
Visual Storytelling of Development Sessions

Roberto Minelli, Lorenzo Baracchi, Andrea Mocci and Michele Lanza
REVEAL @ Faculty of Informatics — University of Lugano, Switzerland

Abstract—Most development activities, like program under-
standing, source code navigation and editing, are supported
by Integrated Development Environments (IDEs). They provide
different tools and user interfaces (UI) to interact with the source
code, such as browsers, debuggers, and inspectors. It is uncertain
how and when programmers use different UI elements of an IDE
and to what extent they appropriately support development.

Previously we developed DFLOW, a tool that seamlessly
records and processes interaction data. Our long-term goal is
to assess to what extent the UIs of IDEs support the workflow
of developers and whether they can be improved. As a first step
we present our approach to analyze development sessions in the
form of visual storytelling. We illustrate our initial catalogue of
visualizations through two development stories.

I. INTRODUCTION

Integrated Development Environments (IDEs) are the fun-
damental applications used to develop software systems [1],
[2]. They are composed of different tools and facilities to
support the work of developers that involve source code [3],
[4]. Besides few studies (e.g., [5]) it is unclear how developers
interact with the UI of IDEs, and whether the UI gives enough
support to the development process.

We are investigating an approach to record the interactions
between the developer and the IDE [6]. Our recording tool,
DFLOW, silently records IDE interactions while the devel-
oper is programming, including development events and UI
events. The former are actions, such as navigating or editing
source code. The latter are mainly window interactions, like
window movement or resizing since our target IDE—the
PHARO SMALLTALK IDE—is a window-based development
environment (see http://pharo.org).

Our hypothesis is that interaction data recorded by DFLOW
may reveal important insights about developer behavior inside
the IDE. In this work, we present preliminary results on
leveraging such data to enable visual storytelling of devel-
opment sessions. We recorded more than 200 development
sessions from different developers performing their own tasks,
totaling over 100,000 development activities and about 80,000
interactions with the UI of the IDE. We illustrate a preliminary
catalogue of visualizations and we show how they can be
leveraged to obtain interesting development stories.

This paper makes the following contributions:

• A collection of development stories driven by novel
visualizations of development sessions;

• A set of visualizations to depict how developers use the
IDE from different perspectives.

Structure of the Paper. Section II describes a catalogue
of visualizations to depict the developer behavior. Section III
leverages such visualizations as the medium for visual devel-
opment storytelling. Section IV presents related work. Finally,
Section V concludes our work.

II. VISUALIZING INTERACTION DATA

DFLOW collects interaction data and processes it to char-
acterize development sessions. A development session is com-
posed of two classes of interaction data: development events
and UI events. The former are the events that involve source
code (i.e., from browsing to editing source code). UI events
are triggered when the user interacts with the windows of the
Pharo Smalltalk IDE, the target IDE for our study. Previously
we devised a visual approach to understand and characterize
development sessions from the UI perspective [6]. With our
“UI View” we characterized more than 200 development
sessions according to how the development flows across the
different windows of the IDE. In this paper we recall the “UI
View” and introduce four additional visualizations.

Activity Forest: The view depicts the program entities
involved in a development session enriched with structural
source code information. Figure 1 shows an example.

category Pill

Class Blue Class Red

foo bar baz

category X

Class Y

m1 m2 m3

Roots
Categories
(Packages)

Level 1
Classes

Level 2
Methods

Navigation Inspection Understanding Edit

Fig. 1. An Example of the Activity Forest.

