
Characterizing and Understanding Development Sessions

Romain Robbes and Michele Lanza
Faculty of Informatics, University of Lugano - Switzerland

Abstract

The understanding of development sessions, the phases
during which a developer actively modifies a software sys-
tem, is a valuable asset for program comprehension, since
the sessions directly impact the current state and future evo-
lution of a software system. Such information is usually
lost by state-of-the-art versioning systems, because of the
checkin/checkout model they rely on: a developer must ex-
plicitly commit his changes to the repository. Since this hap-
pens in arbitrary and sometimes long intervals, recovering
the changes between two commits is difficult and inaccu-
rate, and recovering the order of the changes is impossible.

We have implemented an evolution monitoring prototype
which records every semantic change performed on a sys-
tem, and is able to completely reconstruct development ses-
sions. In this paper we use this fine-grained information
to understand and characterize the development sessions as
they were carried out on two object-oriented systems.

1 Introduction

The field of software evolution [8] uses the history of
software as an asset to understand its actual state [3, 5]
and to predict its future development [9, 18]. Tradition-
ally, the history is extracted from the repositories of source
code control systems, such as RCS, CVS and SubVersion,
which contain valuable information about a system’s evolu-
tion. Yet they do not contain all the information about an
evolving software system. In particular, due to the checkin-
checkout model such systems rely on, they only store data
when a developer explicitly commits a set of changes to
them, e.g., when (s)he finishes a task or when the working
day is over. Thus the versioning systems store only arbi-
trarily spaced snapshots of the system’s state, and not all
the intermediate steps. We already outlined the limitations
of this approach for software evolution analysis in previous
work [12], [13]: Not recording the intermediate modifica-
tions to the code between two commits leads to decreased
information quality. Changes become hard to tell apart from
each other if they happen at the same location and/or at the

same time. In addition, the versioning of mere files im-
plies a computationally expensive pre-processing to recon-
struct the changes (such as refactorings [6]) performed on
the source code.

In our previous work [14] we presented an approach to
record all the semantic changes that are being performed on
a system, by monitoring the integrated development envi-
ronment (IDE). Modern IDEs such as Eclipse, supporting
incremental compilation and refactoring engines, have led
to the perception that instead of being written, software is
being constructed by applying sequentially local changes to
a part of the system, which is then incrementally compiled.

In this paper we focus on the information that our ap-
proach records, but which cannot be recovered at all from
a state-of-the-art versioning system repository: The exact
sequence of events forming a development session. Ver-
sioning systems store only the final result committed by
the developer, and have no way to tell the order in which
changes happened during a session. We argue that the se-
quence of events happening during a development session
can lead to valuable insights on the way the system is being
constructed, which in turn are useful for program compre-
hension (who did what and when?) and reverse engineer-
ing tasks (what led a certain part of the system to be like
this? What were the decisions and the steps taken?). This
information is also useful to understand the phenomenon of
evolution itself (how do programmers write code? how long
are the sessions? are there different types of sessions? are
there development patterns that a developer follows?). To
demonstrate our approach, we analyzed hundreds of devel-
opment sessions carried out on two object-oriented systems
written in Smalltalk.

Structure of the paper. Section 2 presents change-
based evolution in a nutshell. Section 3 shows with a moti-
vating example why understanding development sessions is
useful. Section 4 enumerates the characteristics we defined
and looked for in our case studies. Section 5 presents our
two case studies and shows through simple visualizations
selected development sessions described in detail. Section 7
presents our tool set, while Section 6 discusses our approach
and related work. Finally, Section 8 concludes the paper.

1



2 Change-based Evolution In a Nutshell

We model software evolution as a sequence of changes
that take a system from one state to the next by means of
semantic transformations [14, 13]. By semantic transfor-
mation we mean an incremental compilation step offered
by IDEs such as Eclipse, where the developer is incremen-
tally applying modifications on specific parts of the system.
These modifications are for example the modification of the
body of a method and its subsequent compilation, but also
include higher-level changes offered by refactoring engines.
In short, we do not view the history of a software system as a
sequence of versions, but rather as the sum of change opera-
tions which brought the system to its actual state. With his-
torical information such as the one offered by CVS or Sub-
Version, these operations can not be deduced with enough
precision by differencing two arbitrary program versions [7]
once the evolution has happened. Instead we recover the se-
mantic changes by monitoring the IDE while programmers
are building the software.

