
ViDI: The Visual Design Inspector
Yuriy Tymchuk, Andrea Mocci, Michele Lanza

REVEAL @ Faculty of Informatics - University of Lugano, Switzerland

Abstract—We present ViDI (Visual Design Inspector), a novel
code review tool which focuses on quality concerns and de-
sign inspection as its cornerstones. It leverages visualization
techniques to represent the reviewed software and augments
the visualization with the results of quality analysis tools. To
effectively understand the contribution of a reviewer in terms
of the impact of her changes on the overall system quality,
ViDI supports the recording and further inspection of reviewing
sessions. ViDI is an advanced prototype which we will soon
release to the Pharo open-source community.

Video URL: http://youtu.be/EtdkcNBJAec

I. Introduction

Modern software development often integrates code review
in its process, both in large software companies and open
source communities [1]. Modern code review is supported
by dedicated tools. Examples include Gerrit1 by Google,
Crucible2 by Atlassian and ReviewBoard3. Such tools provide
a common core of features, like a diff view of the changes to
be reviewed, the ability to comment and discuss parts of code,
and mark a contributed patch as reviewed.

The main goal of code review is to anticipate the detection
of defects, to improve code quality, and to share code knowl-
edge among developers [1], [2], [3]. Code review is usually
performed by a small number of developers on a contribution
patch just before its integration into the software system. This
style on review is called peer-review [2]. The code quality
improvement is assumed to emerge from the experience of
developers through their review contributions.

The popularity and potentials of code review adoption
motivated Bacchelli and Bird [4] to study the expectations of
developers and the difficulties they encounter when performing
a review. They discovered that the main motivation for code
review is to identify defects in code, and as a consequence to
improve the code written by others.

Conversely, the main difficulty of code review is to com-
prehend the reason of a change to be reviewed. This difficulty
hinders the review process, causing reviewers to focus on code
style problems, which are easier to spot. Thus, reviewers are
not able to effectively tackle software defects, and the ultimate
goal of improving code quality is hindered.

To overcome this limitation, we adopted a novel point of
view in the way code review tackles its expected core concern,
without simply relying on the expertise of reviewers, but by
considering the review of code as an integral and dedicated
process which takes a system form one quality state to another.

1https://code.google.com/p/gerrit/
2https://www.atlassian.com/software/crucible/overview
3https://www.reviewboard.org

We present a tool called Visual Design Inspector (ViDI),
which augments code review by integrating software quality
evaluation, and more general design assessment, as a first class
citizen and as the core concern of code review. It leverages
visualization to drive the quality assessment of the reviewed
system, exploiting data obtained through static code analysis.
ViDI enables intuitive and easy defect fixing, personalized
annotations, and review session recording.

A. ViDI Concepts
ViDI is implemented in Pharo4, a modern Smalltalk-

inspired programming language and full-fledged object-
oriented development environment. ViDI is available as an
MIT-licensed free software at http://vidi.inf.usi.ch.

ViDI uses SmallLint [5] to support quality analysis and
obtain reports about issues concerning coding style and design
heuristics [6], [7]. The version of SmallLint that we use has
115 rules organized into 7 different categories, from simple
style checks to more complex design flaws. Rules concern
specific code entities (e.g., classes or methods). A rule can be
checked against an entity, and its violation is called a critic.
Some critics store the selection of code that violates a rule.

The system to be reviewed is presented in a visual en-
vironment augmented with automatically generated quality
reports. The environment is self-contained: The reviewer can
navigate, inspect and improve the system from inside ViDI.
As a system can be changed during the review session, ViDI
automatically re-evaluates the quality assessment, to keep the
reviewer updated about the current system state.

Most review tools focus on a patch of code to be reviewed
before being integrated into the code base. We focused ViDI
on a wider context, namely the one of continuous assessment
of the quality of a software system. While dedicated patch
review is left as a future work, ViDI now tackles the need
for a tool where quality concerns become an integral part of
the development process. While ideally such a quality control
should be performed continuously, for the time being we
designed ViDI to operate in a session-based approach, where
developers verify the quality of a system in dedicated sessions.

ViDI is thus rooted in the concept of a review session, that
can focus on a package or a set of packages. During the review
session, all changes made by reviewer are recorded. Sessions
can be stopped, and the session-related data can be archived
for future usages. Each session can be visually inspected at
any time to understand the impact of the review, in terms of
the amount of changes and how the quality of the system under
review improved.

4http://pharo.org



Fig. 1: ViDI main window, composed of 1) quality rules pane; 2) system overview pane; 3) critics of the selected entity;
4) source code of selected entity.

II. ViDI in a Nutshell

We illustrate ViDI through its main user interfaces: Its
quality assessment window (Section II-A) and the session
review window (Section II-B).

A. Quality Assessment Window

The main window of ViDI is depicted in Figure 1. It is
composed of three horizontal panes, which respectively frame
i) a list of categorized critics, ii) an overview of the system,
and iii) detailed information about a selected entity.