The visualization is composed of a forest of trees (two
in the example), where each tree represents a sequence of
development actions in a context, i.e., subsequent actions
happening on program entities contained in the same package.
Thus, the root of each tree is a category (or package). Each
category has classes as children. Only the classes subject to
development actions are displayed (i.e., not necessarily all the
classes in the category). In the same way, classes have methods
as children. Inside each node the view portrays development
activities as colored boxes. Figure 2 shows a magnification of
the activities on the method baz from Figure 1.



tim
e

Size of the change
(edit-only)

Duration

Fig. 2. A detail of Figure 1

Each color represent a type
of activity (see the color legend
in Figure 1). The height of each
activity box is proportional to the
time spent, the width of boxes is
fixed. The only exception are edit
activities: Their width is propor-
tional to the size of the change,
i.e., the difference between the
size of the method before and
after the edit. Edit activities are
colored with a greyscale to rep-
resent the size of the method, i.e., white for smaller methods
and black for the biggest method edited in the session.

Activity Timeline: The view portrays the development
activities of a development session as a timeline. The view
emphasizes the sequential nature of the activities and their
duration. Figure 3 shows an example.

Navigation Inspection Understanding Edit

0 10 20 30 40 50 55

duration

Fig. 3. An Example of the Activity Timeline.

In the example, each activity is represented by a colored
box: white for navigation, blue for inspection, yellow for
understanding, and red for editing. While the height of the
timeline (i.e., and of the activities) is fixed, the width of each
activity is proportional to its duration. The timeline is enriched
by regular time ticks at 10 minutes intervals.

Cumulative Activity View: The view shows development
activities in a cumulative bar chart. This layout stresses the
partitioning of different types of activities (e.g., navigation,
editing, understanding). Figure 4 shows an example.

Navigation Inspection Understanding Edit

0

duration of understanding

300

600

1680

duration of editing
duration of inspection
duration of navigation

900

1200

360

Fig. 4. An Example of the Cumulative Activity View.

This visualization presents the same information depicted
in Figure 3 but in a different form. The vertical axis of the
graph represents time (in seconds). The first bar represents the
activities in the first 5 minutes of the session, the second bar
portrays the first 10 minutes, and so on.

UI View: The visualization depicts the interactions of the
developer with the UI of the IDE, i.e., windows. It empha-
sizes how the development flow advances through multiple
windows. Figure 5 shows an example.

Open Activate Resize/move Close Minimize / Expand

10:20 20:12

3:00 6:00 18:35 21:00 23:00 45:43 48:00 50:23

Explicit / implicit
 pause time
[d.hh:mm:ss]Commit

Main window

Short-windows

Windows
Interactions

Edit event

Fig. 5. An Example of the UI View.

The visualization depicts “tracks of windows” [6]: Each
track is composed of a main window and several short-lived
windows (or small-windows). Main windows were open for
more than 1 minute during the session, small-windows have a
lifetime shorter than 1 minute and are “attached” to a main-
window. Different tracks of windows occupy different vertical
coordinates. Each window is represented by a gray line with
events on it. When the gray line is visible it means that, during
this period, the window is “idle”, i.e., the developer is focusing
on another window. The view depicts the following window
interactions: open (blue), resize/move (yellow), activate/focus
(green), close (red), and minimize/expand (orange). The view
features red dots to depict when and on which window edit
events happened. Vertical lines across the view depict the
start and end times of the session and pause times during
development. Pauses can be explicitly triggered (gray) by the
developer and implicitly detected (red) if the developer is
inactive for a given amount of time (say 10 minutes).

Workspace View: The view mirrors the Pharo IDE and
depicts position and size of opened windows over time. It
highlights which areas of the IDE are the most crowded.

Free area Few windows Chaos

Fig. 6. An Example of the Workspace View.

Figure 6 shows an example. The outermost container
is the Pharo IDE. Inside there are translucent grey boxes
representing the windows the developer interacted with during
a development session. The view shows the evolution of the
entire session, step by step. Figure 7 shows three subsequent
snapshots of a session through the Workspace View.



Fig. 7. Subsequent Moments Visualized through the Workspace View.

At the beginning of the session (see Figure 7) the developer
concentrates her focus on the leftmost part of the IDE. As the
session continues the developer fills the IDE with windows.
The highest “concentration of windows” happens near the
bottom right corner of the IDE (i.e., darkest area of the view).