2.1 Program Representation

Our approach represents programs as domain-specific
entities rather than text files. Since we focus on object-
oriented programs, we store and analyse constructs such as
classes and methods, not files and lines. We represent a
software system as an evolving abstract syntax tree (AST)
containing nodes which represent packages, classes, meth-
ods, variables and statements. A node a is a child of a node
b if a contains b (a superclass is not the parent of a sub-
class, only packages are parents of classes). Nodes have
properties, which vary depending on the node type, such as:
for classes, name and superclass; for methods, name, return
type and access modifier (public, protected or private, if the
language supports them); for variables name, type and ac-
cess modifier, etc.

This AST represents one state the program went through
during its evolution. Each AST entity has a change history
containing all change operations applied to it during the sys-
tem’s evolution.

2.2 Change Operations

Change operations represent the evolution of the system
under study: They are actions a programmer performs when
he changes a program, which in our model are captured
and reified. They represent the transition from one state of
the evolving system to the next. Some examples of change
operations are: adding/removing class/methods to/from the
system, changing the implementation of a method, or refac-
torings. We support atomic and composite change opera-
tions.

Atomic Change Operations. Since we represent pro-
grams as abstract syntax trees, atomic change operations
are, at the finest level, operations on the program’s AST.
Atomic change operations are executable. By iterating on
the list of changes we can generate all the states the pro-
gram went through during its evolution. The following op-
erations suffice to completely model the evolution of a pro-
gram AST:
Creation: creates a node n for an entity of a given type t.
Addition: adds a node n as a child of a given parent p.
Removal: removes a node n from the childs of its parent p.
Property change: changes value v of property p of node n.

Composite Change Operations. While atomic change
operations are enough to model the evolution of programs,
the finest level of granularity is not always the best suited.
Representing the entire evolution of a system only by its
atomic modifications leads to an overwhelming mass of in-
formation: An abstraction mechanism is necessary. Hence
change operations are composable, and can be abstracted
into higher-level composite change operations. For exam-
ple, moving a class from one package to another consists in
removing it from a package and adding it to another pack-
age. These two atomic change operations can be grouped
in a single move class change operation. There are several
levels of increasingly coarser-grained change operations:

Developer-level action: A unit of change from the devel-
oper’s viewpoint. For example, changing the definition
of a class, adding or changing a method are developer-
level actions. A developer-level action can contain
several atomic changes: A method addition contains
changes related to the creation and the addition of its
body statements.

Refactoring: Refactorings are behavior-preserving au-
tomatic code transformations [2]. For example,
the rename method refactoring involves changing a
method’s name, and all references from the old method
name to the new name. These developer-level actions
can be grouped into a higher-level entity representing
the refactoring itself. In the same fashion, the extract
method refactoring replaces a section of code from a
method with a call to a newly created method contain-
ing this code fragment. These two changes can also be
grouped to form a composite change operation.

Bug fix: A bug fix consists of all changes necessary to fix
a given bug.

Development session: It aggregates all the changes done
during a single development session by a developer, be
they bug fixes, refactorings or developer actions. This
is the closest in terms of size with a commit extracted
from a state-of-the-art versioning system.

2



3 Motivating Example

Alice is working for a parcel delivery company, where
she is building a parcel tracking application. There are sev-
eral kinds of parcels depending on various shipping require-
ments. Each parcel can contain several items; parcels are
shipped in trucks, and/or planes. We are confronted with a
tree structure of elements of various types, all contained in
the Vehicle and Parcel class hierarchies. A report printing
feature has been implemented. Alice needs to implement
rules to check if parcels have a valid address and are dis-
patched appropriately to the delivery trucks.

Session A: A failed experiment. Alice starts two dis-
tinct implementations with numerous methods scattered
around two class hierarchies. Alice quickly gets lost, and
because of the difficulties, she deletes the first implementa-
tion and keeps the second one, which is however incomplete
and buggy. Alice commits to the project’s CVS repository.

Session B: Towards a solution. During this second ses-
sion, Alices sees the opportunity to introduce a visitor pat-
tern [4] to both define the address rules and to refactor the
printing functionality. The visitor allows through double-
dispatch to move functionality scattered in several classes
into a single class. Alice proceeds as follows:

B1: She implements the basic visitor with a general Ab-
stractVisitor class and a double-dispatch mechanism.
She then defines the dispatch methods for each class
(Truck, Plane, Parcel and its subclasses, Item, etc.).

