level of granularity
to the class level, our approach scales well in terms of the
size of the system that we can display as a code city.

Navigation & Interactivity. CodeCity provides various
keyboard- and mouse-based navigation possibilities: mov-
ing forward or backward, hovering left or right, orbiting
around the city, changing altitude. We still miss a naviga-
tion mode that enables walking on the ground (or driving
in a car), so that the city immersion is even more realistic.
We can interact with any item in the city. Moreover, se-
lection queries are available, as well as the color-tagging of
any item.

Completeness. The classes and the package structure
provides an overview of the system. At the current stage
we do not directly represent lower-level artifacts, such as
methods and attributes, that would actually reside within
the buildings. We also do not currently directly represent
relationships such as inheritance and method invocations.
While we have this information at disposition, and we can

already represent them as edges connecting the buildings,
they quickly lead to over-plotting problems. An appropri-
ate representation of the relationships and the lower-level
artifacts is part of our future work.

5 Related Work

A number of researchers have used 3D visualizations of
software. While it is interesting related work, many used
general 3D visualizations to represent software without any
particular metaphor to emphasize habitability. Because of
that we omit their discussion and concentrate on the ap-
proaches with a greater similarity to our work.

Knight and Munro [10] proposed a city representation in
which a Java class is represented as a district, with meth-
ods represented as buildings. However, the authors do not
discuss scalability, and their language-specific approach is
not largely applicable. The visual mapping is not well cho-
sen, leading to unrealistic cities with thousands of districts.
Moreover, the authors do not exploit package information to
lay out the components. In [3], the same authors increased
the granularity and applied this idea for the representation of
the components in a software system and mapped semantic
information (number of contained components) on the type
of the building.

In [13] Panas et al. also propose a city metaphor. In
their case, the city represents a package and contains, for in-
creased realism, non-source elements, such as trees, streets,
and street lamps. In this metaphor, the program run would
be represented as cars originated from different compo-
nents, leaving traces to determine their origin and desti-
nation. Unfortunately, this paper presents only the ideas,
supported by static rendered images without allowing inter-
action.

The 3D approach proposed Marcus et al. [12] gravitates
around poly cylinders, grouped together in floating contain-
ers. Each poly cylinder represents a line of code and they
are grouped in containers representing files, which makes it
not very appropriate for systems with thousands of classes
and hundreds of thousand of LOC. The interaction provided
by this approach is more on placing the elements in the
scene (moving, rotating, scaling). Other interactions such as
queries and extraction were only mentioned as future work.
Moreover, in a view where the user can manipulate the sizes
of the elements, one cannot visually compare them.

At a higher level of abstraction, Balzer et al. [1] pro-
posed the idea of representing software systems as land-
scapes, which is a concept we want to look into and possibly
merge with our approach.

9



6 Conclusions

We have presented a program comprehension approach
using 3D visualizations based on the metaphor of a city.
We emphasize the concept of habitability and locality by
providing a navigable and interactive environment in which
we can freely move. The concept of habitability is enforced
by making the class buildings in the city have realistic pro-
portions. Navigation is allowed in all three dimensions, but
with a clear notion of the ground. Interacting with the build-
ings in the city is easy and allows us to quickly access the
underlying source code. The concept of color-tagging al-
lows us to mark already visited places or places that we may
want to come back to. We illustrated how we comprehend
a system by walking through the ArgoUML CodeCity.

The main contribution of this paper is the construction
of a 3D environment which by means of appropriate rep-
resentation techniques, such as the boxplot-based mapping,
allows us to obtain a visual world that hinges on the city
metaphor. The city metaphor triggers the concepts of local-
ity and habitability, i.e., developers can talk about a certain
part of the city as an actual physical place. We are con-
vinced that this notion eases communication between peo-
ple beyond what is possible with UML. We elaborated var-
ious interaction techniques, such as tagging, that allow to
progressively uncover and inspect new parts of the city.

As part of our future work we plan to perform a com-
parative evaluation with visual techniques such as UML
diagrams and other 2D visualizations.

Acknowledgments. We gratefully acknowledge the fi-
nancial support of the Hasler Foundation for the project
“EvoSpaces - Multi-dimensional navigation spaces for soft-
ware evolution” (Hasler Foundation MMI Project No.
1976).

