
Free Hugs — Praising Developers For Their Actions
Roberto Minelli, Andrea Mocci, and Michele Lanza

REVEAL @ Faculty of Informatics — University of Lugano, Switzerland

Abstract—Developing software is a complex, intrinsically in-
tellectual, and therefore ephemeral activity, also due to the
intangible nature of the end product, the source code. There is
a thin red line between a productive development session, where
a developer actually does something useful and productive, and
a session where the developer essentially produces “fried air”,
pieces of code whose quality and usefulness are doubtful at best.
We believe that well-thought mechanisms of gamification built
on fine-grained interaction information mined from the IDE can
crystallize and reward good coding behavior.

We present our preliminary experience with the design and
implementation of a micro-gamification layer built into an object-
oriented IDE, which at the end of each development session
not only helps the developer to understand what he actually
produced, but also praises him in case the development session
was productive. Building on this, we envision an environment
where the IDE reflects on the deeds of the developers and by
providing a historical view also helps to track and reward long-
term growth in terms of development skills, not dissimilar from
the mechanics of role-playing games.

I. INTRODUCTION

What is a game? According to McGonigal [1] games share
four defining traits: a goal, rules, a feedback system, and volun-
tary participation. The goal gives a sense of purpose. The rules
unleash creativity and foster strategic thinking. The feedback
system provides motivation. The voluntary participation makes
the experience safe and pleasurable. Suits sums it up with
“playing a game is the voluntary attempt to overcome unnec-
essary obstacles” [2]. McGonigal provides several examples
of contexts, ranging from house holding chores to physical
exercise, where the performance of subjects has been boosted
through gamification [1]. While this may seem remote from
software engineering, Werbach and Hunter provide an illumi-
nating example closer to our discipline: Microsoft’s testing
team in charge of the multi-language aspect of Windows 7
invented the Language Quality Game, recruiting thousands of
participants who reviewed over half a million dialog boxes,
logging 6,700 bug reports, resulting in hundreds of fixes [3].
Another example is StackOverflow, a Q&A website where
asking and answering technical questions is rewarded with
points and badges. There is evidence that gamification is in
part responsible for StackOverflow’s success [4].

We envision the use of gamification in the context of how
developers use the main vehicle for programming, namely
the integrated development environment (IDE). Modern IDEs
have become powerful tool suites that allow one to construct,
understand, and modify software systems. This is quite a step
away from the (in our opinion outdated) notion, promoted by
Weinberg several decades ago, that programming is a “kind of
writing” (of source code) [5].

We believe this is a fundamentally flawed perception, and
among others is also responsible for the wrong, and fashioned,
assumption that productivity can be measured in terms of lines
of code [6], [7]. Programming is more, beautifully put by
Brooks: “The programmer, like the poet, works only slightly
removed from thought-stuff. He builds his castles in the air,
from air, creating by exertion of the imagination.” [7].

Although this sounds all very poetic and romantic, in the
end developers often end up as unsung heroes, i.e., there is no
mechanism (other than venal aspects) that rewards them for a
good job. What can be done about it?

The ICSE NIER track welcomes “Bold visions of new
directions which may not yet be supported by solid results but
rather by a strong and well motivated scientific intuition.”. As
opposed to the common belief that gamification is a recent,
under-explored and thus not very scientific domain, behind
it there is in fact a strong scientific intuition, rooted in the
realm of psychology, and more specifically behaviorism, an
approach that combines elements of philosophy, methodology,
and theory [8]. In fact, behaviorism, whose main tenet is “if
you do this you’ll get that”, is the antithesis of successful
gamification, because simple rewarding mechanisms like token
programs have been shown to be bound to fail [9] in the long
run. Put simply, our goal is not to assign points to development
actions. Such a simplistic approach is destined to fail. Rather,
we propose a comprehensive approach where the ultimate goal
is the creation of an alter ego of a developer, which we believe
is the key to enable what McGonigal [1] identified as the 4
key aspects of successful gamification: (1) Satisfying work
(after all, programming is creative), (2) the experience/hope
of being successful, (3) a social connection, and (4) a deeper
meaning. We argue that the creation of such an alter ego is
the key to provide both short-term and long-term gratification
to developers.

We are currently devising and implementing an approach
which leverages fine-grained interaction data mined from an
IDE using our tool DFLOW [10]. DFLOW models and silently
harvests any low-level action performed by developers and
thus offers a complete and precise summary of what is being
done. Our vision is composed of the following steps:

• Session Digest. The session digest is a short-term form
of gratification, similar to the one present in fitness apps,
offered to developers for their last development session.
It summarizes the last session from various perspectives,
e.g., how was time used, how much was achieved from
a coding point of view, which program entities were
involved, etc. It also enables to dig into the fine-grained
recorded data and acquire a deeper understanding.



