
Supporting Software Developers with a
Holistic Recommender System
Luca Ponzanelli∗, Simone Scalabrino†, Gabriele Bavota∗, Andrea Mocci∗,

Rocco Oliveto†, Massimiliano Di Penta‡ and Michele Lanza∗
∗Università della Svizzera italiana (USI), Switzerland — †University of Molise, Italy — ‡University of Sannio, Italy

Abstract—The promise of recommender systems is to provide
intelligent support to developers during their programming
tasks. Such support ranges from suggesting program entities
to taking into account pertinent Q&A pages. However, current
recommender systems limit the context analysis to change history
and developers’ activities in the IDE, without considering what a
developer has already consulted or perused, e.g., by performing
searches from the Web browser. Given the faceted nature of many
programming tasks, and the incompleteness of the information
provided by a single artifact, several heterogeneous resources are
required to obtain the broader picture needed by a developer to
accomplish a task.

We present Libra, a holistic recommender system. It sup-
ports the process of searching and navigating the information
needed by constructing a holistic meta-information model of
the resources perused by a developer, analyzing their semantic
relationships, and augmenting the web browser with a dedicated
interactive navigation chart. The quantitative and qualitative
evaluation of Libra provides evidence that a holistic analysis of
a developer’s information context can indeed offer comprehen-
sive and contextualized support to information navigation and
retrieval during software development.

Keywords-Mining unstructured data, Recommender systems

I. INTRODUCTION

Information seeking is a fundamental component of soft-
ware development, aimed at constructing and enriching the
developer’s knowledge to solve the task at hand. The sources
from which developers scavenge essential information elements
are diverse, including teammates, project documentation, and
online resources. Online resources have become the prominent
reference to acquire knowledge [1], thus making the web
browser one of the key instruments in the modern developer
toolkit. Prominent examples of such resources are Q&A web-
sites like Stack Overflow, forums, blogs, API documentation,
and video tutorials [2].

A guide to information seeking is provided by recommender
systems for software engineering (RSSE) [3]. RSSEs suggest
relevant artifacts to the developer, and may harness different
information sources, e.g., by mining API documentation [4],
[5] and Q&A websites [6], synthesizing code examples from
existing code bases [7]–[10], and extracting specific fragments
of video tutorials [11], [12].

Many RSSE approaches work without considering the
current knowledge context arising from the information seeking
process happening in the task. Instead, they rely on historical
information mined from repositories [13], or by considering
the element being modified [6], [14]–[16].

Developers frequently search the web for the information
fragments needed to complete a task [17]. Following an
iterative approach [18], they inspect resources until they reach
a satisfiable level of knowledge to solve a given task. This
process can be described as a foraging loop to seek, understand,
and relate information [19]. It can also be seen as a treasure
hunt, where the map is progressively unveiled as hints are
found along the way. Getting new hints to proceed towards the
treasure requires one to search in the current zone of the map,
facing riddles and tricks to get new pieces of the map, and
eventually hunt down the treasure. Current RSSEs shortcut this
process by pointing out a “candidate treasure” (e.g., a Stack
Overflow discussion for a given task) using only some small
pieces of the map (e.g., by only knowing what the developer is
doing in the IDE). However, all pieces of the map are essential
to proceed. The unveiled pieces of the map are the developers’
knowledge context, continuously refined as they peruse new
resources or modify existing code. In our vision a recommender
system should provide continuous counseling to developers,
guiding their information seeking process, taking into account
what they are working on and what they already perused. The
recommender should suggest to developers, in a timely fashion,
pertinent artifacts given the current context: the developers’
knowledge (i.e., the already unveiled pieces of the map).

We propose LIBRA, a holistic recommender system that
provides developers with real-time support for information
navigation in the web browser. LIBRA monitors the developers’
activity both in the web browser and in the IDE to track web
search results, perused pages, and code written and modified
by the developer. LIBRA models the knowledge context of the
developer by considering all these resources, and constructs
a holistic meta-information model of their contents. LIBRA’s
analysis does not consider the contents of resources as mere
text, but takes into account their heterogeneous composition,
including code fragments and exchange formats like XML and
JSON. By holistically analyzing the contents of the knowledge
context, LIBRA assists developers in selecting pertinent results
from a web search by considering the prominence of a given
resource, and the complementarity of a result with the gathered
knowledge context. We evaluated LIBRA with two different
studies to assess its usefulness during development activities,
and its applicability in industrial contexts. Both studies showed
that a holistic analysis of the developers’ information con-
text can offer comprehensive and contextualized support to
information navigation and retrieval during development.

1

3

2 a

b

Fig. 1. The LIBRA user interface.

Paper structure. In Section II we describe LIBRA, its
architecture and its user interface. Section III details the
holistic approach implemented in LIBRA’s core. In Section IV
we describe the controlled experiment to evaluate LIBRA’s
usefulness during development activities. Section V reports
interviews with five industrial practitioners discussing LIBRA’s
applicability in industrial practice. Then, we survey the related
work in Section VI, and conclude in Section VII.

II. LIBRA

LIBRA is a recommender system aimed at extending and
integrating the two main modern software development tools—
the IDE and the web browser—to support information seeking.

A. User Interface

Fig. 1 shows the LIBRA user interface as it appears in the
web browser. It includes three components providing features
to navigate the information space of the search engine1.

Whenever a developer writes a query in a browser, a two-
axes bubble chart (1) appears on the right side of the web page.
Every bubble represents an entry in the results list (2) on the
left side.

Hovering on a bubble highlights the corresponding entry in
the results list, and fades out the others. If a developer hovers
over a search result, LIBRA highlights the corresponding bubble,
and fades out the others. The developer can access the URL
of a search result by clicking on the corresponding entry in
the results list or on the related bubble in the LIBRA chart.

1LIBRA uses Google in its current implementation.

The URL is then opened in a new tab, while the chart gets
updated with the new context information, and the visited
URL becomes part of the developer’s context, including all the
recently navigated resources and the code she recently wrote in
the IDE. The chart provides additional support to navigate the
information space by visualizing the following information:
Bubble Color: Resources are grouped by their domain and

assigned a specific color. The bottom part of the chart
contains an interactive legend reporting all domains found
in the result set. Developers can click on a domain to
highlight its results, fading out the others.

Context Complementarity: The y-axis represents the comple-
mentarity of the information provided by a search result
with respect to the current context. The higher the position
of a resource, the higher its complementarity with the
developer’s context, who can thus decide between broad-
ening the context or sticking with resources similar to the
ones already perused. For example, in Fig. 1 the resource
browsed on youtube.com (a) has high complementarity
(but low prominence).

Result Prominence: The x-axis allows to discriminate among
the results returned by the search engine. The more a
result is on the right side of the chart, the higher its
prominence within the result set2. Developers can use
this axis to avoid out of scope results, or results whose
information is a subset of more prominent resources. For
example, the resource browsed on raywenderlich.com (b)
has high prominence (but low complementarity).

2Our exact definition of prominence is discussed in Section III.

Bubble Diameter: It represents the quantity of information
provided by a resource with respect to the whole result
set. Ranging between 10 and 25 pixels, the diameter is
normalized on the maximum information content value.
For example, the large red (semi)circle on the x-axis refers
to resources on vogella.com, providing higher quantity of
information than other resources shown in small circles,
e.g., the yellow youtube.com circle.

