An Environment for Synchronous Software Development

Lile Hattori and Michele Lanza
REVEAL @ Faculty of Informatics - University of Lugano, Switzerland

Abstract

Collaboration is essential for the development of com-
plex software systems. When a team of developers is ge-
ographically distributed, collaboration aspects —such as
awareness, communication and synchronization— are com-
promised by physical distance.

We present an approach, named synchronous develop-
ment, to reduce the negative distance effects on collabora-
tion. We use a fine-grained change tracking mechanism and
instantaneously notify any developer working on the system
about changes being performed by other developers. We
believe that our approach can augment each developer’s
knowledge of the project and, consequently, promote inter-
action and increase productivity.

1 Introduction

Collaborative software development involves a team of
developers working together to produce software systems.
When a team is geographically distributed, collaboration as-
pects, such as awareness, communication, and synchroniza-
tion are compromised by distance. Sangwan et al. suggest
that once a team is separated by more than 50 meters fur-
ther distance becomes immaterial [15]. Thus, regardless of
whether a wall or an ocean separates developers, there is a
need for solutions to minimize the negative effects of dis-
tance on collaboration. Moreover, Herbsleb er al. assessed
that when a team is not sharing a single room, and face-to-
face communication is lost, the willingness of developers to
help others and the ability to spot specialists drops dramati-
cally [6].

Indeed, the informal interaction that happens within co-
located teams plays an important role on the coordination
of the activities and on individual awareness. We consider
awareness as an understanding of the activities of others,
providing a context for one’s activities [[1], and also lead-
ing to an increased “habitability” of the code [3]. A study
conducted by Herbsleb ef al. evidenced that the decrease
on communication and awareness of cross-site teams causes
delays when compared with same-site work [6]].

An equally important aspect of collaborative develop-
ment, which is severely compromised by distance, is code
synchronization. Currently software repositories are still
the only de facto synchronization point. This inevitably in-
troduces a latency for the propagation of changes made by
developers, also because of the check out/check in model
that software configuration management (SCM) tools use:
only when a developer decides to commit the changes to the
repository will they become visible to the others. The lack
of awareness combined with such an outdated synchroniza-
tion model is a potential generator of merge conflicts. This
situation encourages developers to rush to check in their
changes, so they are not the ones to deal with merging [4]],
thus directly affecting code quality.

Tool support for remote collaboration is able to augment
the awareness of developers and can facilitate the propaga-
tion of changes. There are a few noteworthy recent efforts
in this context, such as IBM’s Jazz.net platform ['| or Mi-
crosoft’s CollabVS system [5]], which are able reduce the
synchronization latency by propagating changes at file/class
level immediately after they happen. Concurrently, a num-
ber of academic researchers have investigated how the infor-
mation produced by integrated development environments
while one is developing can be exploited. Noteworthy ef-
forts in this context are the Mylyn tool [7] and Robbes’
Sypware tool [13] which records every single change per-
formed by a developer. Robbes proved that such an ap-
proach can produce information of unprecedented quality
that can be used for both maintenance and forward engi-
neering activities [10]. However, Spyware only collects the
changes of a single developer and is unable to handle simul-
taneous changes made by a group of developers.

Our goal is to bring Spyware’s change-centric approach
into a collaborative context, i.e., to record every change
made by a group of developers while they are programming
and making them aware of what everybody is doing before
the changes are checked into the repository. The immediate
propagation of small changes can have a series of positive
effects on collaboration, e.g., reducing duplication of work,
preventing merge conflicts, and in general providing a more
holistic development experience to developers.

ISee/jazz.net

jazz.net

We have started a prototype tool implementation, called
Syde, which enriches the Eclipse IDE to create an environ-
ment for synchronous development. Our goal is not to re-
place existing SCM systems, but to complement them by
allowing each developer of a team to know who is changing
which elements of a program in real time.

We briefly discuss related work and then detail the
roadmap that we plan to pursue to attain our goal of a syn-
chronous software development environment.

2 Related Work

Tool support for collaborative development ranges from
full-fledged platforms to solutions for specific problems.

