
Harnessing Stack Overflow for the IDE

Alberto Bacchelli, Luca Ponzanelli, Michele Lanza
REVEAL @ Faculty of Informatics - University of Lugano, Switzerland

Abstract—Developers often consult online tutorials and mes-
sage boards to find solutions to their programming issues.
Among the many online resources, Question & Answer websites
are gaining popularity. This is no wonder if we consider a case
like Stack Overflow, where more than 92% questions on expert
topics are answered in a median time of 11 minutes. This new
resource has scarcely been acknowledged by any Integrated
Development Environment (IDE): Even though developers
spend a large part of their working time in IDEs, and the
usage of Q&A services has dramatically increased, developers
can only use such resources using external applications.

We introduce Seahawk, an Eclipse plugin to integrate Stack
Overflow crowd knowledge in the IDE. It allows developers to
seamlessly access Stack Overflow data, thus obtaining answers
without switching the context. We present our preliminary
work on Seahawk: It allows users to (1) retrieve Q&A from
Stack Overflow, (2) link relevant discussions to any source code
in Eclipse, and (3) attach explanative comments to the links.

Keywords-Q&A websites, Stack Overflow, Seahawk

I. Introduction
Although the software development process outcome is

heavily based on the knowledge and the creativity of software
developers [17], writing code often requires knowledge be-
yond that which developers already possess [6]. To obtain the
knowledge necessary to complete the task at hand, developers
consult different sources of information, such as co-workers,
project documentation, books, manuals, or computerized
information systems. However, project documentation is
commonly inadequate [7], manuals tend to be outdated, and
books may be hard to retrieve or link to the actual task. For
these reasons, often developers’ knowledge needs can only
be satisfied by posing questions to other programmers [6].

With the aim of leveraging on these circumstances and
the success of social media, Question and Answers (Q&A)
online services offer infrastructures to support knowledge
exchange between programmers. Even though many studies
(e.g., [1], [10]) that investigated general purpose Q&A
websites “suggest that [they] may be poorly suited to provide
high quality technical answers” [8], in practice, Q&A sites for
programmers and software engineers are filling “archives with
millions of entries that contribute to the body of knowledge
in software development” [14].

A. The Case of Stack Overflow
Among the available technical Q&A sites, Stack Overflow

(http://stackoverflow.com/) in particular is becoming one of
the most visible venues for sharing knowledge on software
development [8].

By analyzing the data from the last public release (Septem-
ber 2011) of the entire Stack Overflow data dump [2], we
measure approximately 750,000 registered users, 2 million
posed questions, and 4 million answers, of which more than
1 million were accepted as resolutive from the person who
posed the question. Figure 1 shows the growing trend of
the number of questions and answers exchanged each month
on the Stack Overflow website. Mamykina et al. reported
that more than 92% of the questions on expert topics are
answered in a median time of 11 minutes [8].

0

50,000

100,000

150,000

200,000

250,000

Ju
l-0

8

Sep
-08



Nov
-08



Ja
n-0

9

Mar-
09


May
-09



Ju
l-0

9

Sep
-09



Nov
-09



Ja
n-1

0

Mar-
10


May
-10



Ju
l-1

0

Sep
-10



Nov
-10



Ja
n-1

1

Mar-
11


May
-11



Ju
l-1

1

Number of questions per month Number of answers per month

Figure 1. Number of questions and answers in Stack Overflow by month.

The Stack Overflow service aims to differentiate its method
to access knowledge from those offered by web search
engines [13]. This is mainly achieved through three of the
specific design decisions that guided the creation of the
service: voting, tagging, and editing. Voting addresses the
critical issue that arises when reusing code samples found on
the web: Before integrating a search result the developer has
to assess its trustability to take a decision [4]. In the case of
search engine results, developers have to take a decision that
can only be based on their knowledge and experience. In
Stack Overflow, on the contrary, developers can also rely on
the result of the voting mechanism: Site members can vote
to approve or disprove any answer, and the sum of the votes
creates an overall quality score based on crowd knowledge.

Tagging is used to clarify the technology and the topic
to which the question and answer applies. When retrieving
explanations and examples from generic websites, in fact,
the technology to which they refer might be unclear, e.g., it
is common to mistake VB6 for VB.NET. In Stack Overflow,
questions can be filtered and retrieved by tag.

