
An Approach to Software Evolution
Based on Semantic Change

Romain Robbes and Michele Lanza and Mircea Lungu

Faculty of Informatics
University of Lugano, Switzerland

Abstract. The analysis of the evolution of software systems is a useful source of
information for a variety of activities, such as reverse engineering, maintenance,
and predicting the future evolution of these systems.
Current software evolution research is mainly based on the information contained
in versioning systems such as CVS and SubVersion. But the evolutionary infor-
mation contained therein is incomplete and of low quality, hence limiting the
scope of evolution research. It is incomplete because the historical information
is only recorded at the explicit request of the developers (a commit in the classi-
cal checkin/checkout model). It is of low quality because the file-based nature of
versioning systems leads to a view of software as being a set of files.
In this paper we present a novel approach to software evolution analysis which is
based on the recording of all semantic changes performed on a system, such as
refactorings. We describe our approach in detail, and demonstrate how it can be
used to perform fine-grained software evolution analysis.

1 Introduction

The goal of software evolution research is to use the history of a software system to
analyse its present state and to predict its future development [1] [2]. It can also be
used to complement existing reverse engineering approaches to understand the current
state of a system [3] [4] [5] [6]. The key to perform software evolution research is
the quality and quantity of available historical information. Traditionally researchers
extract historical data from versioning systems (such as CVS and SubVersion), which
at explicit requests by the developers record a snapshot of the files that have changed
(this is widely known as the checkin/checkout model).

We argue that the information stored in current versioning systems is not accurate
enough to perform higher quality evolution research, because they are not explicitely
designed for this task: Most versioning systems have been developed in the context
of software configuration management (SCM), whose goal is to manage the evolution
of large and complex software systems[7]. But SCM serves different needs than soft-
ware evolution, it acts as a management support discipline concerned with controlling
changes to software products and as a development support discipline assisting devel-
opers in performing changes to software products[8] [9]. Software evolution on the
other hand is concerned with the phenomenon of the evolution of software itself. The
dichotomy between SCM and software evolution has led SCM researchers to consider
software evolution research as a mere “side effect” of their discipline [10].



Because most versioning systems originated from SCM research, the focus has
never been on the quantity and quality of the recorded evolutionary information, which
we consider as being (1) insufficient and (2) of low quality. It is insufficient because in-
formation only gets recorded when developers commit their changes. In previous work
[11] we have analyzed how often developers of large open-source projects commit their
changes and found that the number of commits per day barely surpasses 1 (one commit
on average every 8 “working day” hours). The information is of low quality because
there is a loss of semantic information about the changes: only textual changes get
recorded. For example, to detect structural changes such as refactorings one is forced
to tediously reconstruct them from incomplete information with only moderate suc-
cess[12] [13]. Overall this has a negative impact on software evolution research whose
limits are set by the quality and quantity of the available information.

This paper presents our approach to facilitate software evolution research by the ac-
curate recording of all semantic changes that are being performed on a software system.
To gather this change information, we use the most reliable source available, namely the
Integrated Development Environment (IDE, such as Eclipse 1 or Squeak 2) used to de-
velop object-oriented software systems.

Modern development environments allow programmers to perform semantic actions
on the source code with ease, thanks to semi-automatic refactoring [14] support. They
also have an open architecture that tools can take advantage of: The event notification
system the IDE uses can be monitored to keep track of how the developers modify the
source code. From this information, we build a model of the evolution of a system in
which the notion of change takes on a primary role, since people develop a software
system by incrementally changing it [15]. The notion of incremental change is further
supported by IDEs featuring incremental compilation where only the newly modified
parts get compiled, i.e., an explicit system building phase where the whole system is
being built from scratch is losing importance.