The developer can take advantage of the features described
above to select resources that best suit the next step in the
information seeking process. LIBRA also provides an option
panel (3) where the developer can access basic information
about the state of the application, and manage a white list of
domains that can be freely tracked (i.e., that can be part of the
developer’s context). A demo of LIBRA is publicly available3.

B. Architecture

Fig. 2 shows the architecture of LIBRA and uses two types
of arrows to denote two different phases performed by LIBRA:
Solid arrows represent the tracking events, while the dashed
arrows represent the events caused by the interaction of the
developer with LIBRA.

Web Browser
(Google Chrome)

Libra Extension

Web Page
Tracker

Context-aware
Visualization

Libra Service

Tracking
Service

IDE
Synchronizer

IDE
(IntelliJ IDEA)

Libra Plugin

Code Tracker

Web Browser
Synchronizer

Search Results

Page Contents

Source Code

Ranked Results

Search Service

Context
Graph Builder

Context
Analyzer

Session ID

Web Search
Tracker

onArtifactClicked

onResultClicked

Libra Database

onCodeTracked

Clicked Url

Fig. 2. The LIBRA architecture.

LIBRA is composed of three main components: (1) a plugin
for the IntelliJ IDEA integrated development environment that
takes care of tracking the modified and accessed source code,
(2) a Google Chrome extension that tracks the web pages
perused by the developer and augments the Google search result
web page with the LIBRA user interface, and (3) a back-end
service hosting LIBRA’s analyzer as well as its data. The use of
the Google search engine, IntelliJ IDEA, and Google Chrome
are implementation choices adopted for our convenience.

Tracking Developer Context: Similarly to MYLYN [20],
LIBRA aims at tracking the elements that are modified or
created during a development task. LIBRA goes beyond the
boundaries of the IDE, as it tracks developers’ activities both
in the IDE and in the web browser, thus targeting source code
and web pages respectively. As depicted in Fig. 2, the Libra
Plugin is responsible for tracking the code written or accessed
by the developer. Whenever a developer opens a text file in

3http://libra.inf.usi.ch

the IDE (e.g., Java code, XML files, documentation, or logs),
the content is sent to the Libra Service to be parsed, modeled,
and stored as context resource.

The browser’s Libra Extension searches for queries per-
formed on the search engine, as well as every other URL
opened by the browser. The Web Search Tracker is responsible
for checking whether a tab in Google Chrome corresponds to
a search page, and, in such a case, to monitor new queries.
When a search is performed, all URLs composing the result
set of the search engine are sent to the Tracking Service to
be processed and stored in a cache (used for the sake of
performance). If the URL points to a document in HTML
format, the service renders the page and extracts the text, while
it uses Apache Tika to extract textual contents from binary
files (e.g., PDF, Word Documents)4. In case a URL points
to a YouTube video, the service automatically extracts the
English audio transcriptions as contents of the page using
GOOGLE2SRT5. Such transcriptions are either automatically
generated or written by the author of the video.

The Web Page Tracker keeps track of the URLs opened by
the developer, and acts as a “remote crawler” of the service.
Indeed, instead of asking the Tracking Service to crawl a certain
URL, this component sends the whole rendered content to the
Libra Service so that it can be parsed, modeled, and stored as
context resource.

Developers interacting with LIBRA are assigned an ID
generated by the Libra Plugin or the Libra Extension. Both
components need to have synchronized IDs to identify the same
user: every request sent to the service requires a check between
the IDE Synchronizer and the Web Browser Synchronizer to
set the same session ID on both sides (see double arrow in
Fig. 2). This solution allows LIBRA to work with or without
the IDE. The Tracking Service performs its operations if and
only if the domain of the opened URL matches a white list of
domains specified by the developer in the option panel. This
limitation does not apply to the Web Search Tracker, which
tracks any resource opened from a Google search while LIBRA
is running. This ensures that the resources visualized in the
bubble chart are the same reported in the search results’ list.

Interacting with Libra: The Web Search Tracker is respon-
sible for instrumenting Google’s result page such that LIBRA
knows when a result is clicked by the developer. When this
happens, the corresponding URL is opened in a new tab, and
the URL is sent to the Tracking Service to become part of the
context resources. The Web Search Tracker then notifies the
Search Service to create and analyze the new context graph, and
sends the results to the Context-Aware Visualization to display
the updated information to the developer. Similarly, either the
Context Aware Visualization in the browser, and the Code
Tracker in the IDE, notify the Search Service whenever a result
is opened from LIBRA’s user interface or a new piece of code
has been tracked from the IDE. In doing so the visualization
is always updated to the last context available.

4Supported file types are listed in the Tika website: http://tinyurl.com/hksl9hr.
5http://google2srt.sourceforge.net/en/

III. HOLISTIC APPROACH

We detail the approach used by LIBRA to process and analyze
the results returned from web searches. We discuss how we
parse and model the information within artifacts, and how we
designed HoliRank, an extension of PageRank [21] devised to
analyze the complementarity and prominence of the results in
a holistic fashion.

A. Content Parsing and Meta-Information Model

Whenever an artifact is sent to the Tracking Service, the
contents are parsed using the StORMeD6 island parser [22],
capable of identifying complete and incomplete multi-language
elements—e.g., written Java, JSON, XML, Stack Traces—
immersed in natural language paragraphs, and to model such
contents as a Heterogeneous Abstract Syntax Tree (H-AST)
that allows visiting and manipulating the results.

In our previous work [23], we developed the concept of
meta-information system that allows to model specific aspects
of the information. Following the same blueprint, we devised
the following meta-information to model the contents of every
resource processed by LIBRA:
• Types: It represents the set of Java types mentioned in

a resource. We consider all the H-AST nodes matching
a reference type (either fully qualified or simple name),
and primitive types (e.g., int, double).

• Variable Declarations: All H-AST nodes matching a
variable and class field declaration.

• Method Declaration: All H-AST nodes matching a
method declaration.

• Method Invocations: All H-AST nodes matching a
method invocation and the name of the invoked method.

• Identifiers: All H-AST nodes matching an identifier that
can be visited in any extracted constructs (e.g., full method
and class declarations).

• XML Elements: All H-AST nodes matching
an XML element like a single tag (i.e.,
<tagname/> or <tagname>) or a double tag
(e.g., <tagname></tagname>).

• JSON Members: All H-AST nodes matching a JSON
member (i.e., "field": element).

• Natural Language: We complement the meta-information
with pure textual information, for example a term fre-
quency map that can be reused to compute, for example,
a textual similarity measure like tf-idf [24].

B. HoliRank: Holistic PageRank

The PageRank algorithm [21] identifies prominent pages
within a graph of linked pages, e.g., the World Wide Web. To
compute the relevance of a page within a network of pages,
PageRank models the behavior of a “random surfer”, i.e., a
user who randomly surfs the web and (quoting Brin and Page)

“keeps clicking on links, never hitting back but eventually gets
bored and starts on another random page” [21].

6See http://stormed.inf.usi.ch

PageRank takes as input a directed graph G representing the
hyperlinks between pages and returns a probability distribution
P where each pi represents the probability that the random
surfer visits page i. The probability associated to a page
represents its centrality in the network.

