
Syde: A Tool for Collaborative Software Development

Lile Hattori and Michele Lanza
REVEAL @ Faculty of Informatics - University of Lugano, Switzerland

ABSTRACT
Team collaboration is essential for the success of multi-developer
projects. When team members are spread across different loca-
tions, individual awareness of the activity of others drops due to
communication barriers.

We built Syde, a tool infrastructure to reestablish team aware-
ness by sharing change and conflict information across developer’s
workspaces. Our main challenge is to balance the tradeoff between
offering relevant information about the activity of the team and
avoiding information overload. The novelty of our approach is that
we model source code changes as first-class entities to record the
detailed evolution of a multi-developer project. Hence, Syde deliv-
ers precise change information to interested developers.

Categories and Subject Descriptors
D.2.6 [Programming Environments]: Integrated Environments;
D.2.2 [Software Engineering]: Design Tools and Techniques—
Distributed/Internet based software engineering tools and techniques;
D.2.9 [Software Engineering]: Management—Programming teams.

Keywords
Collaboration, change, awareness, visualization, Syde.

1. INTRODUCTION
The development of software systems is a collective work that

depends on the communication and coordination of teams of de-
velopers to deliver the final product. In collaborative software de-
velopment, informal interactions play an important role, because
they keep developers aware of what is happening in the project
and ease team coordination – the management of dependencies be-
tween tasks [11]. However, when developers do not share the same
office, and face-to-face communication is not a part of their daily
activities, keeping developers informed of one another’s activities
becomes a challenge.

Awareness is frequently defined as an understanding of the activ-
ities of others to give a context for one’s activities [5]. It is becom-
ing an important topic in software engineering [4], especially in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

context of global software engineering (GSE), where geographi-
cally distributed teams have special needs with respect to aware-
ness [15]. The distance, diverse time zones, different cultures and
customized software processes are some of the aspects that directly
affect communication and awareness of distributed teams.

A significant effort has been made to address the special needs
with respect to awareness by enhancing the coordination capabili-
ties of SCM systems. A coordination drawback shared by current
software configuration management (SCM) systems is their strat-
egy of propagation of changes: Only when a developer checks in
his changes, will his colleagues have access to them; and only when
his colleagues synchronize their code with the repository, will they
become aware of new changes.

A number of tools have addressed this problem by providing
real-time information of ongoing changes, and alerting develop-
ers of emerging conflicts: ProjectWatcher [16], Lighthouse [3] and
FASTDash [1] create different visualizations with information col-
lected directly from developers’ workspaces. CollabVS [9] takes
a wider approach by providing different communication channels,
such as instant messaging and videoconferencing. CollabVS and
Palantír[14] analyze ongoing changes to alert developers of emerg-
ing conflicts.

The main challenge faced by these tools is how to balance the
tradeoff between providing relevant information about the activ-
ities of the team members, and avoiding overloading developers
with irrelevant information. The aforementioned tools have differ-
ent ways to manage this tradeoff, where the great majority cap-
tures changes at the file level. This implies that change information
broadcasted to the team is at the level of added and deleted lines.
To provide more accurate information (e.g., a couple of lines added
and deleted are actually a change on a statement of a method) these
tools have to use differencing algorithms to reconstruct and inter-
pret the change to infer its type.

We tackle the challenge of providing awareness information by
adopting a change-centric approach [13], which has been widely
used to manage inconsistencies among different views of software
artifacts [7]. Inconsistency management often focus on the model
of the system (e.g., UML model) and is usually associated to the
activity of one person [2]. We bring the change-centric approach
to a multi-developer context and focus on source code to record the
detailed evolution of the system’s implementation.

We model object-oriented systems as abstract syntax trees (AST),
and changes as tree operations. When a developer changes some-
thing inside a class, a tree operation that represents the change is
captured and sent to the server. The main difference between our
approach and others is that we capture the change at the level of
program entities on the developer’s workspace, instead of using a
differencing algorithm to interpret the change later on. This allows

us to have more precise change information and to detect conflicts
by comparing tree operations.