Editing clearly distinguishes this Q&A site from traditional
web sites and web forums: Stack Overflow members can
edit questions and answers to make them more refined and
to the point over time, thus creating a reliable and correct
knowledge base that can always be referenced and accessed.

http://stackoverflow.com/


1

2

3

4

Figure 2. The Seahawk User Interface.

The Stack Overflow community encourages both editing
contributions where the person who asked the question also
gives the answer, thus creating a sort of mini-blog entries [14].

B. Limitations of Q&A Sites

Despite the aforementioned valuable features and its
exceptional growth in usage and interest, both in academia
and industry, we currently see two limitations in Stack
Overflow and Q&A sites in general that hinder their full
potential for software engineering.

In the first place, Q&A sites suffers from a disconnection
from the IDEs (Integrated Development Environments): The
environments where developers spend most of their working
time. Through the investigation conducted by LaToza et al. on
developers’ work habits [7], we know that programmers spend
most of their time in the IDE not only when writing code,
but also when understanding it, and even when designing
new parts of a system. Despite this, Q&A websites are
currently only accessible from web browsers, in a way that
is disconnected from the development process. This might
limit a consistent adoption of Q&A sites as a mean to acquire
knowledge: Since Q&A sites are not integrated in modern
IDEs, developers are forced to interrupt their flow and change
context every time they need to deal with them. Moreover
there is no possibility to easily retrieve answers directly
related to the current programming context.

In the second place, by their nature, Q&A websites provide
a platform for questions aimed at “a general audience that is
not part of the same project” [14]. We do not see this as a
limitation of the interest that a whole team working on the
same project can have toward certain valuable discussions.
In fact, we can easily imagine a developer who bases
her implementation of a part of a software system on
a meaningful discussion that took place on a Q&A site.
Knowing the existence of such a productive discussion would
be a valuable resource to recover the rationale, design, or
implementation details of that particular portion of the system.
Nevertheless, Q&A websites currently only offer web links to
refer their data and do not offer any resource to collaboratively
and privately exploit valuable questions and answers in the
context of a team working on the same project. This reduces
the context of usage of Q&A sites.

C. Our Contribution

We claim that an integration in the IDE—the environment
where developers spend most of their working time—of
Q&A sites’ data would be a viable solution to remove the
aforementioned limitations suffered by these services. To
this aim, we present Seahawk, a plugin for the open-source
IDE Eclipse 1, we are devising to integrate Stack Overflow

1http://www.eclipse.org

http://www.eclipse.org


data support in the programming environment. We report
our preliminary work, and we show that questions can be
(1) easily and effectively accessed within IDE, (2) linked to
specific source code entities, and (3) commented within the
context of the project being developed.

II. Seahawk

We are devising Seahawk to obtain a recommendation
system for Stack Overflow data, integrated in the IDE. We
chose Eclipse as our target IDE because of its modular and
pluggable structure, its significant amount of users, and its
support for multiple languages. The current implementation
of Seahawk works for any language recognized by Eclipse.

The current implementation of Seahawk2 (Figure 2) lets
the user query Stack Overflow data, list relevant questions
and answers, read each single discussion, link any discussion
to any code file, and provide a comment for justifying the
links, which will be recommended again when the file will be
opened again. We detail Seahawk by following the division
described by Robillard et al. [11]: A recommender system
involves: A data-collection mechanism to store development-
process data and artifacts in a model, a recommendation
engine to analyze data and generate recommendations, and a
user interface to trigger recommendations and show results.

A. Data-collection Mechanism

Figure 3 shows the current architecture of the Seahawk
recommendation system. On the left side, the background
shape delimits the data-collection mechanism.

To obtain more flexibility in the recommendation en-
gine (see Section II-B), instead of relying on the official
Stack Overflow API 3 to obtain question data, we took
advantage of the entire data dump of the service database
publicly provided under a Creative Commons license [2].
This data dump is made of several XML files, which map
the tables of the official database. The biggest file has a
size of more than 7GB and maps the “posts”, i.e., both
answers and questions, treated as rows of the same table,
relying on intra-table relations to build complete discussion
documents. The size of the dump did not allow us to rebuild
original documents in memory, thus we created a XML dump
importer module to first reproduce the database locally. The
Document builder reconstructs the documents by restoring the
dependencies between questions and answers and comments
from the database (i.e., additional discussion concerning only
the specific answer, or question), and includes users’ data
and votes to recover the scores. This complete data is then
given as input to an Apache Solr 4 instance, which is the
basis of our recommendation engine.