In our approach we need to calculate the centrality of a
resource within a graph of resources. Since reconstructing
explicit links is not possible due to the absence of an explicit
reference like an URL or link in a page, the connection between
two resources needs to be quantified differently. Specifically,
we use a similarity graph. Approaches such as LexRank [25] (an
unsupervised summarization algorithm based on PageRank) use
a tf-idf [24] similarity graph as input, where an edge between
two sentences exists if and only if the textual similarity is above
a given threshold. LexRank runs PageRank on a similarity graph
and selects the sentences with higher centrality to compose a
summary.

The way LexRank computes the PageRank on a similarity
graph can be adapted for LIBRA’s purposes. Differently
from LexRank, the vertices in the graph must be resources
(web pages returned by the search engine) as in the original
PageRank, and not sentences. Since the context includes
heterogeneous resources, i.e., source code from the IDE, web
pages and other documents (e.g., PDF files) returned by the
search engine, relying on a pure textual similarity lowers
the richness of the available meta-information system. We
also need to consider the heterogeneity of the information:
The resources tracked by LIBRA provide textual information,
but also code information valuable to estimate connections
between resources. Instead of working with pure textual
similarity as in LexRank, we devised a holistic similarity
function to take advantage of the additional information layer
provided by the meta-information system: LIBRA models each
resource with a variable number of meta-information types,
depending on its contents.

Consider two resources Rx and Ry. Let Tx,y be the set of
shared types of meta-information between the resources, and
let M(R, t) be the meta-information of type t for the resource
R. We define the similarity vector Vx,y as:

Vx,y = 〈v0, . . . , v|Tx,y|〉
with vi =M(Ux, ti) ∼M(Uy, ti) and ti ∈ Tx,y

where each element vi of the vector Vx,y represents the
similarity value between two homogeneous meta-information,
and ranges in the interval [0, 1]. We calculate the general
similarity between two resources R1 and R2 as the average of
the vector V :

fsim(Rx, Ry) = V x,y

which gives a value in the range [0, 1]. We use this similarity
function in the PageRank algorithm to compute the centrality
of a resource within a similarity graph of the resources. We
refer to this approach as “holistic PageRank” or HoliRank.

C. Analyzing Context Resources

Our approach is based on the metrics context complemen-
tarity, result prominence, and information quantity.

Context Complementarity measures the information intake
provided by a resource in the current context of the
developer. We use HoliRank to build the similarity graph
CG of the recently used context resources (the code
recently written/modified in the IDE and the recently
navigated web pages). LIBRA considers as “recent” what
the developer dealt with in the past four hours. This is
a settable parameter. For each resource R in the search
engine result set, we create an additional similarity graph
CGR by adding R to the set of vertices of CG, and for
each vertex VCG in CG we add an edge from R to VCG

whose weight is equal to fsim(R, VCG). For each graph
CGR, we run HoliRank to compute the centrality of the
resource R, ranging in [0, 1]. The higher the centrality of
R in the graph, the lower the context complementarity: a
higher centrality implies a tight relationship with many
resources of the context, indicating a low information
intake of R since R is similar to what is already composing
the context. We define context complementarity as:

CtxComplementarity = 1.0−HoliRank(R,CGR)

Result Prominence identifies prominent results among the
search engine result set. Even though a set of results
matched by a query can be more or less relevant, there is
often an overlap of the information provided by different
artifacts. For example, an artifact is a tutorial on a
specific topic, while another artifact tackles a programming
problem on the same topic. If a result overlaps with many
other results, it probably provides diversified information
in its contents. If we model a similarity graph of the result
set, a high overlap of the information of a result R with
other results in RS, would result in a more prominent
(central) position of R in the graph. We build a similarity
graph GRS containing all results R in the results set RS.
We use HoliRank to estimate the centrality of a resource
R in the graph GRS :

ResultProminence = HoliRank(R,GRS)

Information Quantity sums up the number of “elements”
identified by our meta-information system. For example,
for the Natural Language meta-information we consider
the total amount of terms (after text preprocessing), to
which we sum the number of declarators identified by
Method Declarators meta-information, the ones identified
by the Variable Declarators meta-information, etc. Count-
ing information elements allows discriminating between
two resources with the same size but with different
contents. Consider for example two resources R1 and
R2 having the same amount of characters, and—after
preprocessing—the same terms. However, R1 provides
just text, while R2 provides text and code. In this case,
we consider the information quantity of R2 is higher than
the one of R1.

IV. STUDY I: CONTROLLED EXPERIMENT

The goal is to evaluate LIBRA in terms of its (i) ability in
correctly assessing for each query search result its prominence
and complementarity with respect to the context, and (ii)
usefulness to developers during a development or maintenance
task. The context consists of participants, i.e., third-year
Computer Science (CS) Bachelor students, and objects, i.e., a
University career management app and four maintenance tasks.

The study addresses the following research questions:
RQ1: How accurate is LIBRA in assessing the prominence and

complementarity of query search results? We investigate
if the prominence and complementarity of information
computed by LIBRA for a set of query search results Qr

is aligned with the developers’ perception of prominence
and complementarity.

RQ2: Does LIBRA help developers to complete their tasks
correctly? We investigate if the use of LIBRA helps
developers when performing coding activities and to
what extent—within an available time frame, and when
working with or without LIBRA—they are able to correctly
complete development and maintenance tasks.

A. Context Selection

We ran a controlled experiment with 16 3rd year CS Bachelor
students at the end of a “Mobile Apps Development” course
taught at the University of Molise (UniMol). Students learned
about the design and implementation of Android apps, and
were also required to develop an app.

We asked each participant to perform two programming tasks,
one with and one without LIBRA. All tasks focused on the
source code of MyUnimol, an app used by UniMol students
to register for exams, visualize their marks, etc. All tasks
were real implementation tasks performed by the MyUnimol’s
developers in the past. We extracted these tasks from the
app’s issue tracker and versioning system (both repositories
are private, and the study participants could not access them
at any time). MyUnimol consists of 9k LOC.

We selected the four tasks from the issue tracker based on
their type (two bug fixes and two enhancements) and difficulty
(non-trivial, but doable in a limited amount of time). Then, we
checked out from the versioning system the four snapshots of
the app preceding the commit fixing each of the four issues.
Participants worked on the specific version of the app related
to the task they had to perform. The four tasks are:
T1: When the user taps the “Logout” button in the upper right

corner of the MyUnimol GUI, the app logs out the user
without asking for confirmation. You are asked to add
a confirmation dialog that pops up when the user taps
logout. The dialog asks the user if she really wants to
logout the app, providing as possible choices “Yes” and
“No”. If the user taps “Yes”, the app logs her out, otherwise
the confirmation dialog disappears. Make sure that the
confirmation dialog is legible.

T2: MyUnimol includes an address book with the contacts
of all the University employees. A contact can have

multiple phone numbers. When visualizing the details
of a contact, all phone numbers associated to it are shown
in a single string separated by a comma. This does not
allow tapping on the phone number to start a call. You
are asked to modify the view implementing the contact’s
details, showing each phone number associated to the
contact in a separated field. It must be possible to tap a
number to start a call.

T3: There is a bug in the view allowing students to visualize
personal details. The name and the student number shown
on screen are not correct (i.e., they are not the ones
associated to the logged student who is visualizing her
personal details). Also, tapping the “Back” button in this
view makes the app crash. Fix the bug.

