
Samoa — A Visual Software Analytics Platform
for Mobile Applications

Roberto Minelli and Michele Lanza
REVEAL @ Faculty of Informatics — University of Lugano, Switzerland

Abstract—Mobile applications, also known as apps, are ded-
icated software systems that run on handheld devices, such as
smartphones and tablet computers. The apps business has in a
few years turned into a multi-billion dollar market. From a soft-
ware engineering perspective apps represent a new phenomenon,
and there is a need for tools and techniques to analyze apps.

We present Samoa, a visual web-based software analytics
platform for mobile applications. It mines software repositories
of apps and uses a set of visualization techniques to present the
mined data. We describe Samoa, detail the analyses it supports,
and describe a methodology to understand apps from a structural
and historical perspective.

The website of Samoa, containing the screencast of the tool
demo, is located at http://samoa.inf.usi.ch/about

I. Introduction

Mobile applications, or apps, are custom software systems
running on handheld devices, i.e., smartphones and tablet PCs.
The world of apps is variegated: Each vendor imposes a number
of constraints (e.g., the programming language and development
environment to be used), provides specific design guidelines,
and offers its own distribution channel (e.g., Android’s Google
Play, Apple’s App Store). The market of apps is remarkable:
Apps generated a revenue of $4.5 billion USD in 2009 [1],
and the business is expected to be worth $25 billion USD [2]
a few years from now.

The Apple and Google stores provide ca. one million apps for
download. With their increasing popularity, apps are becoming
an important software engineering domain. Apps represent
a new phenomenon but, as any software system, they will
inevitably face evolution, maintenance, and comprehension
problems. It is unclear whether existing approaches for program
comprehension and maintenance [3], [4], [5] can be ported to
apps, since they were devised before apps existed.

We devised a novel approach to analyze apps [6] and
implemented Samoa, a web-based software analytics platform
for apps1. Samoa mines software repositories of apps and uses a
set of visualization techniques to present the mined data. Samoa
offers a catalogue of custom views to understand the structure
and evolution of apps. Both analysts and developers interested
in comprehending apps can benefit from these visualizations.

We used Samoa to investigate part of the F-Droid repository2.
We discovered, for example, that inheritance is essentially
unused in apps, that apps heavily rely on 3rd-party APIs, and
that most apps are short-lived single developer projects.

1See http://samoa.inf.usi.ch
2See http://f-droid.org

Related work. Since the first apps were developed only a
few years ago, there is little directly related work. Ruiz et al.
focused on software design aspects of apps, namely on reuse by
inheritance and class reuse [7]. They divided apps in categories
(e.g., casino, personalization, photography), and found that
more than 60% of all classes in each category appear in more
than two other apps. Hundreds of apps were entirely reused
by other apps in the same category. Harman et al. introduced
“App Store Mining” [8], a novel form of software repository
mining. They mined the Blackberry app store and studied a
number of correlations between different features of apps.

Differently from Harman et al. we want to focus on the
source code of apps, rather than on app stores. Our goal is
to understand the differences between apps and traditional
software systems, and the implications for the maintenance
and comprehension of apps. The novelty of apps explains the
small amount of related work, but also calls for novel tools
and techniques to analyze apps.

We present Samoa, our visual web-based software analytics
platform for mobile applications. Samoa leverages three factors
for the analysis: source code, usage of 3rd-party libraries, and
historical data. Samoa presents the data to the user by means
of a catalogue of interactive visualizations. The views are
enriched with traditional software metrics complemented by
domain-specific ones. Samoa provides a custom snapshot view
to depict a specific revision of one app, a evolution view to
present historical aspects of one app, and ecosystem views to
depict several apps at once.

II. Samoa: A Visual Software Analytics Platform for Apps

Figure 1 depicts the main user interface of Samoa presenting
a snapshot view of the Alogcat application. The UI is composed
of five parts: a (1) Selection panel that allows the user to pick
the app to be analyzed, and to switch between the different
visualizations Samoa provides; a (2) Metrics panel which
summarizes a set of metrics in sync with the visualization,
being a specific revision of an app (i.e., snapshot) or global
measurements about the apps ecosystem; a (3) Revision info
panel that displays information about a specific revision of an
app; an (4) Entity panel displaying additional details about the
entity in focus; and the (5) Main view, the remaining surface
dedicated to the interactive views.

Figure 1 illustrates also how we enhance the view using
colors and metrics.

Delta with largest snapshot in history

Number of
external calls

Number of
internal calls

The whole app (in terms of LOC)

The CORELOC Other LOC Activity Main Activity

Default
Main Activity Service

Phantom
Element

Core Circle Colors

Call Ring Colors

Android calls Java calls

JavaX calls Apache calls

Unclassified
callsAll other calls

a
b

1
2

3

4

5
The White Ring

The App Circle

The Core Circle

The Call Ring

The History Circle

Fig. 1: Samoa: our web-based software analytics platform for mobile applications, depicting a snapshot of Alogcat.