Our tool, Syde, provides information of who is changing which
parts of the system in real time - synchronous development. It also
detects merge conflicts as soon as they arise, and informs the in-
volved developers of them. Syde is an extensible client-server ap-
plication, where clients are Eclipse plug-ins that both capture chan-
ges and show change information as visual cues. Syde’s current
features allow us to:

• treat textual changes as first class change operations;

• collect change operations in a centralized server;

• broadcast change information to all team members of a project;

• store the changes in a repository for later use;

• access the change history of any package, class, method, or
field;

• show the differences between two versions of the program
and alert developers of conflicts;

• visualize in real time how the system is evolving through vi-
sualizations and visual cues;

• access all of its functionalities from the IDE, rather than a
stand-alone tool, to ease its usage.

2. SYNCHRONOUS DEVELOPMENT IN A
NUTSHELL

Syde provides to the developers of a team the notion of syn-
chronous development, where everyone is aware of the activity of
others in real time. In order to achieve synchronous development,
Syde extends Spyware’s change-based software evolution model
(CBSE) [13]. Spyware treats change as first-class entities with the
aim of accurately modeling how software evolves. Syde extends its
model from a single-developer to a multi-developer approach.

The Model. We model the evolution of a software system as a set
of sequences of changes, where each sequence is produced by one
developer. A sequence of changes takes a developer’s copy of the
system from one state to the next by means of semantic operations.
These operations are captured from the Eclipse’s workbench every
time a developer modifies his copy of the system. Syde captures
changes is at every save action. Thus, the evolution of a system
is the combination of the sequences of changes produced by each
individual.

System Representation. We focus on object-oriented systems
in Java, thus we store and analyze constructs such as classes and
methods, instead of files and lines. Hence, a software system is
modeled as an AST containing nodes, which represent packages,
compilation units, classes, methods, and fields. Nodes have prop-
erties, which vary depending on their type. A class can have a
superclass and a set of interfaces; a compilation unit can have a
set of imports. Syde provides a unique identifier for each entity
and tracks name changes and entity moves, which is not possible in
current mainstream SCM systems. These systems track files based
on their names, and when someone changes the name of a file, the
SCM sees it as a deletion and an unconnected addition. Syde keeps
on the server one AST per developer, which reflects exactly the
state of the system at a developer’s workspace.

Change Operations. In CBSE, change operations represent the
evolution of the system, instead of file versions [13]. A change
operation is the representation of a change a developer performs in

his workspace, i.e., it is the transition of a system from one state to
the next. Syde captures two types of change operations, detailed in
Table 1: atomic changes, and refactorings [6].

Table 1: Change Operations

Atomic Operations
Insertion Insert a node n as a child of parent p.
Deletion Delete a node n from its parent p.
Property Change Change the value v of property r of node n.
Property Insertion Insert the value v of property r of node n.
Property Deletion Delete the value v of property r of node n.

Refactorings
Rename Change the name of a node n and change

all references of this node from the old
name to the new one.

Move Move a node n and all its decedents
from old parent pold to new parent pnew.

Atomic changes are the finer-grained operations on the system’s
AST. An atomic change contains all the necessary information to
update the model. By applying a list of atomic changes in the order
they were received on the server, it is possible to generate all the
states of the program during its evolution. Although atomic change
operations reflect the entire evolution of the system, they can lead to
an overwhelming amount of information. In addition, some refac-
torings that a developer performs are automated by Eclipse and lose
their meaning if seen as separated atomic changes. Currently, we
capture two refactorings: rename, and move.

Conflict Detection. Syde detects structural conflicts [12] related
to the atomic operations previously listed. To detect emerging con-
flicts, every time a new atomic operation is applied to the AST of a
developer, it is compared to the ASTs of the others. The conflicts
are classified into two categories: yellow, when there are structural
differences between two versions of a node, but none of these ver-
sions were checked in the SCM system; red, when there are struc-
tural differences between two versions of a node, and one of them
was checked in the SCM system. Syde keeps track of the version
of each node, by inspecting the corresponding file’s version on the
adopted SCM system (e.g., Subversion). The state of a conflict is
stored, and at every change on one of the entities involved in the
conflict, it is updated. The involved developers are kept up-to-date
with the conflict’s state until it is solved, and the visual alert is re-
moved from their workspaces.