T4: When a student logs in, MyUnimol loads in the home
view a pie chart showing the exams already taken/to take.
This also happens when the student comes back to the
home view from another section of the app. The pie chart
is shown through an animation that glitches, restarting
multiple times (instead of loading the pie chart just once).
Fix this animation.

B. Study Design and Procedure

Each participant was assigned two tasks to perform during
the controlled experiment. We devised two possible pairs of
tasks to assign to each participant: The first pair (T1, T2)
includes two tasks related to the enhancement of existing
features. The second pair (T3, T4) includes tasks dealing with
bug-fixing activities. We wanted each participant to work on
a pair of similar tasks (e.g., two bug-fixing activities or two
enhancements) having a comparable difficulty level in order to
evaluate the effect of Libra during enhancement and bug-fixing
tasks. For the purpose of RQ2, this allows to observe the effect
of LIBRA on the performance of the participants.

Participants were equally partitioned into the eight groups
shown in Table I, reporting the study design.

TABLE I
STUDY I: DESIGN.

Group Session 1 Session 2
A T1-LIBRA T2-NOLIBRA
B T1-NOLIBRA T2-LIBRA
C T2-LIBRA T1-NOLIBRA
D T2-NOLIBRA T1-LIBRA
E T3-LIBRA T4-NOLIBRA
F T3-NOLIBRA T4-LIBRA
G T4-LIBRA T3-NOLIBRA
H T4-NOLIBRA T3-LIBRA

The design is conceived in such a way that each participant
worked both with and without LIBRA. To avoid learning effects,
each participant had to perform different tasks across the two
sessions. Different participants worked with and without LIBRA
in different order and on two different tasks. When assigning
participants to the eight groups, we made sure that their level of
experience was (roughly) uniformly distributed across groups.

We collected the (claimed) experience of participants via
a pre-questionnaire. We also collected information related to

the typical sources of information participants consult during
coding activities. We carried out a pre-laboratory briefing in
which participants were trained on the use of LIBRA through a
running example and the laboratory procedure was illustrated in
detail. We made sure not to reveal the study research questions.
The training was performed on tasks not related to the ones of
the experiment to avoid a bias in the results.

Participants had to perform the study in two sessions of 75
minutes each, interleaved by a break of 30 minutes to avoid
fatigue effects. During the break participants did not exchange
information. Participants were allowed to use whatever they
wanted to complete the tasks including any material available
on the Internet. At the end of each session, each participant
provided the code she implemented and answered a three-part
post-questionnaire. The first part, to check for problems with
the experimental design, was composed of questions in which
participants had to express their level of agreement on a Likert
scale going from 1 (absolutely no) to 5 (absolutely yes) to the
following claims:

1) The overall activity to be performed was clear.
2) The description of the task to implement was clear.
3) There was enough time to perform the task.
4) The task was easy to implement.

The second part was aimed at collecting qualitative informa-
tion about LIBRA’s usefulness. The following questions were
only answered by participants who completed a task performed
with LIBRA:

1) How useful were the prominence, complementarity, and
information quantity indicators provided by LIBRA?
Possible answers used a 5-point Likert scale from 1 (not
useful at all) to 5 (very useful) for each indicator. Why?
Please motivate your previous answer.

2) How often did you use LIBRA in your Web searches?
Possible answers on a five-point Likert scale: 1 (never), 2
(in ∼25% of the searches), 3 (in ∼50% of the searches),
4 (in ∼75% of the searches), 5 (always).

3) How would you improve LIBRA?

The third part of the questionnaire was aimed at collecting
information useful to answer RQ1 and was only answered by
participants who just completed a task performed with LIBRA.
We showed to the participant the visualization depicted by
LIBRA for the last search she performed. For each of the
web documents projected on the LIBRA chart, we asked:
Do you agree with the assessment of the prominence of
the document performed by LIBRA? The same question
was also asked with respect to LIBRA’s assessment of the
document complementarity with the context. Both questions
were answered with a Likert scale going from 1 (strongly
disagree) to 5 (strongly agree).

C. Variable Selection and Data Analysis

A normality check using the Shapiro-Wilk test indicated
a statistically significant deviation from normal distribution
(p-value< 0.05); hence we use non-parametric statistics. For
all tests we consider a significance level α = 5%.

We answer RQ1 by showing boxplots of the participants’
answers to the questions in the 3rd part of the post-questionnaire
to evaluate LIBRA’s assessment of the documents’ prominence
and complementarity.

We also statistically check, using the Wilcoxon signed-rank
test [26], whether the average agreement is greater than 3 (i.e.,
at least weak agreement), by testing the null hypotheses H0pr :
pr ≤ 3 and H0cm : cm ≤ 3, where pr and cm are the average
(perceived) document prominence and complementarity.

The dependent variable to answer RQ2 is task completeness.
We asked a developer of MyUnimol (not involved in the
study) to act as “evaluator” by reviewing the code implemented
by the participants. The evaluator did not know the goal
of the study nor which tasks were performed with/without
LIBRA. We provided a checklist to assign a completeness
score to each of the sub-tasks implemented by participants. The
completeness percentage of each sub-task was proportional to
its difficulty (as estimated by the authors) and complexity. For
example, the checklist for task T1 was: (i) confirmation dialog
view implemented and linked to the logout button (+30%),
(ii) behavior of the confirmation dialog implemented (+40%),
(iii) proper UI theme set (+30%).

The main factor and independent variable is the pres-
ence/absence of LIBRA. Other potentially influencing factors
are the (possible) different difficulty of the two tasks, the
participants’ (self-assessed) Skills in Java/Android development
and years of Experience in Java/Android development.

To answer RQ2, we show boxplots of task completeness
distributions for the two treatments, and also compare the
results using the Wilcoxon signed-rank test. Since we do not
know a priori in which direction the difference should be
observed, we use a two-tailed test. We also assess the magnitude
of the observed difference using Cliff’s delta (d) effect size
[27], suitable for non-parametric data. Cliff’s d ranges in the
interval [−1, 1] and is negligible for |d| < 0.148, small for
0.148 ≤ |d| < 0.33, medium for 0.33 ≤ |d| < 0.474, and large
for |d| ≥ 0.474.

We check the influence of the co-factors (ability, experience
levels, and order in which tasks were performed) and their
interaction with the main factor, using permutation test [28], a
non-parametric alternative to ANOVA, which does not require
normally distributed data. We set the number of iterations of
the permutation test procedure to 500,000 to ensure that results
did not vary over multiple executions.

To analyze the post-experiment questionnaire results we use
descriptive statistics, and tested, using the Wilcoxon signed-
rank test, the null hypothesis H0ag : ag ≤ 3 (ag is the average
agreement level), to assess if there has been a weak or strong
agreement.

D. Study Results

The population involved in this study has 2.8 years of
programming experience on average, with a maximum of 5
and a median of 3.0. They have a median of 2.5 years of
Java programming experience (mean=2.2) and 3.5 months
of Android development (maximum 1 year, minimum 1
month). Most of the participants learned how to develop
an Android application while attending the “Mobile Apps
Development” course at the University of Molise. Participants
felt to have a good experience in Java programming
with a median of three (medium experience), and a low
experience in Android development (median=1.5, between
very low and low). Concerning the sources of information
exploited when programming, participants declared Q&A
websites (median=5) as the most exploited, followed by
forums (4), video tutorials (4), and official documentation (3.5).