Session Digest

When?

Navigation
UnderstandingEditing
User Interface

browsing inspecting searching

2h09m25s duration

6m22s navgation time

11m06s editing time

20m16s user interface time

1h31m40s understanding time

Profile

232,321 pts. 12

Lv.
4

1 2

What?

1 class
3 methods

3 class
4 methods

1 class
1 method

navigation
inspection
edit

mouse 

keyboard

To
p

 A
ct

iv
it

y

Ti
m

el
in

e

time 

How do 
you feel?

Fig. 1. Session Digest: How have you spent your time and what did you do?

• Alter Ego. A developer is like a character in a role-
playing game: She moves her first steps, evolves, acquires
new skills, and unlocks new achievements. Developers are
thus assigned an avatar that they can evolve, providing
them short- and long-term satisfactions to turn software
development into a more engaging activity.

• Development Empire. The last, and most ambitious
goal is provide developers with long-term gratification
mechanisms. We envision a comprehensive gamification
layer on top of the IDE: the Development Empire. It is
not all about assigning points to them, but a ramified
system that rewards complex actions and best practices
(adherence to design patterns and design heuristics [11],
test-driven development, etc.) of a developer with badges,
achievements, and trophies of different types. The history
and the evolution of the alter ego of a developer is a key
factor. When this mechanism is in place, all the alter
egos will originate a new community, where people can
observe, challenge, and interact with other developers.

Our vision builds on our previous work on interaction
mining and visualization [10] and fine-grained evolutionary
information collection [12]. We believe our idea calls for novel
research directions encompassing both software engineering
and psychology. In Section II we detail our technical contri-
bution, the session digest, a short-term gratification system.

II. SESSION DIGEST: FREE HUGS FOR DEVELOPERS

The “session digest” is a form of short-term gratification
for developers, that can potentially augment their level of
engagement. We shape and frame the rewards in a digest as
visual summary of the development session. The digest is com-
posed of three main parts: (a) an overview of the development
session; (b) a selection of fine grained information to highlight
the most important actions; and (c) a glimpse on the “profile”
of the developer. The general overview, e.g., in terms of how
the developer spent her time, serves as an entry point for the
digest. Once the developer gets the global picture, she can use
the remaining part of the digest to retrospectively analyze how
well she did in the current session. The last part, the developer
profile, summarizes the developer’s avatar status.

In Practice: Figure 1 depicts a sample session digest prototype
on top of the standard IDE window. The left part of the digest
serves as a general overview on how the developer spent her
time. The overview is achieved by a sunburst visualization
accompanied by a set of time metrics. Figure 2 shows the
sunburst in details. Its central part distinguishes the time
devoted to the three different high-level activities, namely:
browsing (orange), inspecting (green), and search (yellow).
For each of the three types of activities, the visualization
shows four time components: navigation (green), editing (red),
understanding (dark green), and user interface (pale orange).



Time Components

Activities

Navigation

UnderstandingEditing

User Interface

Browsing

Inspecting

Searching user interface

understanding

Duration
of inspecting
activities

Fig. 2. Activities and time components in a sunburst visualization

For completeness, the visualization provides the same in-
formation as text. We quantify these time components using
interaction histories mined with DFLOW [13].

keyboard events

mouse events

navigation

inspection

edit
time

Fig. 3. Activity View: Decomposing an High-Level Development Activity

After an overview, a developer has the possibility to dig into
her last development session by means of the central part of
the digest. In the example of Figure 1, the central part shows
an interactive tree visualization that portrays all the entities
that she has interacted with in her last session. The tree has 4
different levels, (1) subsystems, (2) packages, (3) classes, and
(4) methods. Each entity have a color to represent the intensity
of the interactions: gray for entities with no interactions (i.e.,
inserted only as a transitive closure to complete the tree)
and a color scale from light blue (i.e., few interactions) to
orange (i.e., lot of interactions) for the other elements. Below
this view there is a table that shows how many entities were
respectively added, modified, or removed. In Figure 1, the
bottom right corner presents the activity view. This view,
detailed in Figure 3, uses a custom layout to decompose
a single high-level development activity. It depicts mouse,
keyboard, and meta events. The first two kinds of events
have a duration, proportional to the width of the rectangles
representing them. Meta events have no duration since they
represent IDE actions such as saving a method. Their color
represents their type, according to the impact they have on
source code. Navigation events (green) do not modify source
code, inspect events (yellow) are a deeper form of navigation
(i.e., in a debugger), while editing events (red) modify source
code. In the session digest, for example, we can show the
hardest activity, as depicted in Figure 1.