B2: She implements a basic visitor to test the visitor imple-
mentation (it prints the name of the classes it traverses
to the standard output).

B3: Alice then moves the report printing feature to the new
implementation. She has to slightly change its inter-
face and the tests associated to it.

B4: Finally, she re-implements the address checking fea-
ture in another visitor subclass and this time succeeds
in implementing it. She reuses part of the implementa-
tion from session A, and deletes the rest.

Alice again commits again to the project CVS. Bob,
her office mate, wants to review what Alice has done. He
checks out the current state of the project. All that Bob can
gather is that the code base has been changed twice, but all
the decisions, the design steps, etc. are lost.

Let us highlight a few scenarios in which a precise char-
acterization of the development sessions is useful:

Focusing the Reviewing and Testing Effort. Code re-
viewing is an established practice to detect defects. Charac-
terizing development sessions could highlight sessions with
non-standard features and hence guide the review process

to allocate more resources to code originating from sessions
with a higher risk of containing bugs. In our example, ses-
sion A should be checked carefully. Code modified dur-
ing session B but introduced during session A should be
checked more than the code pertaining to the refactorings.

Fine-grained Comprehension of Sessions. Once a cod-
ing session has been selected either for reviewing or reverse
engineering, it needs to be understood. Having a complete
timeline of its events helps in understanding the outcome of
a development session for several reasons:

• The characterization information gives a general con-
text to the session: A refactoring-dominant session is
different from a bug-fixing, feature addition or feature
enhancement session.

• Reviewing events in time eases their understanding.
Events usually follow the logical steps a developer
takes: Methods depending on each other are imple-
mented and modified at the same time. On the other
hand, if a session has not a logical sequence of events,
it is a sign that the design has decayed or the developer
has lost his tracks. Such a “risky” session (e.g., session
A) should be reviewed carefully.

• Since development is incremental, the main concepts
of a given feature are defined first. Later, secondary
concepts are defined and primary concepts are refined.
If a feature implementation is reviewed according to
its timeline, a basic version of it can be reviewed first,
which is smaller, more concrete and thus more under-
standable. Only after the general feature is defined, im-
provements such as optimizations, peculiar cases and
generalizations are implemented. This process allows
one to understand the general idea of a change first and
the details later, just as the developer proceeded. Fol-
lowing the steps of the developer leads to a more nat-
ural and progressive understanding of the code. Ses-
sion B defines first the core of the visitor pattern (B1)
– the double-dispatch mechanism and the base class
–, and then defines a trivial implementation (B2). A
real use case is then built by refactoring the printing
report feature to the visitor hierarchy (B3), and finally
the address-checking feature is implemented in these
term, using both new code and old code from session A
(B4). Viewing the implementation in this order makes
it easier to understand.

• Individual changes themselves have more context:
refactorings and bug fixing can be easily identified.
Hence less time can be allocated to understand refac-
torings, which do not change the behavior of the
code, and more to understand bug fixes or design-level
changes. In our example, the changes in B3 can be
reviewed faster than those in B4.

3



4 Development Sessions

To create a concise but effective vocabulary when we talk
about the different types of sessions, we use a metaphor
taken from Brant’s “How Buildings Learn” [1], where he
describes buildings as multilayered structures where inner
layers change faster. Brant’s book is about architecture and
therefore his layers are (from inner to outer) stuff, space
plan, services, skin, structure, and site. The idea is that for
example “stuff” (the furniture) is changed more often than
the space plan of a house, which is also changed more often
than its skin, etc. Transposing the metaphor into the do-
main of software development works, because the bodies of
methods are changed more often that the class definitions
which are changed more often than the structure of pack-
ages, etc.

Session Description
Decoration The finest level of changes, such as modifying a

method body.
Painting Adding methods to a class.
Restoration Performing refactorings on methods and classes.
Masonry Adding one or more classes to the system.
Architecture Modification to the system’s structure, sich

as adding packages or large-scale addition of
classes.

City Planning Major overhaul of the system’s architecture, un-
likely to appear in a single session and therefore
not discussed in this paper.

Table 1. Session Types.

Based on this metaphor, we identify a number of session
types (defined in Table 1), that we use in the remainder of
this paper.