2available at http://seahawk.inf.usi.ch
3http://api.stackoverflow.com/1.1
4http://lucene.apache.org/solr

Data-collection Mechanism Eclipse

Crawley

System model

Linking 
engine

Apache 
Solr Search 

EngineMbox
files
Mbox
files

XML
data
dump
files

XML dump
importer

DB
PostgreSQL

Links
SQLite

Query 
engineHTTP

POST

XML

POST

XML

Document 
builder

Figure 3. The Architecture of the Seahawk Recommendation System.

B. Recommendation Engine

The recommendation engine of Seahawk is made of three
components: The Apache Solr engine, the Query engine, and
the Linking engine plus its SQLite database. The choice of
using the entire data dump gives us the freedom to decide
on the technology for retrieving relevant discussion from
Stack Overflow data, instead of relying on the “black-box”
service that the website offers. In the current version of
Seahawk, we work with Solr, which offers good flexibility
and effective search performances. In particular the data in
input is stored and indexed in a vector space model [9]
using tf-idf as weighting. To improve the effectiveness of the
indexing mechanism, we applied widely used information
retrieval pre-processing: We removed natural language stop
words, we filtered out possessive words, we lowered the case
of all the characters, and we applied a stemming process [9].

Once the indexing is complete, the Solr engine can be
queried via HTTP: It answers with the relevant documents
in XML format. The dialog with Solr is implemented by
the Query engine component, which, as seen in Figure 3,
is part of the Eclipse plugin itself. In addition, the linking
engine is used to store and retrieve the manual links that
users provide between Stack Overflow discussion and code
files in the project being developed in Eclipse.

C. User Interface

Figure 2 presents the Seahawk plugin as seen during a
development session in the Eclipse IDE. The starting point
for interacting with Seahawk is the Development Search
Result view (Point 1, in Figure 2): The user inputs terms to
form a query in the text field, then hits the Search button to
trigger the retrieval. The Query engine sends the request to
Solr and, in a few seconds, displays the results in the table.
The user, then, is able to sort the result by relevance (as
computed by Solr), author, date, or title.

Subsequently, when the user double clicks on any entry in
the list of results, the Document’s Content view is accordingly
updated and shows the content of the discussion (Point 2).
The complete information that would be available in the Stack

http://seahawk.inf.usi.ch
http://api.stackoverflow.com/1.1
http://lucene.apache.org/solr


Overflow website is presented through a html page displayed
by the internal web browser of the Eclipse IDE. We decided
to create a page that is more compact than the original
Stack Overflow version, thus allowing an easier integration
within Eclipse. For example, comments are displayed only
on request by clicking on a link under each post (not visible
in the figure for space reason).

The first two views provide the first contribution of our
work: An approach to allow programmers to seamlessly
access Stack Overflow data within the IDE with no context
switches. To have access to the second contribution (i.e.,
linking discussions to project’s code files, and commenting
them), the user interacts with the standard Code Editor view
(Point 3) and with the Suggested Documents view (Point 4).

The user selects any entry in the Development Search
Result view, and drags and drops it to the code editor
containing the code file to be linked. After this, an interaction
dialog appears (see Figure 4), in which the comment
explaining the link can be entered. The Linking engine, in the
background, creates a new link by storing the information
(path to the code file, id and title of the question, and linking
comments) in a SQLite database in the Eclipse directory.
Every time any file with links to discussions is opened again,
the Linking engine uses the stored information to query Solr
and receive the documents to display.

Figure 4. Dialog to comment a link to a Stack Overflow discussion.

III. Discussion

The current implementation of Seahawk reflects our
preliminary work on the topic: It helped us to determine
the practical feasibility of our approach and delineate future
working directions. Nevertheless, Seahawk is affected by a
number of limitations.