Summing Up

We presented a catalogue of 5 visualizations to characterize
the behavior of developers during a development session. The
Activity Forest, Activity Timeline, and Cumulative Activity
View depict development activities such as navigating, inspect-
ing, editing, and understanding source code. In a previous work
we provided an estimate of the duration of different activities
from the recorded interaction data [7]. The Activity Forest
highlights the program entities involved in the development
session and their source code structure. The Activity Timeline
and the Cumulative Activity View, instead emphasize how
time is spent while interacting with the IDE. The other two
views, the UI View and the Workspace View, focus on pure
UI interactions. In the next section we put our visualization in
practice to perform visual storytelling of development sessions.

III. VISUAL STORYTELLING

A. Killing Bugs and Windows

The first story is about a session of a developer that we
will call Alice. Upon starting a session DFLOW asks the user
for a title and a session type. The developer categorized the
session as bug-fixing. The session lasts for about three hours,
including 1 hour of pause. Figure 8 shows how the developer
managed her time in terms of development activities.

Fig. 8. Cumulative Activity View for a Bug-Fixing Session of Alice.

In each of the 5 minutes slices the developer mainly
performed understanding activities. At the end of the session
understanding accounts for 1 hour and 20 minutes, editing
activities lasted for less than 25 minutes, and duration of
inspections and navigations are respectively 19 and 2 minutes.
The large predominance of understanding could be intrinsically
connected with the nature of the session: Bug-fixing requires
a deep knowledge of the code base.

Fig. 9. Part of the Activity Forest for a Bug-Fixing Session of Alice.

The half hour the developer spent in editing source code
can be summarized with the part of the Activity Forest (see
Figure 9). All the edits are condensed in two contexts (i.e.,
packages) and involve only a dozen methods. Most of the times
edit events are interleaved with inspections (depicted in pale
yellow), which are the means to understand the effects of the
changes.

Until now we only focused on development activities.
DFLOW also captures interactions with the UI of the IDE.
Figure 11 shows a combined visualization of the UI View (top)
and the Activity Timeline (bottom) for the same Bug-Fixing
Session of Alice. In this session Alice used 228 windows and
she focused for very little time on each of them (i.e., about 30
seconds per window). The highly interrupted development’s
flow of Alice in this session may be due to the way the IDE
supports debugging activities. In Smalltalk, while debugging,
developers perform inspections on instances of objects. Most
of the times when the user inspects an object the Pharo IDE
triggers an Inspector, i.e., a small window that shows details
about the inspected instance. This assumption is supported by
a high number of inspection events (222). This session features
60 edit events on a dozen of methods. The red dots in the UI
view represent when and where edit events happened. From
Figure 11 we can observe that there are more than a dozen
windows with edit events. This means that Alice tends to open
multiple source code browsers on the same artifact, and close
browsers immediately after an edit, thus being forced to reopen
it for the next edit.

Fig. 10. Two Workspace Views of the Bug-Fixing Session of Alice.

Developers are often forced by IDEs to spawn a number of
windows (or tabs) to reveal hidden relationships among source
code entities. Röthlisberger et al. called this phenomenon the
“Window Plague” [8]. From the highlights in Figure 11 we
can observe how the environment of Alice is affected by this



Fig. 11. A combined visualization of the UI View and the Activity Timeline for a Bug-Fixing Session of Alice.

plague. When her IDE reaches a certain “level of chaos”
she simultaneously closes a number of window to lower it.
Figure 10 shows two snapshots of the session of Alice using
the Workspace Views. Alice has a tendency to use only the
leftmost part of the IDE. This could possibly motivate the
need to cure the window plague so often.

B. One Window Takes It All

This story is about an enhancement session of Bob. En-
hancement means that the developer’s intention is to add new
or enhance existing functionality.

Fig. 12. Cumulative Activity View.