In one extreme is the Jazz.net platform, built on top of
Eclipse, a commercial environment that supports collabo-
rative development processes and also incorporates its own
repository !. Jazz.net is designed to be the central tool for
planning and managing development activities, which can
overwhelm the developers environment with unrelated tabs,
views and text, and distract them from coding. Microsoft’s
CollabVS extends the Visual Studio programming environ-
ment by adding collaboration channels, such as text and
audio-video chat, browsing of remote unchecked versions
of files, and notification of presence in elements inside a
file [5]. Although CollabVS targets collaboration among
developers, it still relies on the classical check out/check in
model and treats files as the lowest level of granularity.

In the other extreme there is a number of valuable ef-
forts for solving specific collaboration issues. Palantir is
an Eclipse plug-in that addresses direct and indirect conflict
merging, where direct conflicts are caused by concurrent
changes to the same artifact and indirect ones are caused
by changes in one artifact that affect concurrent changes
in another artifact [[16]. Schneider er al. use a shadow
CVS repository to record changes every time that some-
one edited a file [[17]]. The shadow repository is then mined
and information about who is working with what is visually
presented to developers with the aim of augmenting group
awareness. The Emergent Expertise Locator is a Jazz.net
plug-in that recommends experts according to developers’
communication and project history. It essentially extracts
emergent teams from the use of files by developers [9]. My-
lyn is an Eclipse plug-in that creates a context for each task
of a project by recording which files a developer edits while
performing the task [7]. The task context helps developers
to keep focus on their tasks, remember the classes related to
an old task, and consequently improve productivity. A sim-
ilar approach is NavTracks, which records the navigation of
a developer to extract relationships among files [18]], in or-
der to recommend other files that might also be of interest
to complete a task.

Outside the collaborative context, Spyware introduced

the change-base approach to software evolution [14], in
which every single change that a developer performs is
saved. This valuable source of information was used to as-
sist both reverse and forward engineering activities, such as
the characterization of development sessions [[11], and rec-
ommendation of code completion [12] . However, Spyware
is restricted to a single-developer environment. We believe
that applying Spyware’s change-base approach for a col-
laborative environment can leverage both collaboration and
software evolution analysis.

3 Synchronous Development

Our goal is to create an environment that supports syn-
chronous development, thus enabling developers to know
who is changing what immediately after changes on a sys-
tem have been performed by anyone working on the sys-
tem. To do so, we enrich the IDE with information about
what the other developers are doing. To not disrupt the flow
of programming, such information must be displayed in a
non-intrusive way. Once notified, a developer can then de-
cide whether to update to the newest version, even if it is
not yet present in the project’s version repository.

We envision a granularity of information beyond the
commonly used files: A developer can set the desired in-
formation level, and can update to newer versions of fine-
grained object-oriented entities like methods, classes, etc.

We started the implementation of Syde, a tool that offers
a synchronous development environment to teams of devel-
opers. Syde is a client-server application in which the client
is an Eclipse plug-in responsible for capturing and announc-
ing changes, while the server collects, saves and distributes
changes to all instances of the client.

Syde is not designed to replace versioning systems. In-
stead, it should be used as a complement. Syde runs concur-
rently with one versioning system’s plug-in and should not
interrupt or block its use, i.e., developers still have to check
in their changes to the repository when they complete a task.

The architecture and information flow of Syde are illus-
trated in Figure Syde currently features the following
components:

o The Inspector and the Collector. Syde’s inspector
implements listeners to capture from Eclipse’s work-
bench changes performed and classes viewed by a de-
veloper. The inspector collects every change that is
happening in the IDE, similar to Robbes’ Spyware tool
[13]. More specifically, it records two distinct types of
data: the actual changes; and metadata, which contains
the authors name, a timestamp, a status of the change,
and also the names of classes being viewed. Syde’s
collector receives information from the inspector and
stores it in a centrally accessible repository. This data

Eclipse
Syde (client) Syde (server)
5 Inspector Collector
s
k]
-
Viewer Notifier
- 51 Distributor
'2 o
S g| Requestor
0 8 I I
.= | R]
lem e e J

Figure 1. Syde Architecture

is being used by the notifier, but it can also be used to
perform software evolution analysis.

o The Notifier and the Viewer. Syde’s notifier maintains
a list of client instances that need to be notified of any
change, and is responsible for broadcasting the meta-
data to all members of the team. Syde’s client fea-
tures different ways to display information about the
changing system within Eclipse itself, thus providing
awareness of changes to all developers. In the future
Syde should offer to developers additional means of
augment awareness. One possibility is to allow devel-
opers to broadcast messages, e.g., if someone is having
difficulties with a specific part of the code and does not
know who to ask, he could broadcast for help.

o The Distributor and the Requestor. Once a developer
has become aware that certain parts of the system have
changed, he can preempt the underlying classical ver-
sioning system and request from the Syde server an up-
date of specific parts of the code, which are then sent
by Syde’s distributor, and updated in the client’s source
base. In case there is a merging conflict between local
and newer versions, the requestor module offers a con-
flict manager (not yet implemented), based on Fluri’s
ChangeDistiller algorithm [2].