The Critics List provides a categorized overview of the
critics in the system. It provides two columns containing the
name of the rule and the number of critics occurrences. Rules
are hierarchically organized into predefined categories. Each
rule and category can be deselected with a checkbox next to it.
This removes the critics related to this rule (or entire category)
from the other panes of the tool. By default, all categories are
selected.

The System overview is the core visualization of ViDI
supporting the quality and design assessment. It consists of
a city-based code visualization [8], [9], depicting classes as
bases on which their methods are stacked forming together
a visual representation of a building. We plan to investigate
complementary and alternative visualizations to the city-based
one. The status bar provides a short system summary, contain-
ing information about the classes and methods under review,
those which have critics, and the total number of critics on
the system. The system overview pane supports immediate
understanding of the quality of the system under review,
relating its structure and organization with the distribution of
critics. In this view, method and classes are colored depending
on the amount of critics. Elements with no critics are colored

in gray. The higher the amount of critics, the brighter is the
red coloring of the entity. Hovering over the elements of the
city displays a popup with the name of the element and the
number of critics. Clicking on an element selects it, coloring it
in cyan, and allowing further inspection in the rightmost pane
of ViDI, the selection pane.

The Selection Pane supports inspection and modification
of an entity (i.e., package, class or method) selected in the
system overview. The selected entity name is displayed on
top of the pane, which is in turn vertically split in two parts.
The top half of the pane displays the list of all visible critics
about the selected element, while the bottom part displays
the code of it. Clicking on one of such critics highlights
the problematic parts in the source code. Source code is also
editable: The reviewer can make changes to fix an issue and
save them. When an element is changed, all the critics are
re-evaluated on it. Furthermore, we have implemented the
possibility to fix some critics automatically, and this option
can be triggered from the context menu of a critic. Figure 2
shows such scenario.

Fig. 2: Automatically fixing a critic

Another useful option is the inspection of the rationale of a
critic and further details. Finally, another fundamental option is
the possibility to add a note, the purpose of which is to leave



a reviewer comment related to the specific critic, propose a
solution, or details on its rationale. Figure 3 shows a specific
example of this scenario.

Fig. 3: Adding a note in ViDI

Notes are essentially considered as custom critics by the
reviewer: Notes are stored alongside entity critics and they are
fundamental for the purpose of evaluating a system’s quality.
The principle is that reviewer comments are at same level of
automatically generated critics. After a note is added, it is
displayed in the list of critics.

B. Session Review

ViDI provides two effective visualizations to support review
inspection and reflection.

The Critics evolution view displays the evolution of the
total amount of critics during a review. Figure 4a shows the
typical example of an effective review, where the graph is
decreasing with some steep drops caused by automated batch
fixes. With this visualization, the reviewer can immediately see
that the session removed, in around 10 minutes, a significant
amount of issues (i.e., 94 critics). Moreover, the visualization
displays the impact of each change as dark semitransparent
circles, whose radii correspond to the change impact, a simple
metric of how the change impacted the reviewed code. As a
preliminary metric we quantified the impact as the number
of edited characters in the source code. We plan to study
alternatives as future work, for example metrics that take into
account the nature of changes, like refactoring choices.

The Change impact view shows instead a histogram of
changes made during the session. It allows to reason on the
amount of changed code that corresponds to the number of
resolved critics. The x axis contains the sequence of changes
in the code, while the y axis shows the change impact. In both
views, hovering over an entity shows a popup with information
about the change, while clicking on it opens a dedicated diff
view of a change.

(a) Critics evolution during a review session

(b) Impact of changes made during a review session

Fig. 4: Reviewing a Review Session

III. A Use Case: DFlow

By means of a brief use case, we discuss the effectiveness
of ViDI on assessing and improving the quality of DFlow
[10], a profiler for the Pharo IDE that records fine-grained
user interface interaction data. DFlow consists of 8 packages,
176 classes and 1,987 methods. We reviewed a core package
of DFlow which consists of 23 classes and 119 methods. The
package makes heavy use of reflection mechanisms and meta
programming [11] to instrument the IDE. Ensuring the quality
of a core package is fundamental, as defects on it can cause
crashes in the IDE. We illustrate a single session, performed
by both the author of DFlow and the one of ViDI as a reviewer,
the starting point of which is depicted in Figure 5.

Fig. 5: Initial quality status of DFlow.



The system overview pane shows a relatively distributed
number of critics. The two categories with the largest number
of critics are “Unclassified methods” and “Inconsistent method
classification”, which are Smalltalk-specific critics related to
the way the methods are organized within the classes. We
decide to exploit automatic fixing for them. The resulting
view gives us a clearer image to focus on more serious issues
(Figure 6).

Fig. 6: Status after solving categorization issues.