Concerning the data-collection mechanism, even though
using the Stack Overflow data dump gives us both more
flexibility and the possibility to use Seahawk without Internet
access, this approach poses a few challenges: First, the
availability of the data dump relies on the benevolence of
Stack Overflow maintainers, will they continue to provide
this data in the future? If not, how can we get the data

in a reasonable time? Second, currently data dumps are
available at a quarterly schedule, meaning that updated and
valuable data can be not available for as long as three months.
Even though this can be reasonable for well established
technologies, such as Java, it might pose a problem for
emerging technologies, whose popularity critically grows
from one month to another.

Concerning the recommendation engine, Solr offers high
quality time performances (i.e., less than three seconds to
provide run-time results from a database with more than
2 million documents), but experimenting new information
retrieval techniques and implementing them in Solr can
become a daunting task. Thus, we might need to consider
other approaches for investigating further information re-
trieval techniques for Q&A data. In addition, we base our
retrieval approach on user generated queries, however, a
recommendation system should be able to automatically
suggest relevant documents for the task at hand. As a first
step we might consider to automatically link questions related
to popular libraries used in the system being developed.

Currently the linking engine for Stack Overflow discus-
sions works only locally, since the SQLite database is stored
in the local Eclipse directory. Moving it to a global database
would simply require a form of authentication to recognize
who created and commented the links. Currently, links are
created at file level, while it would be more useful to have
links at the code entity level, such as class, method, or
even statement level. However, this poses a challenge: What
happens when the entity is removed from the code base?
Should we remove the linking, or should we store it at another
level? We are considering to integrate the linking engine with
the versioning system, to keep track of the history of links.

Finally, currently Stack Overflow offers read-only access
to its data outside of its website: Even the official API
does not allow to write new questions or answers from
external applications. This partially limits the usefulness
of any external approach, in particular if we want to avoid
context switches from the IDE. We do not see a clean solution
to this problem, unless Stack Overflow changes its policy.

IV. RelatedWork

Q&A answers websites have recently gained popularity not
only among users, but also among researchers. In software
engineering, researchers are currently exploring how this new
source of information can be leveraged for supporting how
individuals and teams develop software, and for improving
the research process itself: Treude et al. presented an
exploration of the Stack Overflow service and data [14].
They identified five categories of tags (programming language,
framework, environment, domain, non-functional, homework)
and eleven categories of questions, among which questions
asking about instructions, about unexpected behavior, about
the environment, and about error messages were the most
frequently posed and answered. In general, they found that



Stack Overflow is “particularly effective at code reviews, for
conceptual questions, and for novices” [14]. In a subsequent
work, Treude et al. discussed the impact of web content
curated by the crowd for software developers and their
working practice [15]. They raised questions about whether
and how a large valid amount of programming knowledge
could redefine the attributes of good programmers, about who
owns the intellectual property of shared code, and about the
impact of social media programming knowledge on software
engineering education and career planning.

Our work also lies in the context of integrating additional
sources of information within the IDE, to improve software
understanding and development. In this context, we find many
examples, such as Holmes and Begel’s Deep Intellisense [5],
an IDE plugin that links bug reports, emails, code changes
to source code entities, or the Eclipse plugin Hipikat [16],
intended to assist newcomers by recommending items from
problem reports, newsgroup articles, etc..

Other tools tackled the challenge of reducing the context-
switching from IDE to web browser. For example, Fishtail
[12], an Eclipse plugin, harnesses programmer’s interactions
history to get relevant web resources, and Blueprint [3], an
Adobe Flex Builder plugin, integrates web researches in the
code editor to provide example snippets.

V. Conclusion

Q&A websites for technical questions about software
development provide programmers with an extremely large,
updated, and curated knowledge. Even though these sites have
important features to foster usage, referencing, and active
participation, we observed two limitations that might hinder
their full potential for software engineering: Disconnection
from the IDEs and lack of support for team collaboration.

We argued that an Eclipse plugin would be a solution to
overcome these two issues, thus providing a more complete
usage of this form of information. We presented the Eclipse
plugin we devised: Seahawk, a recommending system for
Stack Overflow data, that integrates Stack Overflow within
the IDE, adding support for linking code files to discussions
and create specific comments on the links. Through Seahawk
we verified the practical feasibility of our approach and
realized limitations that must be addressed in the future to
continue our work on the topic.