The last component of the digest is the developer’s profile,
depicted in the top right corner. It shows a profile picture of
the developer, her level, points, trophies, badges, and lets her
provide a “sentiment feedback” about the last development
session on a smiley scale. This enables analyses on what
characterizes, for example, a frustrating session. Figure 1
shows a prototypical profile of the first author of this paper. He
is at level 4, with 2,321 points. In the last session he achieved
1 new trophy and received 2 new badges. Overall, he owns
23 trophies and 12 badges. This goes towards an application
of gamification in software development [14]. Gamification, if
carefully engineered [1], can increase the motivation and en-
gagement of developers. For an open source community, such
as the one behind the PHARO IDE1, our target development
environment, this can provide several benefits. Having more
motivated people will most likely increase both the quality
and the quantity of the contributions to the community. At the
same time, this will originate a novel developer community
that, at first sight, is similar to Open HUB2, the open source
network formerly known as Ohloh. But our vision goes beyond
mere version control system data. We imagine a rich developer
profile that includes interactions with different sources of
information including, but not limited to, IDE interactions.
For example, the system will integrate bug tracking systems,
questions & answers services, mailing list participation, etc.
Points, trophies, and badges will cross the boundaries of
semantically different domains, delineating a comprehensive
profile for developers.

A. How this is done: DFLOW – The IDE Interaction Profiler
The digest presents fine-grained interaction data mined from

an IDE. While interacting with IDEs developers generate a
huge amount of interaction data of different granularities.
Examples include code-specific events, like adding a new class
or a method, or editing a method implementation, and user
interfaces (UI) interactions, like resizing or moving windows,
etc. Current IDEs, however, neglect or, in general, do not fully
exploit this information [15]. To enable retrospective analysis
of a development session, as part as our previous work we
implemented DFLOW, an interaction profiler [10]. DFLOW
is an extension for the PHARO IDE that non-intrusively
records all IDE interactions. Collected data includes high level
events, such as adding or modifying an entity, as well as low
level events, such as mouse movements, keystrokes, and UI
interactions, e.g., opening, resizing, or closing a window.

When enabled, DFLOW automatically records interaction
data. When the tool detects the end of a session (i.e., the
user attempts to close the IDE or she is inactive for a given
time), the session digest comes into play. The IDE provides
the developer with a session digest, as shown in Figure 1.
Moreover, since we collect long-term data, the developer can
then also compare the just finished session with previous
sessions, which allows her to obtain a view on her productivity
over longer time spans, beyond the one of a single session.

1See pharo.org
2See https://www.openhub.net



III. FUTURE WORK

This section highlights possible extensions of the digest
(III-A) and provides details on our evaluation plans (III-B).

A. Extending the Session Digest

Regardless from the fact that we can present IDE interaction
data from different perspectives, the session digest can also be
extended in multiple, orthogonal, directions.
Bug-tracking systems. Our research group is also working on
how the process of submitting bug reports and patches can
be ameliorated [16]. Our goal is to integrate the process of
submitting a bug report directly within the IDE. Once bug-
tracking information is available in the IDE, statistics about
how a developer behaves in reporting and fixing bugs can be
integrated inside the session digest. For example, we can keep
track on how active a contributor is in the bug-fixing process,
i.e., how much she contributes, how many bugs she fixes, or
how many issues she submits to the bug tracker system.
Coding style and guidelines. Our group is also working on
code style and quality metrics. The session digest can include
evolutionary visualizations on how quality and style of a
software system evolved over time. This information gives a
tangibile feedback, and intrinsically a reward, to developers
investing efforts in ameliorating the design and implementation
of their systems.
Questions & answers services (Q&A). Our group is also work-
ing on integrating Q&A services inside the IDE. We envision
IDEs that harness the potential of the crowd knowledge, for
example by letting a developer read, answer, and post new
questions on these platforms directly from the IDE [17]. At
that point, our digest can include such information and reward
developers that better exploit and contribute to the crowd
knowledge base.

Discussion. These ideas introduce just a few of the many
sources of data that the digest can present to a developer. In
turn, this sets the ground for our more ambitious vision of a
gamification layer built into an object-oriented IDE.