4.1 Session Metrics & Characteristics

In the next section we perform both a quantitative and
qualitative evaluation of sessions. To automatically detect
the types of the sessions we make use of a wide set of met-
rics. We present them only briefly in Table 2, since the met-
rics are not the focus of the paper, but only a means to char-
acterize the sessions. We are interested in detecting sessions
with the following characteristics:

Refactoring-based/-less: Sessions that contain actions re-
lated to refactorings.

Focused/unfocused: Sessions focusing on a small/large
number of methods and classes, indicative of a
tight/wide focus.

Adding/modifying: Sessions that consist of additions of
new artifacts or only modifications of existing ones.

Metric Description
SLM Session Length – expressed in minutes
TNC Total Number of Changes, i.e., developer-level actions per-

formed during a session
SA Session Activity, i.e., changes per minute (SA = TNC

SLM
)

FOCUS Session Focus, FOCUS = NTC+NTM
TNC

NAM Number of methods added during a session
NCM Number of methods changed during a session.
UNCM Unique number of methods changed (UNCM ≤ NCM ).
ACM Average changes per method (ACC = NCC

UNCC
).

MCM Most changed method, the highest number of changes ap-
plied to a method during the session.

NMR Number of method-level refactorings performed during a
session.

NAC Number of classes added during a session
NCC Number of classes changed during a session.
UNCC Unique number of classes changed (UNCC ≤ NCC).
ACC Average changes per class (ACC = NCC

UNCC
).

MCC Most changed class, the highest number of changes applied
to a class.

NCR Number of class-level refactorings performed during a ses-
sion.

NTC Number of touched classes, i.e., classes that were modified
or added.

NTM Number of touched methods, i.e., methods that were modi-
fied or added.

ANMC Number of methods changed per class (ANMCC =
(NAM+NCM)

NTC
)

MMCC The highest number of methods added/modified in the most
changed class.

Table 2. Session Metrics.

Large/small: Sessions with a large/small number of
changes.

Long/Short: Sessions that last from a number of hours
down to a couple of seconds.

Unique/repeated modifications: Sessions that modify ar-
tifacts only once vs. sessions that repeatedly change
the same artifacts. The latter is a sign of the imple-
mentation of complex functionality where the devel-
oper takes small steps to modify parts. It may also be
that a bug has been discovered in the implementation
of a feature and several hypotheses are explored to fix
it before finding the right one. In both cases, a method
modified several times in a row can be identified as
a “risky” method [16], hence its accurate comprehen-
sion is critical. The incremental change-based history
we recover eases this task.

Sequence of changes: The sequence of changes itself can
give insights about the code: A common pattern of
change sequence is to first add several entities (classes
and methods), and then modify them repeatedly to im-
plement refinements. Another pattern is seemingly
random modifications of the system.

4



1

2

3

4

5

Figure 1. Exploration process

5 Characterizing Development Sessions

We describe the process we used to look for particular
sessions in our two case studies (see Figure 1). We use the
composite nature of the changes described by our model to
adopt a “drill-down” approach to session exploration. We
start with (1) high-level characteristics classifying the ses-
sions, then choose a set of characteristics that we want to in-
vestigate. This gives us (2) a condensed view of the sessions
as “sparklines”, a visualization that allows us to choose a
particular session to focus on. We can then (3) look at the
metrics of the chosen session and from there invoke a (4)
session visualizer to have a precise view of the timeline. In-
dividual changes can then be inspected further (5) to look at
code-level changes. We describe these steps in detail in the
remainder of this section.

We looked at two case studies: (1) Spyware, our proto-
type, which has been monitoring itself for a period of over
18 months, and (2) Project X, which comes from an exter-
nal developer monitored over a period of 4 months during
his day-to-day programming activities on web applications.

5.1 Quantitative Analysis

Table 3 presents high-level characteristics of the sessions
for both projects. Each session is characterized by its type
(Architecture, Restoration, Masonry, Painting or Decora-
tion) and its length (0 to 15 minutes, 15 - 45 minutes, 45 -
90 minutes, 90 minutes to 4 hours, more than 4 hours). The
session types are not mutually exclusive, i.e., a session can
be of more than one type, such as a combined decoration &
painting session.