3. SYDE’S PLUG-INS
Syde uses a client-server architecture, where the server applica-

tion is located in a centralized server, and the clients are an extensi-
ble set of plug-ins. The server is responsible for collecting change
information, holding the AST representations of the system, ap-
plying conflict detection algorithms, and storing and making avail-
able all the information about the evolution and coordination (e.g.,
merge conflicts) of the system. The plug-ins provide a collection
of visualizations that provide team awareness. These plug-ins, de-
picted in Figure 1, are:

The Inspector (1). It is the main plug-in, responsible for in-
specting code changes, translating them into change operations and
sending to the server. The Inspector also provides an API that fa-
cilitates the creation of plug-in extensions.

12

2

3

4
2

5

6

Figure 1: Syde screenshots. 1: The Inspector Plug-in. 2: Scamp Plugin - Decorations View. 3: Scamp Plugin - WordCloud View. 4:
Scamp Plugin - Buckets View. 5: The Conflict Plug-in - Conflicts View. 6. The Conflict Plug-in - Annotation on Java Editor

Scamp (2, 3, 4). It provides lightweight extensions to Eclipse to
enhance workspace awareness and assist developers to collaborate.
Scamp has three different types of visualizations:

Decorations (2). Scamp provides a decoration in the form of small
annotations within the Eclipse package explorer and outline
view, where the files of the project are displayed. If a de-
veloper using Syde and Scamp is changing a class, its rep-
resentation in the package explorer is annotated in three dif-

ferent ways to express that “something has changed” in that
class. Scamp’s decorations are: (1) an overlay icon – indi-
cates the classes that have been changed; (2) an arrow – it
points up if the class has been changed by the user himself,
and points down if the last person who changed it is someone
else; and (3) a textual annotation – if someone else is the last
person who changed a class, an annotation is displayed after
the class name, showing who made the change (username)
and the timestamp.

WordCloud View (3). It displays the names of the classes present
in a project. The number of changes that have been per-
formed on each class is used as size metric, while the or-
der indicates the recency of the changes, with most recently
changed classes at the top. Each word in the cloud is colored
according to the developer who made the most recent change
to the class in question. Clicking on a word will take the user
to the source code.

Buckets View (4). It displays the effort spent on each class that
was recently changed. The classes are displayed as “buck-
ets”, which are progressively filled with single changes de-
picted as small squares. The color of each change denotes
the developer responsible for it. Changes follow a chronolog-
ical order, thus older changes are at the bottom of the bucket,
while newer changes appear at the top. Each bucket has the
corresponding class name colored according to the developer
who owns the code. Ownership in this case is defined as the
developer who has performed the greatest number of changes
[8].

The Conflict Plug-in (5, 6). It displays information about emerg-
ing conflicts as developers’ copies of the system become inconsis-
tent with one another. Conflict alerts are shown on a view (5) and as
annotations on the left side of the Java Editor (6). Red conflicts are
considered severe, because they involve at least one version of an
entity that is outdated according to the SCM system. Yellow con-
flicts are considered moderated, but they can easily become severe
if the involved developers do not try to resolve them before check-
ing in their code to the SCM. A developer can request to Syde the
other version of the entity that has a conflict with his own, and the
Conflict Plug-in will start a semi-automated process to resolve the
conflict and merge the two versions.

4. TOOL INFORMATION
Implementation. Syde has been developed over the last two

years as part of a Ph.D. thesis. It is free and open software written
in Java. It is an evolving prototype that has been incrementally
adopted and assessed through a number of case studies.

Experience. Syde has been used in a variety of contexts. The
Inspector plug-in was used by an industrial team 1 and the history
was used to analyze code ownership [8]. The Scamp plug-in was
used by two teams of students to develop their course’s project col-
laboratively, and we assessed the usefulness of the plug-in through
a qualitative study [10]. We have been using Syde on itself through-
out its entire development, which allow us to incrementally en-
hance its features.