How accurate is LIBRA in assessing the prominence and
complementarity of query search results? Fig. 3 reports the
level of agreement of the participants with the prominence
and complementarity indicators provided by LIBRA for the
ten documents retrieved by Google in the last search they did
while performing the four tasks with LIBRA, thus adding up
to 160 documents.

●●●●● ●● ●●●

Overall BugFix Enh

1
2

3
4

5

Ag
re
em

en
t

● ● ●

Pr
om

in
en

ce 4.0

5.0

3.0
2.0
1.0

Overall Bug
Fixing Enhan. Overall BugFix Enh

1
2

3
4

5

Ag
re
em

en
t

● ● ●

Co
m

pl
em

en
ta

rit
y

4.0

5.0

3.0
2.0
1.0

Overall Bug
Fixing Enhan.

Fig. 3. Participants’ agreement with LIBRA’s indications of prominence and
complementarity: 1=strongly disagree, 5=strongly agree.

Participants agreed with the prominence indicator (left side
of Fig. 3) provided by LIBRA (median=4), and H0pr can
be rejected (p-value< 0.001). Only for five out of the 160
documents (3%), participants disagreed (Likert scale score=2)
with LIBRA’s prominence assessment. They agreed (4) for
62 (39%) or strongly agreed (5) for 70 (44%) documents.
This is consistent both for bug fixing activities and enhancing
existing features. Concerning the complementarity indicator
(right side of Fig. 3), the agreement was fairly high (median 4),
both for bug fixing and enhancement activities (in both cases
the median=4). In this case, participants disagreed (2) with
LIBRA’s complementarity assessment on 8 documents (5%),
while they agreed (4) for 73 (46%) or strongly agreed (5) for
43 (27%) documents. Thus, also the complementarity indicator
provides precise insights to the LIBRA’s users, and H0cm can
be rejected (p-value< 0.001) as well.

Does LIBRA help developers to complete their tasks
correctly? Fig. 4 shows boxplots of completeness achieved by
participants with (LIBRA) and without (NOLIBRA) LIBRA.

●

NL−All L−All NL−BugFix L−BugFix NL−Enh L−Enh

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C
om

pl
et
en
es
s

●

●

●

●
●

●

Co
m

pl
et

en
es

s

0.0

0.2

0.4

0.6

0.8

1.0

NoLibra Libra NoLibra Libra NoLibra Libra
Overall Bug Fixing Enhancement

Fig. 4. Completeness achieved by participants with the two treatments.

Participants using LIBRA achieved a higher completeness.
The LIBRA median is 62% (mean 58%) against the 10% median
(mean 29%) of NOLIBRA. In other words, LIBRA allowed
participants to achieve a median additional correctness of 52%
(mean of 29%). The Wilcoxon paired test (Table II) indicates
the presence of a statistically significant difference, with a
p-value=0.035. Cliff’s d = 0.42 indicates a medium effect size.

TABLE II
STUDY I: WILCOXON p-VALUE AND CLIFF’S d

Tasks p-value d
Overall 0.035 0.42 (Medium)
Bug Fix 0.170 0.50 (Large)
Enhancement 0.180 0.45 (Medium)

Fig. 4 and Table II report the completeness results for bug
fixing and enhancement activities. LIBRA helped participants
in both types of tasks, increasing the median completeness
achieved for bug fixing activities by 25%, and for enhancement
activities by 37%. The results of the Wilcoxon paired two-tailed
test indicates that in both types of tasks the difference is not
significant (p-value>0.05) and the effect size is medium and
large for bug fixing and enhancement activities, respectively.
The non-significant results is explainable by the low number
of data points (8 participants for each type of task). Indeed, as
explained above, the performance improvement provided by
LIBRA is evident from the boxplots in Fig. 4 and statistically
significant when considering the dataset as a whole.

The analysis of the post-questionnaires reveals that the
usefulness of the information provided by LIBRA was also
perceived by participants while performing the coding tasks.
Table III reports the number of participants assessing the
usefulness of the three indicators on each of the five levels in
the considered Likert scale.

TABLE III
STUDY I: PERCEIVED USEFULNESS OF LIBRA’S INDICATORS

Indicator Not useful Not Neutral Useful Very
at all useful useful

Prominence 0 1 4 7 4
Complementarity 0 2 4 6 4
Info. Quantity 0 0 5 5 6

Out of the 16 participants, 11 (69%) found the prominence
indicator useful or very useful, 4 remained neutral, while
1 found them not useful. Similar results were achieved for
complementarity and information quantity. Participants used
LIBRA in 59% of their web searches. 3 participants claimed
to have used it only in 25% of their web searches. One of
them was the most experienced in Android development, and
achieved high completeness both with (100%) and without
(90%) LIBRA, i.e., he did not need to look online for help
while performing the required tasks. The other two participants
simply claimed to have used it only when they were not able
to spot the useful web page to open in the search results.

We also statistically analyzed the effect of co-factors.
Permutation tests indicated that none of the ability/experience
factors collected in the pre-questionnaire had an effect on the
task’s completeness, nor it interacted with the study treatment,
i.e., availability of LIBRA (p-values were in all cases way
greater than 0.05). Similarly, no significant effect of the task
ordering was observed.

We also collected from the participants recommendations on
how to improve our tool. These improvements mostly concern
LIBRA’s user interface and are currently being implemented.

Summing up. The study results indicated that both promi-
nence and complementarity indicators reflect developers’ per-
ception of such measures, and are considered as useful/very
useful indicators. LIBRA helped study participants to achieve
a significantly better task completeness than the control
group, though differences are not statistically significant when
considering task types (i.e., bug fixing and enhancement)
separately due to the limited number of data points.

E. Threats to Validity

Threats to construct validity mainly concern imprecisions
in the measurements made. A major challenge is to measure
dependent variables related to RQ1 (agreement with LIBRA)
and above all RQ2 (task completeness). For the former,
we relied on developers’ perceived agreement with LIBRA’s
assessment of documents’ prominence and complementarity.
For the latter we used a checklist-based approach. We are
aware that results of such an approach might be influenced by
the evaluator’s subjectiveness, as well as by the weights we
gave to each task (to account for its complexity).

Threats to internal validity concern confounding factors that
could influence the results. First, as explained Section IV-B, we
have used permutation test to analyze the effect of such factors,
and also have been supported by the post-study questionnaires
results. All participants strongly agreed about the clarity of
the activity (mean 4.9, median 5, Hag rejected with p-value<
0.001) and tasks (mean 4.8, median 5, Hag rejected with p-
value< 0.001). They weakly agreed on time (mean 4.1, median
4.5, Hag rejected with p-value< 0.001), and had mixed opinions
about the tasks’ difficulty (mean 3.2, median 3, Hag not rejected
with p-value=0.27). This should not be considered as a possible
threat as it is normal to find people experiencing different
difficulty and productivity levels. This indicates the absence
of a possible ceiling effect.