A. Visualizations

To better comprehend mobile applications Samoa provides
visualizations at three different granularities: The “snapshot
view” depicts a specific revision of an app; “evolution views”
present the evolution of an app over its history; and “ecosystem
views” depict more than one app at once.

a) Snapshot view: Figure 1 shows the 48th revision of the
Alogcat app3. This view presents the most important structural
properties of an app at hand. Two main parts compose our

“snapshot view”: the central section (1.a) and a ring (1.b).
The central section of the view presents the entire app in

terms of classes and lines of code (LOC). Among all classes,
we define as “Core Elements” the entities specific to the
development of apps (i.e., which inherit from the mobile
platform SDK’s base classes). This section is composed of an

“App Circle” (i.e., shaded blue) and a “Core Circle” (i.e., light
red). The former represents the entire app in terms of LOC,
while the latter depicts the core of the app. Circles inside the

“Core Circle” are “Core Elements” (i.e., Java classes), where
the radius of each circle is proportional to the value of LOC of
the entity represented, and color & stroke provide additional
information about the type of the entity (e.g., Activity, Service,
Main Activity).

3See http://code.google.com/p/alogcat/

The radius of the “App Circle” is proportional to the number
of LOC of the app at the current revision while the radius of
the “Core Circle” is proportional to the sum of the values of
LOC of “Core Elements”.

The “Call Ring” (Figure 1.b) uses a circular layout to depict
the 3rd-party APIs calls the app makes. Its thickness and total
span are proportional to the number of external method calls.
Each slice of the “Call Ring” represents calls to a distinct 3rd-
party library (e.g., Apache, JavaX), where colors distinguish
calls to different libraries. We use specific colors to depict
calls to the four most employed libraries and two tones of
gray: one for all calls to other libraries and one for the calls
Samoa is not able to identify. The angle spanned by an arc is
proportional to the number of method calls it represents. The

“Historical Circle” (i.e., green shaded) represents the maximum
size of an app over its entire history, thus if there is a gap (as
in Figure 1) we know that the currently visualized snapshot
is not the largest in the history of the app. The number of
internal calls (i.e., calls implementing internal behavior of the
app) is represented by the thickness of the “White Ring”. With
this visual cue, we can infer the ratio between internal and
external calls. The outer radius of the “Call Ring” indicates
the size of a snapshot, considering both LOC (i.e., the radius
of “App Circle”) and method calls (i.e., thickness of the “Call
Ring” and the “White Ring”).

b) Evolution view: Samoa uses stacked bar charts and line
charts to present different types of evolutionary information
(e.g., LOC, external calls, or core elements) about an app,
considering all the snapshots available to Samoa.

(a) (b) (c)

Fig. 2: Evolution views of the CSipSimple app in terms of (a)
3rd-party calls, (b) LOC, and (c) number of “Core Elements”.

Figure 2 depicts the evolution views of the CSipSimple app4,
in terms of (a) 3rd-party calls, (b) LOC, and (c) number of

“Core Elements”. In the bar chart views, each bar represents
a snapshot of the app, divided into layers, according to the
type of data presented, e.g., Figure 2.b depicts the evolution
LOC, thus layers are CoreLOC (i.e., red) and non-CoreLOC
(i.e., grey). The height of each bar represents the value of a
specific software metric, in this example the value of LOC.
As highlighted in Figure 2.b, we use opacity to denote an
app’s release versions: Darker bars are snapshots whose release
number changed. Samoa uses line charts to depict data without
a logical layer subdivision, e.g., the evolution of the number
of “Core Elements” presented in Figure 2.c.

c) Ecosystem view.: Ecosystem views depicts several apps
at once, using stacked bar charts or a grid layout. Figure 3
depicts an ecosystem view of 12 apps, sorted according to their
size (i.e., in terms of LOC), arranged using a grid layout.

Fig. 3: An ecosystem view of 12 apps, sorted by total LOC.

Each shape is a simplified snapshot view of an app where
the radius of the core (i.e., yellow) corresponds to the number
of CoreLOC. The radius is proportional to the total number
of LOC, the span of the “Call Ring” shows the proportions
of external calls (either with unary or proportional weights).

B. User Interactions

All the visualizations offered by Samoa are interactive. For
example, by hovering on a shape, the entity is highlighted and
the “entity panels” of Samoa provides additional information
about the shape in focus (see Figure 1.4). The user can freely
zoom and pan the snapshot view. On clicking on a core element,

4See http://code.google.com/p/csipsimple/

Samoa displays its source code. In the visualizations based on
bar charts, the data can be re-ordered and the user can choose
to display layers either grouped or stacked (i.e., default). In
both the evolution and ecosystem view clicking on a shape
leads to the corresponding snapshot view of the app.

C. A Methodology to Understand Apps

Samoa provides views at different granularities, with different
purposes and applications, which we described in previous work
[6]. The typical methodology is to use ecosystem views to get
a “big picture” of several apps at once, and then drill down
using the evolution view which, in turn, help us to understand
where to use the snapshot view.