The session lasts for
about an hour and for its
entire duration the developer
invests much more time in
understanding than in other
activities (see Figure 12).
Editing increases constantly
throughout the session with
two major jumps, highlighted
in the view.

All the edits happen in
a single category (or pack-
age) as shown by the part
of Activity Forest depicted in

Figure 13. It highlights the activities on two methods, both
part of the same class, i.e., the most edited methods. From the
visualization we see that the developer tends to shorten these
methods while editing them, i.e., their color goes from black
to white. The complete Activity Forest (not shown for lack of
space) includes a number of small trees depicting classes the
developer browsed while building his knowledge to perform
the changes.

Figure 14 shows how the IDE looks like at the beginning,
towards the middle, and at the end of the session. There is
a big window (i.e., a code browser) that occupies almost the
entire IDE space. This window remains active for the entire
duration of the session. The developer tends to open (or move)
all the windows towards the top let corner of the screen, hiding

Fig. 13. Part of the Activity Forest for an Enhancement Session of Bob.

the top half of the big window. Pharo code browsers display
source code in the lower part of the window. Bob moves all
the windows so that he can always see the lower part of the
big-window, most likely because he wants to keep an eye on
the source code displayed in it. The UI View, depicted in
Figure 15, shows this long-lived window, i.e., the first window
track. All the edits are performed using this window, i.e., this
session revolves around this key window.

Fig. 14. Three Workspace Views of the Enhancement Session of Bob.



Fig. 15. The UI View of the Enhancement Session of Bob.

IV. RELATED WORK

To understand how developers interact with IDEs re-
searchers recorded IDE events, such as invoked API meth-
ods and keystrokes. Yoon and Myers proposed FLUORITE, a
tool that records low-level development events in the Eclipse
IDE [9]. Murphy et al. developed the MYLAR framework and
observed how developers use plugins in the Eclipse IDE [5].
Robbes and Lanza proposed SPYWARE, a tool to record fine-
grained source code changes in the IDE [10]. Kobayashi et al.
developed PLOG, a MYLAR extension that records more fine-
grained code changes [11]. They built a prediction model for
change propagation based on the recorded interaction histories.

To make sense of development sessions researchers often
used visualization techniques. AZURITE is an Eclipse plug-in
that visualizes fine-grained code change histories [12]. The tool
provides two views that let developers navigate through the
history of changes. Servant and Jones developed CHRONOS,
an Eclipse plug-in that lets developers visually query and
explore historical source code change events [13]. They also
provide a motivating example to show how developers can
benefits from the visualization offered by CHRONOS. Gı̂rba
et al. [1] and Greevy et al. [2] visualized code ownership
with the “Ownership Map”. Telea & Auber developed CODE
FLOWS, a tool that shows changes between revisions of files
and highlights important events such as drift and merges [14].
Ogawa & Ma propose different visualizations of source code
and developers (e.g., [15], [16]).

In our work we collect data with our DFLOW tool [6] and
we use a catalogue of visualizations to understand the devel-
oper behavior. While most related work focuses on version
control systems data, our views depict fine-grained interaction
data collected with our DFLOW tool.

V. CONCLUSIONS

IDEs offer an significant amount of tools and UIs to support
development activities such as editing, navigation and program
understanding. However, it is unclear how developers exploit
such diverse facilities to perform development activities.

We devised five views to support preliminary analytics of
developer interactions with the IDE. The views leverage the
data recorded by DFLOW, our supporting tool that silently
records IDE events. As a proof of concept we used the visual-
izations to support visual storytelling of interesting developer
behaviors. The two stories illustrate that it is possible to
infer insights about how developers use the IDE, pointing out
veritable development styles in terms of UI usage.

As future work we plan to extend our catalogue of visu-
alizations and enlarge our dataset of development sessions to
discover new interesting development stories.

Acknowledgments. We gratefully acknowledge the finan-
cial support of the Swiss National Science foundation for the
project “HI-SEA” (SNF Project No. 146734).