TABLE IV
STUDY II: PARTICIPANT’S ANSWERS TO THE QUESTIONS EXPLICITLY ASKED

Developer Giuseppe Socci Luciano Cutone Carlo Branca Giovanni Grano Matteo Merola
Position Project Manager Project Manager Developer Senior Developer Full Stack Developer

@ Genialapps @ IdeaSoftware @ Capgemini @ Cedacri @ Cleopa
Mobile Development Experience 5+ years 5+ years 1+ year 1+ year 1+ year
Do you find LIBRA useful? Maybe Absolutely yes Yes Absolutely yes Maybe
Importance of prominence Very high Very high Very high High Very high
Importance of complementarity High Very high High Medium Medium
Importance of information quantity Low Very high Medium Low Medium
Are you willing to use LIBRA for your activities? Absolutely yes Absolutely yes Yes Absolutely yes Yes

Threats to conclusion validity concern the relationship
between treatment and outcome. The main issue here is the
possible presence of Type II errors—due to the limited number
of study’s participants—every time we could not reject a
null hypothesis. In our study this happened when analyzing
completeness results for different types of activity separately.

Threats to external validity concern the generalization of
our findings. The controlled experiment has clear limitations
(needed to achieve a high level of control) in terms of objects’
characteristics and domain, and in terms of participants. To
mitigate this threat due to the limited experience of the
participants, we have conducted a second, qualitative study
with experienced practitioners, described next.

V. STUDY II: INDUSTRIAL APPLICABILITY

A successful technological transfer is the main target
objective for each prototype tool. Thus, the goal of this second
study is to investigate LIBRA’s industrial applicability by
answering the following research question:

RQ3: Would practitioners consider exploiting LIBRA in their
daily coding activities?

The study context consists of the 5 participants listed in
Table IV. We conducted semi-structured interviews to get
qualitative feedback on both the tool and the underlying
approach. Before each interview, one of the authors performed
a demo of LIBRA to show its features to the participants. Then,
we let the participant interact with the tool, performing web
searches on the topics related to task T3 of Study I. Each
interview lasted ca. 1.5 hours and was based on a think-aloud
strategy. After each interview we asked the questions listed
in Table IV. The interviews were conducted by two of the
authors.

A. Results

Table IV reports the participants’ answers to the questions we
asked to drive our interview. Giuseppe and Matteo expressed
concerns about LIBRA’s usability. In Giuseppe’s opinion the
graph-based interface provides too many details: “You could
think of a single metric that provides an indication of both
complementarity and prominence, which could be used to
indicate the overall usefulness of each page returned by Google.
In this way it would be immediate for the user to identify which
one is the better page for LIBRA. Then—and only if necessary—
the user can analyze the chart to better understand why LIBRA
is indicating a specific page.”

We discarded this option since during a specific phase
of a coding activity, a developer might be interested in
reading documents that have a high prominence but a low
complementarity with the context (i.e., she may want to dig
deeper into topics overlapped with her context), while in some
other phases she might be interested in highly complementary
documents (i.e., she may want to broaden her knowledge).
Thus, we do not see prominence and complementarity as direct
indicators of “document quality”. Similar usability concerns
were expressed by Matteo.

Despite some reservations about the LIBRA’s usability, both
Giuseppe and Matteo expressed their desire to use LIBRA in
their daily coding activities. Giuseppe liked the idea behind
the tool, and would like to use it more: “I should use LIBRA
for much more time to better assess its usefulness. However,
from this first experience I can say that LIBRA seems to be an
interesting tool. I particularly like the idea to add information
to the Google ranking. This can be particularly useful when
you do not know exactly what you need, i.e., your query is
rather generic”.

The other three participants provided enthusiastic comments
about LIBRA, and would definitively like to use it while
coding. One representative comment is the one by Luciano:
“LIBRA is a very interesting tool. Google provides accurate
results in general. However, searching for pages related
to software development is more challenging. When I use
Google for my daily coding activities, I often need to open
almost all documents in the first results’ page to identify
the most appropriate web page to read. In the hour I spent
using LIBRA, I noticed that it allowed me to find the most
appropriate web page quicker. Instead of analyzing ∼10 pages
for each query, I have analyzed 2 or 3 pages, generally the
one with the highest prominence, the one with the highest
complementarity and (if needed) another one in between”.
Giovanni particularly appreciated LIBRA’s integration with the
development workflow: “I tried many different tools, but most
of them are either hard to use or to integrate in the developer’s
workflow. The main strength of LIBRA is that it is integrated
into the classical developer’s workflow, which is programming
and searching for information on Google, without adding any
complexity: LIBRA does not create any barrier between the
developer and her usual working environment; LIBRA just
quietly guides the developer to the most useful results”. Carlo
also appreciated LIBRA, and positively judged its usefulness
and usability.

Participants agreed on the usefulness of prominence and
complementarity, but less so for information quantity. Giuseppe
explained: “I do not care about information quantity since in
my experience technical web pages are not so long”.

The participants provided several suggestions on how to
improve LIBRA. Giuseppe suggested: “provide an indication
on the cohesiveness of the returned page with the query, to
see how focused the page is with respect to the query. If
you need information on a specific technology, you need a
page that is extremely focused on the query, but if you need
to learn a new technology, you prefer a less focused page”.
Luciano, commenting LIBRA’s indicators, explained: “All the
three indicators are crucial. It could be worthwhile to show
the social importance of each page, i.e., how many times the
page has been shared on social networks and/or how useful
was the page for the developers, similarly to the mechanisms
in Stack Overflow”. Giovanni expressed concerns about the
way LIBRA tracks the web pages; “I often open web pages of
which I read a very limited part. If LIBRA tracks those pages
and considers them as part of the context, it could provide
misleading information about the documents’ complementarity.”
To overcome this issue, Giovanni proposed to track the visiting
time and weigh the importance of the pages in the context,
ignoring pages visited for brief periods.

Summing up. This study provided positive feedback on
the usefulness and practical applicability of LIBRA and its
integration in a developer’s workflow. Participants provided
feedback on how to possibly improve LIBRA, e.g., by providing
a simplified user interface. Clearly, tools can always be
improved, given sufficient time and human resources. However,
we would like to emphasize that, stepping beyond mere
implementation and UI concerns, the main contribution of
the paper lies in the underlying holistic approach.

VI. RELATED WORK

Semantic code search and code search engines deal with
retrieving code samples and reusable open source code from
the Web. Different works [29]–[31] tackled this problem and
provided capability of searching, ranking and adapting open
source code. The mining of open source repositories has also
been used to identify API and framework usage and to find
relevant applications to be reused [32]–[34]. Other studies
analyzed the habits of the developers in searching for code
snippets [1], [35]–[37] or specific recommenders [18], and
how general purpose search engines (e.g., Google) outperform
code search engines when retrieving code samples from the
Web [38]. Sadowski et al. [17] conducted a study in Google
to understand how developers search for code on the Web,
finding that developers search for code very frequently.

We developed a layer on top of web search engines and of
the IDE, to take into account the history of the information
browsed by the developer. LIBRA helps in navigating the results
of a search engine by considering the code-oriented nature of
the artifacts, providing also prominence and complementarity
information of different kinds of development-related resources.

Tracking Developer Context. A seminal tracking tool is
MYLYN [20]. It assigns, according to a developer’s task, a
degree of interest (DOI) to code elements. Other work focused
on tracking code modifications [39], or fine-grained interactions
with either code and IDE [40]–[42]. Goldman et al. [43]
bridged the gap between IDE and web browser, tracking
interactions on both sides, and allow to link web pages (e.g.,
API documentation) to code elements. In LIBRA we go beyond
the IDE by including web resources as well. Sillitti et al. [44]
developed PROM, a tool to monitor developers’ activities on a
workstation, e.g., browsed files/resources. LIBRA goes beyond
a simple monitoring, as it provides a visual means to help the
developer navigating the search results.