Syde will provide extra information without disrupting
or distracting developer from his work. Change alerts
should be displayed as minimum markers beside each
changed element, and in a view that the developer can sim-
ply close or minimize. Information about who is viewing
what should only appear if and when the developer requests.
Furthermore, Syde should be easily enabled and disabled.

4. Preliminary Results

We have started to use Syde to monitor and record de-
velopers’ activities with the goal to understand how they

behave when programming. This initial analysis will help
us to adjust the granularity of change information that Syde
will supply for teams of developers. Up to now, we are
monitoring two Java projects, each with one developer in-
volved: our Syde plug-in; and X-Porter, which is the model
of a student’s bachelor project, called X-Ray [8].

09/03/08
[Joo@ess]

09/01/08
08/30/08 (oo)
@ @ < (@]
08/28/08 -m-u.x e e
08/26/08 O CO Lo
@ (o] ©
08/24/08
[@esoe
08/22/08 @ L o e
08/20/08

0:00:00 4:48:00 9:36:00 14:24:00 19:12:00 0:00:00

09/03/08
o @

09/01/08 -

08/30/08

08/28/08

08/26/08 -

08/24/08

08/22/08

08/20/08
0:00:00 4:48:00 9:36:00 14:24:00 19:12:00 0:00:00
@ Successful Compilation Unsuccessful Compilation

Figure 2. Preliminary results

We analyzed a total of 2,690 changes from X-Porter and
457 from Syde plug-in within a time span of 14 days. Fig-
ure[2]shows the results. During this period X-Porter was un-
der development, while the main activity for Syde plug-in
was bug fixing, a maintenance activity. In the graphs each
mark corresponds to a file that a developer tried to com-
pile at a certain time. The blue circles are files successfully
compiled and the orange diamonds are files that contained
compilation errors and were not saved as new versions.

While we collect more change information that what
would be possible with a conventional versioning system,
a valid counter-argument is that we also collect “noise”, for
example information about changes that would correspond
more to a trial-and-error development style, and which are
therefore not important for other developers. In the future
we plan to implement a series of mechanisms to process the
collected information. This first experiment we performed
is to be considered as a proof-of-concept.

By comparing the two graphs, we see that when the
main activity is development unsuccessful compilations oc-
cur much more often than during maintenance. A possible
interpretation is that Java developers implement by trying,
breaking and fixing their code. On the other hand, when fix-
ing specific parts of the code, they tend to circumvent com-

pilation errors. For future analysis, we plan to investigate
the possible existence of well defined patterns of breaking
and fixing code that indicate more appropriate strategies of
sharing changes.

5. Conclusion

We have presented initial work on a tool for synchronous
development that addresses problems that are aggravated
when developers are geographically distributed. The main
focus of our tool is to minimize the negative effects of dis-
tance on the current synchronization model offered by soft-
ware configuration management systems. Syde allows de-
velopers to know who is performing which change, be it a
class or a method change, before it is checked in the repos-
itory. Each new change becomes instantly available for the
team, which potentially reduces merge conflicts: two devel-
opers who are working on the same class are aware of this
situation and can avoid editing the same method; or one
developer can wait for the other to finish editing the class.
However, if a merge conflict happens, Syde offers a conflict
manager to help the developer to solve it.

We are at the early stages of our research endeavor: The
next steps will be to increase the granularity of changes
that are captured by the plug-in, to finish implementing
the conflict manager, and to start recording the files that
a developer only views during a development session. In
addition, we envision the refinement of the visualization of
change alerts, the implementation of an instant messaging
service, and the use of visual metaphors to help the team to
understand how they could improve their interaction. We
plan to apply Syde to small teams for a pre-defined period,
monitor the use, interview them to collect feedback, and
use the historical data to perform evolutionary analysis.