The table reveals that some session types tend to have
a characteristic length: Masonry takes more time, Restora-

Length 0-15m 15-45 m 45-90 m 90m-4h >4h Total
Spyware
Architecture 0 0 0 5 3 8
Masonry 4 10 14 27 2 57
Restoration 0 0 1 7 1 9
Painting 11 2 3 0 0 16
Decoration 48 40 38 55 4 185
Project X
Architecture 0 0 0 1 0 1
Masonry 0 5 6 8 0 19
Restoration 0 0 0 0 0 0
Painting 3 4 1 2 0 10
Decoration 6 6 4 3 0 19

Table 3. Session Types

tion also. Painting on the contrary is an activity which takes
less time. There is no typical duration for Decoration ses-
sions, which range from very short to very long ones. We
also see that Architecture sessions are rare, while the most
frequent type is Decoration. Some sessions that we named
Mixed cannot be clearly assigned to one of the types, such
as sessions in which heavy decoration & painting is going
on equally.

We now pick some selected sessions to explain how we
drill down from this high-level view to comprehend the ses-
sions in detail.

5.2 Qualitative Analysis

We use the metrics defined in Section 4 to display the
sessions in an interactive session table. In all cases, clicking
on a cell of the table brings up a sorted list –according to
the values of the characteristics of the table– of sessions,
visualized as sparklines.

The session sparkline is influenced by Tufte’s concept

5



of the same name 1. A sparkline is a word-sized graphic
containing a high density of information, such as:

This figure is an example of a session represented as a
sparkline. The gray line in the middle of the figure is a time
line. The default resolution of the figure is one pixel per
minute. Above and below the time line are bars represent-
ing the amount of changes occuring during a given interval
(in our case a minute). Above the line are method-related
changes: The height of these bars varies with the amount of
change performed during the interval. Below the timeline
are class-level changes. The class bars do not vary in height
as it is rare that two classes are changed in less than one
minute. The color of each bar reflects the kind of change
happening during the interval. A bar is orange if only mod-
ifications happened during that interval. It is red if at least
one change is an addition of an entity, blue if one is a re-
moval (superceding red), and green in case of a refactoring
(superceding blue).

The sparklines are sorted in a session sparkline list, as
shown in step 2 of Figure 1. Sessions can be classified by
their characteristics to organize the data and quickly select
interesting sessions. The table is interactive: each sparkline
can display a text tooltip, and each interval bar can also sum
up the changes happening during it in a tooltip. Clicking on
a sparkline brings the value of all the metrics of this session
(step 3). This gives more context on whether to continue the
exploration of this session or not. Session sparklines can
also be displayed all at once on the screen, sorted chrono-
logically: This allows us to get a bird’s eye view of the en-
tire system evolution, session by session. Viewing all the
data in the sparkline session table allows us to quickly iden-
tify sessions. A simple click on its sparkline brings up a
more detailed view of it, by means of the session visualizer.

5.2.1 The Session Visualizer

The session visualizer (see Figure 2) shows more details
about a session, in particular the exact nature of changes
performed at a given point in time in a session. Changes of
the same type and on the same entities are displayed on the
same line, as squares. Change types are: modification, addi-
tion, removal and refactorings, while the entities considered
are classes, packages and methods. The same colors of the
sparkline figure are used. Each of these change figure has an
identifier, so that changes applying to the same entities can
be quickly identified. They can also display a tooltip sum-
ming up the change as text, and upon clicking, a detailed
inspection interface is shown. The duration of the session,

1http://www.sparklines.org

start date, end date and quantifying statistics are reported
on the borders. Clicking on an individual change brings an-
other finer level of details: A view of the entity before and
after the change allows to see the sorce code modifications,
with syntax highlighting of the changes. This view can be
navigated to see the next and previous changes at the entity
and session level to get more context if needed.

We now discuss some example sessions. For each ses-
sion we show the sparkline besides the name and the corre-
sponding session visualizer figure.

Figure 2. Decoration Session

Decoration Session (Project X)

This short session (8 minutes) consists mainly of decora-
tion, i.e., method modifications. It features towards the end
a small amount of masonry and minor restoration. Session
C is displayed in Figure 2. Its interesting characteristics
are its high activity (1.6 changes per minute) and the first
part of it where methods a and b are modified together sev-
eral times, evoking logical coupling. A look at the source
code reveals that they are two HTML generation methods
belonging to the same class. Methods c and d, and the meth-
ods e and f , are also related to HTML generation.