Tool Availability. Syde can be obtained at
http://syde.inf.usi.ch and through the Eclipse updater
by entering http://syde.inf.usi.ch/update

Acknowledgments. We gratefully acknowledge the financial
support of the Swiss National Science foundation for the project
“REBASE” (SNF Project No. 115990).

5. REFERENCES
[1] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson.

FASTDash: a visual dashboard for fostering awareness in
software teams. In Proceedings of CHI 2007 (25th SIGCHI
Conference on Human Factors in Computing Systems), pages
1313–1322. ACM, 2007.

1A team of four developers at the software factory of CPMBraxis
Inc.

[2] X. Blanc, I. Mounier, A. Mougenot, and T. Mens. Detecting
model inconsistency through operation-based model
construction. In ICSE 2008: Proceedings of the 30th
international conference on Software engineering, pages
511–520. ACM, 2008.

[3] I. da Silva, P. Chen, C. V. der Westhuizen, R. Ripley, and
A. van der Hoek. Lighthouse: Coordination through
emerging design. In Proceedings of ETX 2006 (OOPSLA
Workshop on Eclipse Technology eXchange), pages 11–15.
ACM Press, 2006.

[4] D. Damian, L. Izquierdo, J. Singer, and I. Kwan. Awareness
in the wild: Why communication breakdowns occur. In
Proceedings of the ICGSE 2007 (International Conference
on Global Software Engineering), pages 81–90. IEEE
Computer Society.

[5] P. Dourish and V. Bellotti. Awareness and coordination in
shared workspaces. In Proceedings of CSCW 1992 (ACM
conference on Computer-supported Cooperative Work),
pages 107–114. ACM Press, 1992.

[6] M. Fowler. Refactoring - Improving the Design of Existing
Code. Addison-Wesley, 1999.

[7] J. Grundy, J. Hosking, and W. B. Mugridge. Inconsistency
management for multiple-view software development
environments. IEEE Trans. Softw. Eng., 24(11):960–981,
1998.

[8] L. Hattori and M. Lanza. Mining the history of synchronous
changes to refine code ownership. In Proceedings of MSR
2009 (6th IEEE Working Conference on Mining Software
Repositories), pages 141–150. IEEE CS Press, 2009.

[9] R. Hegde and P. Dewan. Connecting programming
environments to support ad-hoc collaboration. In
Proceedings of ASE 2008 (23rd IEEE/ACM International
Conference on Automated Software Engineering), pages
178–187. IEEE CS Press, 2008.

[10] M. Lanza, L. Hattori, and A. Guzzi. Supporting collaboration
awareness with real-time visualization of development
activity. In Proceedings of CSMR 2010 (14th IEEE European
Conference on Software Maintenance and Reengineering).
IEEE CS Press, 2010. Accepted.

[11] T. W. Malone and K. Crowston. The interdisciplinary study
of coordination. ACM Computing Surveys, 26(1):87–119,
1994.

[12] T. Mens. A state-of-the-art survey on software merging.
IEEE Trans. Softw. Eng., 28(5):449–462, 2002.

[13] R. Robbes and M. Lanza. A change-based approach to
software evolution. Electronic Notes in Theoretical
Computer Science (ENTCS), 166:93–109, Jan. 2007.

[14] A. Sarma, D. Redmiles, and A. van der Hoek. Empirical
evidence of the benefits of workspace awareness in software
configuration management. In Proceedings of FSE 2008
(16th ACM SIGSOFT International Symposium on
Foundations of software engineering), pages 113–123. ACM
Press, 2008.

[15] A. Sarma and A. van der Hoek. Towards awareness in the
large. In ICGSE 2006 (Proceedings of the IEEE international
conference on Global Software Engineering), pages
127–131. IEEE Computer Society, 2006.

[16] K. A. Schneider, C. Gutwin, R. Penner, and D. Paquette.
Mining a software developer’s local interaction history. In
Proceedings of MSR 2004 (1st International Workshop on
Mining Software Repositories), pages 106–110, 2004.

http://syde.inf.usi.ch
http://syde.inf.usi.ch/update

	Introduction
	Synchronous Development in a Nutshell
	Syde's Plug-ins
	Tool Information
	References