Acknowledgments. We gratefully acknowledge the fi-
nancial support of the Swiss National Science foundation
for the project “REBASE” (SNF Project No. 115990).

References

[1] P. Dourish and V. Bellotti. Awareness and coordination in
shared workspaces. In CSCW ’92: Proceedings of the 1992
ACM conference on Computer-supported cooperative work,
pages 107-114. ACM, 1992.

[2] B. Fluri, M. Wiirsch, M. Pinzger, and H. Gall. Change
distilling: Tree differencing for fine-grained source code
change extraction. IEEE Trans. Software Eng., 33(11):725-
743, 2007.

[3] R.P.Gabriel. Patterns of Software. Oxford University Press,
1996.

[4] R. E. Grinter. Supporting articulation work using software
configuration management systems. Comput. Supported
Coop. Work, 5(4):447-465, 1996.

[5] R. Hegde and P. Dewan. Connecting programming envi-
ronments to support ad-hoc collaboration. In Proceedings
of ASE 2008 (23rd IEEE/ACM International Conference on
Automated Software Engineering. IEEE CS Press, 2008.

[6] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter.
Distance, dependencies, and delay in a global collaboration.
In CSCW °00: Proceedings of the 2000 ACM conference
on Computer supported cooperative work, pages 319-328.
ACM, 2000.

[71 M. Kersten and G. C. Murphy. Using task context to im-
prove programmer productivity. In SIGSOFT °06/FSE-14:
Proceedings of the 14th ACM SIGSOFT international sym-
posium on Foundations of software engineering, pages 1-11,
New York, NY, USA, 2006. ACM.

[8] J. Malnati. X-ray - an eclipse plug-in for software visualiza-
tion. Bachelor’s thesis, University of Lugano, June 2007.

[9] S. Minto and G. C. Murphy. Recommending emergent
teams. In MSR ’07: Proceedings of the Fourth International
Workshop on Mining Software Repositories, page 5, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

[10] R.Robbes. Of Change and Software. PhD thesis, University
of Lugano, Switzerland, Dec. 2008.

[11] R. Robbes and M. Lanza. Characterizing and understand-
ing development sessions. In Proceedings of ICPC 2007
(15th International Conference on Program Comprehen-
sion), pages 155-164. IEEE CS Press, 2007.

[12] R. Robbes and M. Lanza. How program history can im-
prove code completion. In Proceedings of ASE 2008 (23rd
ACM/IEEE International Conference on Automated Soft-
ware Engineering). ACM Press, 2008.

[13] R. Robbes and M. Lanza. Spyware: A change-aware devel-
opment toolset. In Proceedings of ICSE 2008 (30th Interna-
tional Conference in Software Engineering), pages 847-850.
ACM Press, 2008.

[14] R. Robbes, M. Lanza, and M. Lungu. An approach to soft-
ware evolution based on semantic change. In Proceedings of
FASE 2007 (10th International Conference on Fundamental
Approaches to Software Engineering), pages 27-41, 2007.

[15] R. Sangwan, M. Bass, N. Mullick, D. J. Paulish, and
J. Kazmeier. Global Software Development Handbook
(Auerbach Series on Applied Software Engineering Series).
Auerbach Publications, Boston, MA, USA, 2006.

[16] A. Sarma, G. Bortis, and A. van der Hoek. Towards sup-
porting awareness of indirect conflicts across software con-
figuration management workspaces. In Proceedings of ASE
2007 (22nd IEEE/ACM International Conference on Auto-
mated Software Engineering, pages 94-103. ACM, 2007.

[17] K. A. Schneider, C. Gutwin, R. Penner, and D. Paquette.
Mining a software developers local interaction history. In
MSR 04 : Proceedings of the Ist International Workshop
on Mining Software Repositories, pages 106—-110, 2004.

[18] J. Singer, R. Elves, and M.-A. Storey. Navtracks: Support-
ing navigation in software. In IWPC ’05: Proceedings of
the 13th International Workshop on Program Comprehen-
sion, pages 173-175, Washington, DC, USA, 2005. IEEE
Computer Society.

	Introduction
	Related Work
	Synchronous Development
	. Preliminary Results
	. Conclusion