D. Under the Hood: Architecture and Technologies

Samoa is composed of a back-end and a front-end, as Figure 4
depicts. The back-end, entirely written in Java, is responsible
for a number of tasks: (1) it mines software repositories of apps
and extracts apps-specific data from different artifacts. Then (2)
it processes the data by, extracting and parsing two different
source code representations, namely the AST (Abstract Syntax
Tree) and the MSE5. From these two representations, plus the
Android manifest6, Samoa (3) extracts a set of software metrics
and (4) generates JSON files that are served to the front-end,
implemented using PHP, HTML5, and JavaScript (i.e., views
are generated using d3.js).

SAMOA BACK-END

Java SVN
Crawler

Source code model extraxction

Metrics Extraction

AST

Generator
Parser

MSE

Generator
Parser

JSON
Files

SAMOA FRONT-END

JSON retrieval

HTML
CSS

Javascript
jQuery/PHP

d3.js

Internet

1

2

3

4

SVNSVNSVNSVN

Fig. 4: An architectural overview of Samoa.

III. A Catalogue of Peculiarities of Apps

Following the methodology described in Section II-C, we
devised a catalogue of peculiarities of apps [6]. For example,
we can order our ecosystem of apps according to their number
of revisions, and investigate on the app with the longest history.

Example I: Figure 5.a shows part the evolution of LOC
of Zxing7, the app with the longest history in our apps
ecosystem, with more than 2.2k commits. Android apps have
a configuration file (i.e., called manifest) which identifies the

“Core Elements” of the app. To work properly, an app requires
the manifest file to be in sync with the source code.

5See http://www.moosetechnology.org/docs/mse
6See http://goo.gl/Rt6GD
7See http://code.google.com/p/zxing/

(a) (b)

Fig. 5: (a) Part of the evolution of LOC of the Zxing app and
(b) one of the snapshot in which the manifest is out of sync.

Android developers should maintain this file in synch man-
ually (i.e., reflecting the changes performed in the source code
to the manifest file). During our app analysis we discovered
that sometimes developers forgot to keep the manifest updated,
introducing bugs in their apps, as in the case of Zxing. In
the highlight of Figure 5, there is a time interval in which
CoreLOC drop and suddenly they increase again. With further
investigation, we discovered that the authors have moved some
functionalities into sub-packages, but they forgot to update the
references in the manifest, preventing both the Android OS
and Samoa to recover links to the “Core Elements”. Figure 5.b
shows that Samoa is not able to correctly recover “Core
Elements”, and depicts some of them as “phantom elements.”

Example II: Apps should conform to a set of sound
guiding principle. The Android documentation, for example,
recommends that apps should have one “Main Activity” and, if
not so, they must have a single “Default Main Activity”: The
real main activity to invoke. In our app analysis, we observed
many apps have more than one main activity.

Fig. 6: The central section of the snapshot view of App-
SoundManager app at revision 106.

Figure 6 depicts the 106th snapshot of App-SoundManager8.
This apps lists 4 Main Activities (i.e., yellow), out of which
3 “default” main activities (i.e., thicker stroke in our snapshot
view), violating the said Android guideline.

8See http://code.google.com/p/app-soundmanager/

Example III: In all Java systems, including Android apps,
3rd-party APIs are reused by including JAR files in the build
path. Developers of apps have a tendency of directly importing
the entire source code of 3rd-party libraries instead of adding
the needed JAR files, which is a questionable practice from a
legal point of view.

Fig. 7: Part of the evolution of LOC of Apps Organizer.

Figure 7 depicts the evolution of the number of LOC of the
Apps Organizer9 application. At some point the authors added
the source code (≈7 kLOC) of the Trove library10. Later on,
they removed part of the same library (≈2.3 kLOC).

IV. Conclusion

We presented Samoa, a novel web-based software analytics
platform, which supports our approach [6] to analyze apps
from several points of view, using custom views tailored to the
novel domain of mobile applications, offering several means
to navigate and inspect information.

Acknowledgements. We gratefully acknowledge the Swiss
National Science foundation’s support for the project “HI-SEA”
(SNF Project No. 146734).

References
[1] R. Islam, R. Islam, and T. Mazumder, “Mobile application and its global

impact,” IJEST, 2010.

[2] Markets and Markets, “Global mobile application market (2010–2015),”
2010.

[3] M. Lehman, D. Perry, and J. Ramil, “Implications of evolution metrics
on software maintenance,” in Proceedings of ICSM, 1998, p. 208.

[4] H. Gall, M. Jazayeri, R. Klösch, and G. Trausmuth, “Software evolution
observations based on product release history,” in Proceedings of ICSM,
1997, pp. 160–166.

[5] W. Turski, “The reference model for smooth growth of software systems
revisited,” TSE, pp. 814–815, 2002.

[6] R. Minelli and M. Lanza, “Software Analytics for Mobile Applications -
Insights & Lessons Learned,” in Proceedings of CSMR, 2013, pp. 144–153.

[7] I. Ruiz, M. Nagappan, B. Adams, and A. Hassan, “Understanding reuse
in the android market,” ACM-ICPC, 2012.

[8] M. Harman, Y. Jia, and Y. Zhang, “App store mining and analysis: MSR
for app stores,” in Proceedings of MSR, 2012.

9See http://code.google.com/p/appsorganizer/
10See http://trove.starlight-systems.com/