References

[1] M. Balzer, A. Noack, O. Deussen, and C. Lewerentz. Soft-
ware landscapes: Visualizing the structure of large software
systems. In VisSym 2004, Symposium on Visualization, Kon-
stanz, Germany, May 19-21, 2004, pages 261–266. Euro-
graphics Association, 2004.

[2] D. Beyer and C. Lewerentz. CrocoPat: A tool for ef-
ficient pattern recognition in large object-oriented pro-
grams. Technical Report I-04/2003, Institute of Computer
Science, Brandenburgische Technische Universität Cottbus,
Jan. 2003.

[3] S. M. Charters, C. Knight, N. Thomas, and M. Munro. Visu-
alisation for informed decision making; from code to com-
ponents. In International Conference on Software Engineer-
ing and Knowledge Engineering (SEKE ’02), pages 765–
772. ACM Press, 2002.

[4] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2002.

[5] S. Ducasse, T. Gı̂rba, M. Lanza, and S. Demeyer. Moose:
a collaborative and extensible reengineering environment.
In Tools for Software Maintenance and Reengineering,
RCOST / Software Technology Series, pages 55–71. Franco
Angeli, Milano, 2005.

[6] S. Ducasse, T. Gı̂rba, and O. Nierstrasz. Moose: an agile
reengineering environment. In Proceedings of ESEC/FSE
2005, pages 99–102, Sept. 2005. Tool demo.

[7] J.-M. Favre. Gsee: a generic software exploration environ-
ment. In Proceedings of the 9th International Workshop on
Program Comprehension, pages 233–244. IEEE, May 2001.

[8] S. Few. Show me the numbers: Designing Tables and
Graphs to Enlighten. Analytics Press, 2004.

[9] R. P. Gabriel. Patterns of Software. Oxford University Press,
1996.

[10] C. Knight and M. C. Munro. Virtual but visible software.
In International Conference on Information Visualisation,
pages 198–205, 2000.

[11] M. Lanza and R. Marinescu. Object-Oriented Metrics in
Practice. Springer-Verlag, 2006.

[12] A. Marcus, L. Feng, and J. I. Maletic. 3d representations for
software visualization. In Proceedings of the ACM Sympo-
sium on Software Visualization, pages 27–ff. IEEE, 2003.

[13] T. Panas, R. Berrigan, and J. Grundy. A 3d metaphor for
software production visualization. International Conference
on Information Visualization, page 314, 2003.

[14] T. Panas, R. Lincke, and W. Löwe. Online-configuration
of software visualization with Vizz3D. In Proceedings
of ACM Symposium on Software Visualization (SOFTVIS
2005), pages 173–182, 2005.

[15] A. Riel. Object-Oriented Design Heuristics. Addison Wes-
ley, Boston MA, 1996.

[16] J. T. Stasko, J. Domingue, M. H. Brown, and B. A. Price,
editors. Software Visualization — Programming as a Multi-
media Experience. The MIT Press, 1998.

[17] M.-A. D. Storey, C. Best, and J. Michaud. Shrimp views:
An interactive and customizable environment for software
exploration. In Proceedings of International Workshop on
Program Comprehension (IWPC ’2001), 2001.

[18] M.-A. D. Storey, F. D. Fracchia, and H. A. Müller. Cognitive
Design Elements to Support the Construction of a Mental
Model during Software Exploration. Journal of Software
Systems, 44:171–185, 1999.

[19] M.-A. D. Storey, K. Wong, and H. A. Müller. How do pro-
gram understanding tools affect how programmers under-
stand programs? In I. Baxter, A. Quilici, and C. Verhoef,
editors, Proceedings Fourth Working Conference on Reverse
Engineering, pages 12–21. IEEE Computer Society, 1997.

[20] M. Triola. Elementary Statistics. Addison-Wesley, 2006.
[21] J. W. Tukey. Exploratory Data Analysis. Addison-Wesley,

1977.
[22] G. M. Weinberg. The Psychology of Computer Program-

ming. Dorset House, silver anniversary edition edition,
1998.

10