Acknowledgment

Bacchelli gratefully acknowledges the Swiss National
Science foundation’s support for the project “SOSYA” (SNF
Project No. 132175).

References

[1] L. A. Adamic, J. Zhang, E. Bakshy, and M. S. Ackerman.
Knowledge sharing and yahoo answers: everyone knows
something. In Proc. of WWW (17th International Conference
on World Wide Web), pages 665–674. ACM, 2008.

[2] J. Atwood. Creative commons data dump
september ’11. http://blog.stackoverflow.com/2011/09/
creative-commons-data-dump-sep-11/, September 2011.

[3] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer.
Example-centric programming: integrating web search into
the development environment. In Proc. of CHI 2010 (28th
International Conference on Human factors in computing
systems), pages 513–522. ACM, 2010.

[4] F. S. Gysin and A. Kuhn. A trustability metric for code search
based on developer karma. In Proc. of SUITE 2010 (2nd
International Workshop on Search-driven Development: Users,
Infrastructure, Tools and Evaluation), pages 41–44, 2010.

[5] R. Holmes and A. Begel. Deep Intellisense: a tool for
rehydrating evaporated information. In Proc. of MSR 2008
(International working conference on Mining software reposi-
tories), pages 23–26. ACM, 2008.

[6] A. J. Ko, R. DeLine, and G. Venolia. Information needs
in collocated software development teams. In Proc. of ICSE
2007 (29th International Conference on Software Engineering),
pages 344–353. IEEE CS, 2007.

[7] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining
mental models: a study of developer work habits. In Proc. of
ICSE 2006 (28th ACM International Conference on Software
Engineering), pages 492–501. ACM, 2006.

[8] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and
B. Hartmann. Design lessons from the fastest Q&A site in
the west. In Proc. of CHI 2011 (29th Conference on Human
factors in computing systems), pages 2857–2866. ACM, 2011.

[9] C. Manning, P. Raghavan, and H. Schütze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[10] K. K. Nam, M. S. Ackerman, and L. A. Adamic. Questions
in, knowledge in?: a study of naver’s question answering
community. In Proc. of CHI 2009 (27th International
Conference on Human factors in computing systems), pages
779–788. ACM, 2009.

[11] M. P. Robillard, R. J. Walker, and T. Zimmermann. Recom-
mendation systems for software engineering. IEEE Software,
27(4):80–86, 2010.

[12] N. Sawadsky and G. C. Murphy. Fishtail: from task context
to source code examples. In Proc. of TOPI 2011 (Workshop
on Developing Tools as Plug-ins), pages 48–51, 2011.

[13] J. Spolsky. Learning from stackoverflow.com. http://www.
youtube.com/watch?v=NWHfY lvKIQ, April 2009.

[14] C. Treude, O. Barzilay, and M.-A. Storey. How do pro-
grammers ask and answer questions on the web? (nier track).
In ACM, editor, Proc. of ICSE 2011 (33rd International
Conference on Software Engineering), pages 804–807, 2011.

[15] C. Treude, F. F. Filho, B. Cleary, and M.-A. Storey. Pro-
gramming in a socially networked world: the evolution
of the social programmer. In Proc. of FutureCSD 2012
(International Workshop on The Future of Collaborative
Software Development), 2012.

[16] D. ČubraniĆ, G. C. Murphy, J. Singer, and K. S. Booth.
Learning from project history: a case study for software
development. In Proc. of CSCW 2004 (19th Conference on
Computer Supported Cooperative Work), pages 82–91, 2004.

[17] Y. Ye. Supporting software development as knowledge-
intensive and collaborative activity. In Proc. of WISER
2006 (International Workshop on Interdisciplinary Software
Engineering Research), pages 15–22. ACM, 2006.

http://blog.stackoverflow.com/2011/09/creative-commons-data-dump-sep-11/
http://blog.stackoverflow.com/2011/09/creative-commons-data-dump-sep-11/
http://www.youtube.com/watch?v=NWHfY_lvKIQ
http://www.youtube.com/watch?v=NWHfY_lvKIQ

	Introduction
	The Case of Stack Overflow
	Limitations of Q&A Sites
	Our Contribution

	Seahawk
	Data-collection Mechanism
	Recommendation Engine
	User Interface

	Discussion
	Related Work
	Conclusion
	References