6



Figure 3. Masonry & Painting Session

Masonry & Painting Session (Project X)
Figure 3 shows an intense 37 minutes long masonry &

painting session featuring a lot of class-based development.
Indeed, one class is added, which is the focus of the session,
while 8 class modifications happen during the first half of
the session. Looking at the class modified and referenced
in the session, we see that it is included in a hierarchy of
classes following the command design pattern [4]. The de-
veloper is fast at implementing the new command, which
is actually a Composite Command, another design pattern.
The methods added to this class show the minimal protocol
expected from a member of the command hierarchy: exe-
cute, validate and initialize. An extended protocol is added
to other classes of the hierarchy with the methods doAnswer
and commitToCommands. This session is a good example
to follow, should the system need to be extended with a new
kind of command by a less experienced developer.

Painting Session (Project X)
Figure 4 shows a peculiar session since its beginning

shows the quick addition of methods to several classes. It is
again quite short (25 minutes). A closer inspection shows
that the methods a, and d, to m have the same name and are
added to a hierarchy. They each return a constant, which
explains why they are developed in succession. Once this is
done, the rythm slows down, and some actual logic is added
to the system. This trend is started by method n, which
specifies a test that needs to be fulfilled for the implemen-
tation to be correct. Later in the session, a strategy for file
downloading is implemented relying on two possibilities. It
is closely related to the first part of the session since a, d to
m were referencing file names, used in methods b and c to
build URLs.

Figure 4. Painting Session

Architecture & Restoration Session (Spyware)

We finish with a longer session (see Figure 5) from our
own prototype, featuring architectural changes and restora-
tion activities. This session lasts for 2 hours and 25 minutes.
During its implementation, the model of SpyWare was ex-
tended to include session-level changes, and a simple tool
was implemented. From the sparkline we can divide the ac-
tivity in 3 parts: F1 shows nearly no sign of activity, F2 is
constituted of two activity spikes stopping at around half of
the session. Then F3 finishes with a more stable output. We
see that refactorings are applied consistently during the ses-
sion, and that F2 has a higher ratio of additions in its first
spike. We now describe each part of the session in detail:

F1: F1 lays the ground work for the session by defin-
ing the ChangeExplorer class and changing its sister class,
ChangeExplorerTest. A period of perceived inactivity en-
sues, which can be interpreted as either a design phase or a
documentation phase. Since SpyWare was not able at that
time to record navigation information, knowing more about
the exact activity is not possible.

F2: The first spike adds a new element to the system: an
interface centralizing queries to the model and its sister test
class. The last methods in the first spike is a stub method
called sessions, indicating the intention of using the session
concept in the ChangeExplorer tool. A short period of inac-

7



F1 F2

F3

spike 1 spike 2

F3a F3b

Figure 5. Session F: Architecture and Restoration

tivity follows, quickly replaced by the second spike of F2.
In it, two classes are defined, the ChangeGroup and the
Session class representing a session of changes. Several
class modifications are made as ChangeGroup becomes
a superclass of several classes. Some methods are pushed
up (restoration) and it becomes an abstract class, with Ses-
sion and Refactoring inheriting from it. Alongside this, the
sessions method is modified to exploit these new classes,
as well as its test method.

F3: Once F2 finishes, the architectural phase of the ses-
sion slows down. The implementation of the actual tool is
done in F3 mainly using Painting. In class number 9 the
method n5, called changeDescription, is modified repeat-
edly. A closer analysis shows it returns a textual represen-
tation of a change, used in the Explorer tool which is not
using graphics. The end of the session adds a new class –
11, called ChangePrinter– and is then exclusively focused

on it. Class 11 is in fact used in method D, modified just
before 11’s introduction. Looking at the code we notice
that the class is called AuthoredChange, and the method
changeDescription. Looking at the code of the last meth-
ods, we deduce that Class 11 is a printing class introduced
to handle the changes defined in AuthoredChange, using
a double-dispatch mechanism close to the visitor pattern.

To sum up this session, we can discern and describe 5
phases: (1) a design/information gathering phase where de-
velopment was slow, (2) the definition of the query inter-
aface and the need for sessions, (3) the architectural changes
to the model to add sessions, (4) the implementation of the
tool, and (5) the implementation of a dedicated printing sub-
class. Such an incremental vision of the session’s history
gives a clearer insight on the process than just considering
the final outcome: 7 classes were added, 4 other were mod-
ified, 27 methods were added and 13 more were modified.

8



6 Discussion

We have seen by the examples that we have given, that
sessions hold indeed useful information to comprehend the
development plans of developers, and thus represent a valu-
able resource for program comprehension.