Recommender systems. Various recommenders have been
proposed, aimed at recovering traceability links, suggesting rel-
evant project artifacts or code examples. Well-known examples
are HIPIKAT [16], DEEPINTELLISENSE [45], STRATHCONA
[46]–[48], and EROSE [13]. Other work focused on suggesting
relevant documents, discussions and code samples from the
web to fill the gap between the IDE and the web browser.
Examples are MICA [49], FISHTAIL [15], DORA [50], and
SURFCLIPSE [51]. Among the various sources available on the
Web, Q&A Websites have been the target of many recommender
systems. Other tools used Stack Overflow as main source for
recommendation systems to suggest, within the IDE, code
samples and discussions to the developer [4], [6], [14], [51]–
[55]. LIBRA instead helps navigating the information space
available after a web search by considering the information (i.e.,
web resources and code) already acquired by the developer by
tracking both the IDE and the web browser.

VII. CONCLUSIONS

A crucial activity in modern software development is
the acquisition of pieces of information. These pieces are
located in diverse places and are of a heavily heterogeneous
nature. Instead of manually combing through the results of
general purpose search engines or heeding the monochromatic
suggestions of the recommender systems proposed so far,
we tackled the problem by developing a holistic approach,
based on a meta-information system, capable of dealing with
the heterogeneous nature of web resources. Our approach,
implemented in a tool named LIBRA, aids developers to interact
with the suggestions, and seamlessly blends into their workflow.
The empirical evaluation of Libra provides evidence that a
holistic analysis of a developer’s information context can
offer comprehensive and contextualized support to information
navigation and retrieval during software development.

Verifiability. We provide a replication package [56] contain-
ing the complete raw data of our first study, and the R scripts
used for the analysis.

ACKNOWLEDGMENTS

Ponzanelli and Lanza thank the Swiss National Science
foundation for the financial support through SNF Project
ESSENTIALS, No. 153129. We thank all study participants
and the MyUnimol developers.

REFERENCES

[1] M. Umarji, S. Sim, and C. Lopes, “Archetypal internet-scale source
code searching,” in Proceedings of OSS 2008 (The 4th International
Conference on Open Source Systems), 2008, pp. 257–263.

[2] L. MacLeod, M.-A. Storey, and A. Bergen, “Code, camera, action:
How software developers document and share program knowledge using
YouTube,” in Proceedings of ICPC 2015 (23rd IEEE International
Conference on Program Comprehension), 2015, pp. 104–114.

[3] M. Robillard, R. Walker, and T. Zimmermann, “Recommendation systems
for software engineering,” IEEE Software, vol. 27, no. 4, pp. 80–86,
2010.

[4] P. Rigby and M. Robillard, “Discovering essential code elements in infor-
mal documentation,” in Proceedings of ICSE 2013 (35th International
Conference on Software Engineering), 2013, pp. 832–841.

[5] M. P. Robillard and Y. B. Chhetri, “Recommending reference API
documentation,” Empirical Software Engineering, vol. 20, no. 6, pp.
1–29, 2014.

[6] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza,
“Mining stackoverflow to turn the IDE into a self-confident programming
prompter,” in Proceedings of MSR 2014 (11th Working Conference on
Mining Software Repositories). ACM, 2014, pp. 102–111.

[7] R. P. L. Buse and W. Weimer, “Synthesizing API usage examples,” in
Proceedings of ICSE 2012 (34th International Conference on Software
Engineering). IEEE, 2012, pp. 782–792.

[8] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining API patterns as partial
orders from source code: from usage scenarios to specifications,” in
Proceedings of ESEC/FSE 2007 (6th joint meeting of the European
Software Engineering Conference and the International Symposium on
Foundations of Software Engineering). ACM, 2007, pp. 25–34.

[9] I. Keivanloo, J. Rilling, and Y. Zou, “Spotting working code examples,”
in Proceedings of ICSE 2014 (36th International Conference on Software
Engineering). ACM, 2014, pp. 664–675.

[10] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, and A. Marcus, “How
can I use this method?” in Proceedings of ICSE 2015 (37th IEEE/ACM
International Conference on Software Engineering), 2015, pp. 880–890.

[11] L. Ponzanelli, G. Bavota, A. Mocci, M. Di Penta, R. Oliveto, M. Hasan,
B. Russo, S. Haiduc, and M. Lanza, “Too long; didn’t watch! extracting
relevant fragments from software development video tutorials,” in
Proceedings of ICSE 2016 (38th International Conference on Software
Engineering). ACM Press, 2016, pp. 261–272.

[12] L. Ponzanelli, G. Bavota, A. Mocci, M. Di Penta, R. Oliveto, B. Russo,
S. Haiduc, and M. Lanza, “Codetube: Extracting relevant fragments from
software development video tutorials,” in Proceedings of ICSE 2016
(38th International Conference on Software Engineering). ACM Press,
2016, pp. 645–648.

[13] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller, “Mining version
histories to guide software changes,” in Proceedings of ICSE 2004 (26th
International Conference on Software Engineering). IEEE, 2004, pp.
563–572.

[14] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Leveraging crowd knowledge
for software comprehension and development,” in Proceedings of
CSMR 2013 (17th European Conference on Software Maintenance and
Reengineering), 2013, pp. 59–66.

[15] N. Sawadsky and G. Murphy, “Fishtail: from task context to source code
examples,” in Proceedings of TOPI 2011 (1st Workshop on Developing
Tools as Plug-ins). ACM, 2011, pp. 48–51.

[16] D. Cubranic and G. Murphy, “Hipikat: recommending pertinent software
development artifacts,” in Proceedings of ICSE 2003 (25th International
Conference on Software Engineering). IEEE Press, 2003, pp. 408–418.

[17] C. Sadowski, K. T. Stolee, and S. G. Elbaum, “How developers search
for code: a case study,” in Proceedings of ESEC/FSE 2015 (10th joint
meeting of the European Software Engineering Conference and the
International Symposium on Foundations of Software Engineering), 2015,
pp. 191–201.

[18] R. Holmes, “Do developers search for source code examples using
multiple facts?” in Proceedings of SUITE 2009 (Workshop on Search-
driven Development: Users, Infrastructure, Tools and Evaluation), 2009,
pp. 13–16.

[19] P. Pirolli and S. Card, “The sensemaking process and leverage points
for analyst technology as identified through cognitive task analysis,” in
Proceedings of International Conference on Intelligence Analysis, 2005,
pp. 2–4.

[20] M. Kersten and G. Murphy, “Using task context to improve programmer
productivity,” in Proceedings of FSE 2014 (The 22nd International
Symposium on the Foundations of Software Engineering). ACM Press,
2006, pp. 1–11.

[21] S. Brin and L. Page, “The anatomy of a large-scale hypertextual
web search engine,” in Proceedings of WWW 1998 (7th International
Conference on World Wide Web). Elsevier Science Publishers B. V.,
1998, pp. 107–117.

[22] L. Ponzanelli, A. Mocci, and M. Lanza, “Stormed: Stack overflow ready
made data,” in Proceedings of MSR 2015 (12th Working Conference on
Mining Software Repositories). ACM Press, 2015, pp. 474–477.