An alternative would have been to deselect the entire
category of critics without fixing them, or even to deselect
all rules and then select just one or a few critics classes. This
alternative choice would allow to focus on specific kinds of
issues that may be more severe and important to a project.

At this point, the reviewer can again automatically resolve
issues related code style and optimization. The remaining
issues cannot be dismissed automatically. For example, there
is a method violating two rules: the method is too long and it
violates an issue related to reflection. The fact that these critics
cannot be automatically fixed, and the fact that the reviewer
is likely not the author of the method, leaves him in front of
a choice. He could either manually fix the method or leave a
note for future, further inspection. Figure 3, that we analyzed
in the previous section, shows exactly this case: The note asks
the author to split the method into shorter ones and remove
direct access to internal class structure. The note is left as a
full-fledged critic in the system, that the author will be able
to inspect it when reviewing the system himself.

Figure 4a illustrated the critics evolution of this show case
session, which was relatively productive: In a timespan of 10
minutes the number of critics went from 105 to 11. We can
spot a couple of phenomena related to the way we designed
ViDI. At the beginning, critics dropped under the mark of 58
critics because of the automated resolution of the first class
of issues (i.e., method classification). Then, after 20:29, we
can spot effective changes in the source code depicted as dark
circles, corresponding to the fixing of style and optimization
issues. The next change appears after 20:32:29. This was a
non-trivial issue that could not be automatically fixed. There
is also a longer period without any change after the resolution
in signaturesForDebugActions. This is because the reviewer
was trying to understand how to solve the second issue, before
writing another note.

A. Planned Studies
This was just a brief illustration of how ViDI is used.

The user has a central, consistent view on the software to
be reviewed, and then interacts with ViDI to inspect and fix
problems of various nature (bad style, bad design, etc.). ViDI
is still in a prototype status and needs to meet other desiderata
of code review, like better process support and representation
of critics. We plan to conduct the following future studies to
assess the capabilities of ViDI:
• An early release of ViDI to the Pharo community to get

early feedback from developers, supported by a qualita-
tive study that will help refinement of ViDI to ensure it
meets the expectations of reviewers;

• A solid quantitative evaluation aimed to measure the
effectiveness of ViDI in terms of the numbers of defects
that it helps to spot and solve;

• A user feedback system tied to a continuous release
policy of ViDI, where feature requests are handled in a
timely fashion;

• A full-fledged study aimed to compare ViDI with com-
petitive approaches in the state of the art.

IV. Conclusion
We presented ViDI, a tool to support visual design in-

spection and code quality assessment as its core concern.
It exploits reports generated by automatic static analysis to
identify so-called critics to be reviewed. ViDI enables au-
tomated or manual fixing of critics, and allows reviewers
to leave comments and notes that are elevated to the same
status of full-fledged critics. Another feature of ViDI is that
it records reviewing sessions that can be reviewed for further
inspection, for example by highlighting how the system quality
has improved, and enabling a real-time evaluation of the
impact of changes on source code.

References
[1] M. Fagan, “Design and code inspections to reduce errors in program

development,” IBM Syst. J., vol. 15, no. 3, pp. 182–211, Sep. 1976.
[2] J. Cohen, Best Kept Secrets of Peer Code Review. Smart Bear Inc.,

2006.
[3] P. Rigby and C. Bird, “Convergent contemporary software peer review

practices,” in Proceedings of FSE 2013 (9th Joint Meeting on Founda-
tions of Software Engineering), 2013, pp. 202–212.

[4] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in Proceedings of ICSE 2013 (35th ACM/IEEE
International Conference on Software Engineering), 2013, pp. 712–721.

[5] D. Roberts, J. Brant, and R. Johnson, “A refactoring tool for smalltalk,”
Theor. Pract. Object Syst., vol. 3, no. 4, pp. 253–263, Oct. 1997.

[6] A. Riel, Object-Oriented Design Heuristics. Addison-Wesley, 1996.
[7] N. Ayewah, W. Pugh, D. Hovemeyer, D. Morgenthaler, and J. Penix,

“Using static analysis to find bugs,” Software, IEEE, vol. 25, no. 5, pp.
22–29, Sept 2008.

[8] R. Wettel, “Software systems as cities,” Ph.D. dissertation, University
of Lugano, Switzerland, Sep. 2010.

[9] R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities: A
controlled experiment,” in Proceedings of ICSE 2011 (33rd International
Conference on Software Engineeering). ACM, 2011, pp. 551 – 560.

[10] R. Minelli, L. Baracchi, A. Mocci, and M. Lanza, “Visual storytelling
of development sessions,” in Proceedings of ICSME 2014, 2014.

[11] N. M. N. Bouraqadi-Saâdani, T. Ledoux, and F. Rivard, “Safe metaclass
programming,” in Proceedings of OOPSLA 1998 (13th International
Conference on Object-Oriented Programming Systems, Languages and
Applications). ACM, 1998, pp. 84–96.