Sessions are usually spent on parts of the application
which are closely tied together, and hence help the under-
standing of a detailed part of the system. If they are not,
it is a sign of lack of focus by the developer, or a possible
design flaw in the system. Sessions also follow an incre-
mental logic: functionality is first implemented in a basic
way focusing on core concepts, which are then progres-
sively extended. The beginning of a session is thus often a
fundamental source of information about the development
plans. The elaboration of the concepts in the remainder
of a session is also a useful source of information about
the way a developer writes code. Versioning systems have
no means to store the same amount of information of such
granularity–even if a developers commits every minute to
the repository, the data recovery process would be arduous
and error-prone.

Our approach is the only one to our knowledge able to re-
construct developer sessions accurately enough to ease their
understanding. Approaches to program comprehension –
assisted by evolution – based on conventional versioning
systems can not gather as much information as we can on
an evolving system. In particular, they can not at all get
data on what happened during a development session: They
can only store the final outcome of a session. On the other
hand, several research tools track events performed by de-
velopers in the IDE [17] [15]. These tools could serve as the
basis of session comprehension, but to our knowledge there
were no attempts at doing this. Although they track user
activity, these works do not maintain an accurate enough
model of the software to assist understanding of software in
an evolution-aware way: They provide links to related enti-
ties, but do not show how these entities evolved. The only
approach which merges both IDE monitoring and version-
ing system archives is the one of Parnin et al. [11] but it has
not been implemented yet, and their later work in [10] only
uses IDE interactions.

In contrast, our approach allows us to record a large
amount of information about the evolution of a software
system by recording IDE events and maintaining an ac-
curate representation of a software system at a domain-
specific level, the one of object-oriented languages. Our
model is accurate enough to regenerate the source code of
any version of the system. This detailed information allows
us to model a session accurately as a sequence of changes.
We also track other developer actions – navigation in the
code, copy and paste actions, debugger usage – although
those were not exploited in the context of this paper.

7 Tool Implementation

We have implemented our approach in an IDE plug-in
for the Squeak Smalltalk environment, under the moniker
“SpyWare” 2 (see Figure 6). We first cover the data retrieval
strategy of SpyWare, then briefly list its features.

Data Retrieval. Spyware monitors IDE usage to retrieve
semantic changes performed by the developers. Our ap-
proach requires the IDE to be open to external contributors
by means of a plug-in mechanism [17, 19]. Examples of
open IDEs include Squeak3 and Visualworks4 for Smalltalk,
Eclipse5 and IntelliJ IDEA6 for Java.

IDEs maintain an internal representation of the code they
manage. They exploit it to offer several language-dependent
tools to increase programmer productivity, such as ab-
stracted source code views – beyond the normal source-
level, text based view –, refactoring and autocompletion.
They also feature event mechanisms which allow the IDE to
react to the programmer’s activity. We exploit these mech-
anism to closely monitor a system’s evolution, with the fol-
lowing advantages:

• User activity can be processed as it happens.

• The time stamps of the changes have an up to the sec-
ond precision, whereas in a versioning system’s repos-
itory only the time stamp of the transaction is kept.

• It is possible to be notified of a variety of events to
make the analysis more precise. For example refac-
toring tool usage can be monitored, as well as code
navigation or execution errors.

Figure 6. SpyWare’s User Interface.

2http://romain.robb.es/spyware/
3http://www.squeak.org
4http://smalltalk.cincom.com
5http://www.eclipse.org
6http://www.jetbrains.com/idea

9



Tool functionalities. SpyWare monitors the activity of
the IDE user and store code modifications in a change-
based repository, alongside other useful information, such
as refactorings or navigation paths through the code. In ad-
dition to the functionality presented in this paper, SpyWare
allows to exploit the change-based information through
other interactive data reports and visualizations, such as the
change matrix [13]. It can also regenerate the code of a
monitored project at any given point in time, and offers ded-
icated code browsers for this task.

8 Conclusion

We presented an approach to software comprehension at
the feature level based on the following 3-step approach:
(1) A relevant part of the system (or the whole system) is
selected; (2) The selected development sessions are charac-
terized and visually displayed to the user; and (3) Individual
sessions can be browsed to support detailed comprehension
of the changes belonging to them. By using an accurate
model of the change-based evolution of a system, we can
successfully implement this approach, as shown in the case
study.