REFERENCES

[1] T. Gı̂rba, A. Kuhn, M. Seeberger, and S. Ducasse, “How developers
drive software evolution,” in Proceedings of IWPSE 2005 (8th Interna-
tional Workshop on Principles on Software Evolution). IEEE, 2005,
pp. 113–122.

[2] O. Greevy, T. Gı̂rba, and S. Ducasse, “How developers develop fea-
tures,” in Proceedings of CSMR 2007 (11th European Conference on
Software Maintenance and Reengineering). IEEE, 2007, pp. 265–274.

[3] A. Ko, B. Myers, M. Coblenz, and H. Aung, “An exploratory study
of how developers seek, relate, and collect relevant information during
software maintenance tasks,” IEEE TSE 2006 (Transactions on Software
Engineering), vol. 32, no. 12, pp. 971–987, 2006.

[4] J. Sillito, G. C. Murphy, and K. De Volder, “Asking and answering
questions during a programming change task,” IEEE TSE 2008 (Trans-
actions on Software Engineering), vol. 34, no. 4, pp. 434–451, 2008.

[5] G. C. Murphy, M. Kersten, and L. Findlater, “How are java software
developers using the eclipse IDE?” IEEE Software, vol. 23, no. 4, pp.
76–83, 2006.

[6] R. Minelli, A. Mocci, M. Lanza, and L. Baracchi, “Visualizing de-
veloper interactions,” in Proceedings of VISSOFT 2014 (2nd IEEE
Working Conference on Software Visualization), 2014, p. to appear.

[7] R. Minelli, A. Mocci, M. Lanza, and T. Kobayashi, “Quantifying
program comprehension with interaction data,” in Proceedings of QSIC
2014 (14th International Conference on Quality Software), 2014, p. to
appear.

[8] D. Roethlisberger, O. Nierstrasz, and S. Ducasse, “Autumn leaves:
Curing the window plague in IDEs,” in Proceedings of WCRE 2009
(16th Working Conference on Reverse Engineering). IEEE, 2009, pp.
237–246.

[9] Y. Yoon and B. A. Myers, “Capturing and analyzing low-level events
from the code editor,” in Proceedings of PLATEAU 2011 (3rd Workshop
on Evaluation and Usability of Programming Languages and Tools).
ACM, 2011, pp. 25–30.

[10] R. Robbes and M. Lanza, “Characterizing and understanding devel-
opment sessions,” in Proceedings of ICPC 2007 (15th International
Conference on Program Comprehension). IEEE, 2007, pp. 155–166.

[11] T. Kobayashi, N. Kato, and K. Agusa, “Interaction histories mining for
software change guide,” in Proceedings of RSSE 2012 (3rd Interna-
tional Workshop on Recommendation Systems for Software Engineer-
ing), 2012, pp. 73–77.

[12] Y. Yoon, B. Myers, and S. Koo, “Visualization of fine-grained code
change history,” in Proceedings of VL/HCC 2013 (IEEE Symposium on
Visual Languages and Human-Centric Computing), 2013, pp. 119–126.

[13] F. Servant and J. Jones, “Chronos: Visualizing slices of source-code his-
tory,” in Proceedings of VISSOFT 2013 (1st IEEE Working Conference
on Software Visualization), 2013, pp. 1–4.

[14] A. Telea and D. Auber, “Code flows: Visualizing structural evolution
of source code,” in Proceedings of EuroVis 2008 (10th Joint Euro-
graphics / IEEE - VGTC Conference on Visualization). Eurographics
Association, 2008, pp. 831–838.

[15] M. Ogawa and K.-L. Ma, “code swarm: A design study in organic soft-
ware visualization,” IEEE Transactions on Visualization and Computer
Graphics, vol. 15, no. 6, pp. 1097–1104, Nov 2009.

[16] ——, “Software evolution storylines,” in Proceedings of SOFTVIS 2010
(5th International Symposium on Software Visualization). ACM, 2010,

pp. 35–42.