B. Evaluation Plan

Our target IDE is the PHARO IDE, a open-source object-
oriented language and environment. Behind PHARO there is a
an open-minded and reachable community, with whom we are
in touch. Our plan is to strongly rely on PHARO developers
and to value their feedback as the most important parameter.

Our aim to evaluate to what extent developers benefit from
what we propose, in terms of engagement, self satisfaction, and
improved productivity. The first step is to release the gamifi-
cation system to the PHARO community and conduct a con-
tinuous qualitative evaluation. Interviews and questionnaires
will help us to evaluate the design of the gamification system
and refine it to meet developers’ feedback, expectations, and
criticism. This would enable a positive feedback loop with
developers, eliciting latent issues that cannot be foreseen in
advance. When we reach a stable release, we plan to conduct
a comparative evaluation between developers participating in

the Development Empire and developers using the standard
PHARO release. We want to assess different parameters such
as satisfaction, engagement, productivity, and quality of the
code being produced.

Our conjecture is that developers involved in the Develop-
ment Empire will likely achieve better results, in terms of code
quality, productivity, and community engagement with respect
to the others. At the same time they will “feel better” due to
the rewarding mechanism offered by our system.

IV. CONCLUSIONS

We presented our vision and initial design and implementa-
tion of a micro-gamification layer on top of an object-oriented
IDE. Our long term goal is a system that rewards long-term
growth in terms of development skills.

Synergies between gamification and software engineering
are a very novel phenomenon. In this work we first explained
the scientific intuitions, which are rooted into in the realm of
psychology, a field which is orthogonal to software engineer-
ing. We strongly believe that such an approach might have
a positive impact, particularly—but not only—on small and
open-minded communities, such as the one we are targeting.

REFERENCES

[1] J. McGonigal, Reality is Broken. Penguin, 2011.
[2] B. Suits, The Grasshopper: Games, Life and Utopia. Broadview Press,

2005.
[3] K. Werbach and D. Hunter, For the Win. Wharton Digital Press, 2012.
[4] B. Vasilescu, V. Filkov, and A. Serebrenik, “Stackoverflow and github:

Associations between software development and crowdsourced knowl-
edge,” in Proceedings of SocialCom 2013 (International Conference on
Social Computing), Sept 2013, pp. 188–195.

[5] G. M. Weinberg, The Psychology of Computer Programming. New
York, NY, USA: John Wiley & Sons, Inc., 1985.

[6] T. C. Jones, “Measuring programming quality and productivity,” IBM
Systems Journal, vol. 17, no. 1, pp. 39–63, 1978.

[7] F. Brooks, The Mythical Man-Month, 2nd ed. Addison-Wesley, 1995.
[8] B. Skinner, Reflections on Behaviorism and Society. Prentice Hall,

1978.
[9] A. Kohn, Punished by Rewards. Houghton Mifflin, 1993.

[10] R. Minelli, A. Mocci, M. Lanza, and L. Baracchi, “Visualizing developer
interactions,” in Proceedings of VISSOFT 2014 (2nd IEEE Working
Conference on Software Visualization), 2014, pp. 147–156.

[11] A. Riel, Object-Oriented Design Heuristics. Addison-Wesley, 1996.
[12] R. Robbes and M. Lanza, “A change-based approach to software

evolution,” Electronic Notes in Theoretical Computer Science (ENTCS),
vol. 166, pp. 93–109, Jan. 2007.

[13] R. Minelli, A. Mocci, M. Lanza, and T. Kobayashi, “Quantifying
program comprehension with interaction data,” in Proceedings of QSIC
2014 (14th International Conference on Quality Software), 2014, p. to
be published.

[14] E. Mastrodicasa, “Ludus opus proficit - a gamification framework for
software engineering,” Master’s thesis, University of Lugano, 2014.

[15] G. C. Murphy, M. Kersten, and L. Findlater, “How are java software
developers using the eclipse IDE?” IEEE Software, vol. 23, no. 4, pp.
76–83, 2006.

[16] T. dal Sasso and M. Lanza, “in*bug: Visual analytics of bug reposito-
ries,” in Proceedings of CSMR-WCRE 2014 (1st Joint Meeeting of the
European Conference on Software Maintenance and Reengineering and
the Working Conference on Reverse Engineering), 2014, pp. 415–419.

[17] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Seahawk: Stack overflow in
the ide,” in Proceedings of ICSE 2013 (35th International Conference
on Software Engineering, Tool Demo Track). IEEE CS Press, 2013,
pp. 1295–1298.