Our approach fills the gap between versioning-system
based approaches, which are not accurate enough to dis-
tinguish among individual events happening between de-
veloper commits, and purely IDE-based approaches which
monitor developer interactions with the IDE, but without a
detailed program model. It is the first to our knowledge to
permit an accurate session-level comprehension of events.

Our approach can still be enhanced: It requires a heavy
set of tools which needs to be ported to other platforms
(such as the Eclipse IDE) to be more widely used. We also
plan to integrate in our session visualizations the other inter-
actions we have begun to record, such as navigation paths
employed by the developer through the system, copy and
paste, and errors triggered during execution of the system
in the IDE.

References

[1] S. Brand. How Buildings Learn - What Happens After
They’re Built. Penguin Books, 1994.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code. Addi-
son Wesley, 1999.

[3] H. Gall, M. Jazayeri, R. Klösch, and G. Trausmuth. Soft-
ware evolution observations based on product release his-
tory. In Proceedings International Conference on Software
Maintenance (ICSM’97), pages 160–166, Los Alamitos CA,
1997. IEEE Computer Society Press.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Reading, Mass., 1995.

[5] T. Gı̂rba, S. Ducasse, and M. Lanza. Yesterday’s Weather:
Guiding early reverse engineering efforts by summarizing
the evolution of changes. In Proceedings 20th IEEE Interna-
tional Conference on Software Maintenance (ICSM 2004),
pages 40–49, Los Alamitos CA, Sept. 2004. IEEE Computer
Society Press.

[6] C. Görg and P. Weissgerber. Detecting and visualizing refac-
torings from software archives. In Proceedings of IWPC
(13th International Workshop on Program Comprehension,
pages 205–214. IEEE CS Press, 2005.

[7] M. Kim and D. Notkin. Program element matching for
multi-version program analyses. In MSR ’06: Proceed-
ings of the 2006 international workshop on Mining software
repositories, pages 58–64, 2006.

[8] M. Lehman and L. Belady. Program Evolution: Processes of
Software Change. London Academic Press, London, 1985.

[9] T. Mens and S. Demeyer. Future trends in software evolu-
tion metrics. In Proceedings IWPSE2001 (4th International
Workshop on Principles of Software Evolution), pages 83–
86, 2001.

[10] C. Parnin and C. Görg. Building usage contexts during pro-
gram comprehension. In ICPC, pages 13–22, 2006.

[11] C. Parnin, C. Görg, and S. Rugaber. Enriching revision his-
tory with interactions. In MSR, pages 155–158, 2006.

[12] R. Robbes and M. Lanza. Versioning systems for evolution
research. In Proceedings of IWPSE 2005 (8th International
Workshop on Principles of Software Evolution), pages 155–
164. IEEE Computer Society, 2005.

[13] R. Robbes and M. Lanza. An approach to software evolution
based on semantic change. In Proceeding of FASE 2007,
pages 27–41, 2007.

[14] R. Robbes and M. Lanza. A change-based approach to soft-
ware evolution. In ENTCS volume 166, issue 1, pages 93–
109, 2007.

[15] J. Singer, R. Elves, and M.-A. Storey. Navtracks: Supporting
navigation in software maintenance. In International Con-
ference on Software Maintenance (ICSM’05), pages 325–
335, sep 2005.

[16] J. Śliwerski, T. Zimmermann, and A. Zeller. Hatari: raising
risk awareness. In ESEC/FSE-13: Proceedings of the 10th
European software engineering conference held jointly with
13th ACM SIGSOFT international symposium on Founda-
tions of software engineering, pages 107–110, New York,
NY, USA, 2005. ACM Press.

[17] D. C̆ubranić and G. Murphy. Hipikat: Recommending perti-
nent software development artifacts. In Proceedings 25th
International Conference on Software Engineering (ICSE
2003), pages 408–418, New York NY, 2003. ACM Press.

[18] F. Van Rysselberghe and S. Demeyer. Studying software
evolution information by visualizing the change history. In
Proceedings 20th IEEE International Conference on Soft-
ware Maintenance (ICSM ’04), pages 328–337, Los Alami-
tos CA, Sept. 2004. IEEE Computer Society Press.

[19] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. In 26th
International Conference on Software Engineering (ICSE
2004), pages 563–572, Los Alamitos CA, 2004. IEEE Com-
puter Society Press.

10