[23] ——, “Summarizing complex development artifacts by mining heteroge-
nous data,” in Proceedings of MSR 2015 (12th Working Conference on
Mining Software Repositories). ACM Press, 2015, pp. 401–405.

[24] C. Manning, P. Raghavan, and H. Schütze, Introduction to Information
Retrieval. Cambridge University Press, 2008.

[25] G. Erkan and D. R. Radev, “Lexrank: Graph-based lexical centrality
as salience in text summarization,” Journal of Artificial Intelligence
Research, vol. 22, no. 1, pp. 457–479, 2004.

[26] D. J. Sheskin, Handbook of Parametric and Nonparametric Statistical
Procedures (fourth edition). Chapman & All, 2007.

[27] R. J. Grissom and J. J. Kim, Effect sizes for research: A broad practical
approach. Lawrence Associates, 2005.

[28] R. D. Baker, “Modern permutation test software,” in Randomization Tests.
Marcel Decker, 1995.

[29] S. Reiss, “Semantics-based code search,” in Proceedings of ICSE 2009
(31st International Conference on Software Engineering). IEEE, 2009,
pp. 243–253.

[30] S. Thummalapenta, “Exploiting code search engines to improve program-
mer productivity,” in Proceedings of OOPSLA 2007 (22nd conference
on Object-Oriented Programming Systems and Applications). ACM,
2007, pp. 921–922.

[31] S. Thummalapenta and T. Xie, “Parseweb: a programmer assistant for
reusing open source code on the web,” in Proceedings of ASE 2007
(22nd International Conference on Automated Software Engineering).
ACM, 2007, pp. 204–213.

[32] C. McMillan, M. Grechanik, D. Poshyvanyk, C. Fu, and Q. Xie, “A source
code search engine for finding highly relevant applications,” Transactions
on Software Engineering, vol. 38, no. 5, pp. 1069–1087, 2012.

[33] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: finding relevant functions and their usage,” in Proceedings of
ICSE 2011 (33rd International Conference on Software Engineering).
ACM, 2011, pp. 111–120.

[34] S. Thummalapenta and T. Xie, “Spotweb: Detecting framework hotspots
and coldspots via mining open source code on the web,” in Proceedings
of ASE 2008 (23rd International Conference on Automated Software
Engineering). IEEE, 2008, pp. 327–336.

[35] S. Bajracharya and C. Lopes, “Mining search topics from a code search
engine usage log,” in Proceedings of MSR 2009 (6th Working Conference
on Mining Software Repositories), 2009, pp. 111–120.

[36] S. K. Bajracharya and C. Videira Lopes, “Analyzing and mining a code
search engine usage log,” Empirical Software Engineering, vol. 17, no.
4-5, pp. 424–466, 2012.

[37] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi, “Mining
internet-scale software repositories,” in Proceedings of NIPS 2007 (21st
Annual Conference on Neural Information Processing Systems). MIT
Press, 2007, pp. 929–936.

[38] S. Sim, M. Umarji, S. Ratanotayanon, and C. Lopes, “How well do
search engines support code retrieval on the web?” Transactions on
Software Engineering and Methodology, pp. 1–25, 2011.

[39] C. Parnin and C. Gorg, “Building usage contexts during program
comprehension,” in Proceedings of ICPC 2006 (14th IEEE International
Conference on Program Comprehension), 2006, pp. 13–22.

[40] R. Minelli, A. Mocci, and M. Lanza, “I know what you did last
summer – an investigation of how developers spend their time,” in
Proceedings of ICPC 2015 (23rd IEEE International Conference on
Program Comprehension), 2015, pp. 25–35.

[41] R. Minelli, A. Mocci, R. Robbes, and M. Lanza, “Taming the ide
with fine-grained interaction data,” in Proceedings of ICPC 2016 (24th
International Conference on Program Comprehension), 2016, pp. 1–10.

[42] S. Amann, S. Proksch, S. Nadi, and M. Mezini, “A study of visual
studio usage in practice,” in Proceedings of SANER 2016 (23rd
IEEE International Conference on Software Analysis, Evolution, and
Reengineering), 2016, pp. 124–134.

[43] M. Goldman and R. Miller, “Codetrail: Connecting source code and web
resources,” Journal of Visual Languages & Computing, pp. 223–235,
2009.

[44] A. Sillitti, A. Janes, G. Succi, and T. Vernazza, “Collecting, integrating
and analyzing software metrics and personal software process data,” in
29th EUROMICRO Conference 2003, New Waves in System Architecture,
2003, pp. 336–342.

[45] R. Holmes and A. Begel, “Deep intellisense: a tool for rehydrating
evaporated information,” in Proceedings of MSR 2008 (5th Working
Conference on Mining Software Repositories). ACM, 2008, pp. 23–26.

[46] R. Holmes, R. J. Walker, and G. C. Murphy, “Strathcona example
recommendation tool,” in Proceedings of ESEC/FSE 2005 (joint meeting
of the 10th European Software Engineering Conference and the 13th

International Symposium on Foundations of Software Engineering), 2005,
pp. 237–240.

[47] R. Holmes, R. Walker, and G. Murphy, “Approximate structural context
matching: An approach to recommend relevant examples,” Transactions
on Software Engineering, vol. 32, no. 12, pp. 952–970, 2006.

[48] R. Holmes and G. Murphy, “Using structural context to recommend
source code examples,” in Proceedings of ICSE 2005 (27th International
Conference on Software Engineering). ACM, 2005, pp. 117–125.

[49] J. Stylos and B. A. Myers, “Mica: A web-search tool for finding api
components and examples,” in Proceedings of VL/HCC 2006 (Symposium
on Visual Languages and Human-Centric Computing), 2006, pp. 195–
202.

[50] O. Kononenko, D. Dietrich, R. Sharma, and R. Holmes, “Automatically
locating relevant programming help online,” in Proceedings of VL/HCC
2012 (Symposium on Visual Languages and Human-Centric Computing),
2012, pp. 127–134.

[51] M. Rahman, S. Yeasmin, and C. Roy, “Towards a context-aware ide-based
meta search engine for recommendation about programming errors and
exceptions,” in Proceedings of CSMR/WCRE 2014 (Software Maintenance,
Reengineering and Reverse Engineering), 2014, pp. 194–203.

[52] J. Cordeiro, B. Antunes, and P. Gomes, “Context-based recommendation
to support problem solving in software development,” in Proceedings of
RSSE 2012 (3rd International Workshop on Recommendation Systems
for Software Engineering). IEEE Press, 2012, pp. 85–89.

[53] W. Takuya and H. Masuhara, “A spontaneous code recommendation
tool based on associative search,” in Proceedings of SUITE 2011 (ICSE
Workshop on Search-driven Development: Users, Infrastructure, Tools
and Evaluation). ACM, 2011, pp. 17–20.

[54] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza,
“Prompter: A self-confident recommender system,” in Proceedings of
ICSME 2014 (30th International Conference on Software Maintenance
and Evolution). IEEE, 2014, pp. 557–580.

[55] ——, “Prompter: Turning the IDE into a self-confident programming
assistant,” Empirical Software Engineering, vol. 21, no. 5, pp. 2190–2231,
2016.

[56] L. Ponzanelli, 2016. [Online]. Available: http://libra.inf.usi.ch/