In our model, the evolution of a system is the sequence of changes which were ap-
plied to develop it. These changes are operations on the program’s abstract syntax tree
at the simplest level. Through a composition mechanism, changes are grouped to rep-
resent larger changes associated with a semantic meaning, such as method additions,
refactorings, feature additions or bug fixes. Thus we can reason about a system’s evolu-
tion on several levels, from a high-level view suitable to a manager down to a concrete
view suitable to a developer wishing to perform a specific task.

We store the change information in a repository, to be exploited by tools integrated
in the IDE the programmer is using. After presenting our approach, we show prelim-
inary results, based on the change matrix, an interactive visualization of the changes
applied to the system under study.

Structure of the paper. Section 2 presents the principles and a detailed overview of
our approach. Section 3 presents a case study we performed to validate our approach, in
which we used the change matrix visualization to assess the evolution of projects done
by students. Section 5 and 4 compare our approach to more traditional approaches to

1 http://www.eclipse.org
2 http://www.squeak.org



software evolution analysis. Section 6 briefly covers the implementation. In Section 7
we conclude and outline future work.

2 Change-based Object-Oriented Software Evolution

Our approach to software evolution analysis is based on the following principles:

– Programming is more than just text editing, it is an incremental activity with seman-
tics. If cutting out a piece of a method body and wrapping it into its own method
body can be seen as cut&paste, it is in fact an extract method refactoring. Hence,
instead of representing a system’s evolution as a sequence of versions of text files,
we want to represent it as a sequence of explicit changes with object-oriented se-
mantics.

– Software is in permanent evolution. Modern Integrated Development Environments
(IDE), such as Eclipse, are a very rich and accurate source of information about a
system’s life-cycle. IDEs thus can be used to build a change-based model of evolv-
ing object-oriented software and to gather the change data, which we afterwards
process and analyze. Based on the analyzed data, we can also create tools which
feed back the analyzed data into the IDE to support the development process.

Taming Change. Traditional approaches to evolution analysis consider the history of
a system as being a sequence of program versions, and compute metrics or visualize
these versions to exploit the data contained in them[16][17]. Representing evolution as
a sequence of version fits the format of the data obtained from a source code repository.
There is a legitimate doubt that the nature of existing evolution approaches is a direct
consequence of the representation adopted by versioning systems, and is therefore lim-
ited by this.

The phenomenom of software evolution is one of continuous change. It is not a suc-
cession of program versions. Our approach fits this view because it models the evolution
of a software system as a sequence of changes which have inherent object-oriented se-
mantics, focusing on the phenomenon of change itself, rather than focusing on the way
to store the information. We define semantic changes as changes at the design level, not
at the behavioral level as in [18].

Modeling software evolution as meaningful change operations fits the inherently
incremental nature of software development, because this is the very way with which
developers are building systems. Programmers modify software by adding tiny bits of
functionality at a time, and by testing often to get feedback. At a higher level features
and bug fixes are added incrementally to the code base and at an even higher level the
program incrementally evolves from one milestone version to another.

A consequence of this approach is that by recording only the changes we do not
explicitly store versions, but we can reconstruct any version by applying the changes.
In SCM this concept is called change-based versioning [9], however the fundamental
difference between our approach and the existing ones is that the changes in our case
feature fine-grained object-oriented semantics and are also first-level executable enti-
ties.



Our goal is to build a model of evolution based on a scalable representation of
change. First we discuss how we represent programs, then we examine how we model
changes and how we extract them from IDEs.

Representing Programs. Our model defines the history of a program as the sequence
of changes the program went through. From these changes we can reconstruct each
successive state of the program source code. We represent one state of the entire pro-
gram as one abstract syntax tree (AST). Below the root are the packages or modules of
the program. Each package in turn has children which are the package’s classes. Class
nodes have children for their attributes and their methods. Methods also have children.
The children of a method form a subtree which is obtained by parsing the source code
contained in the method. Thus each entity of a program, from the package level down
to the program statement level, is represented as a node in the program’s AST, as show
in Figure 1.

System

Package A Package B Package C

... ...Class E Class F

public void foo(int y) ...private int x

return

+

y x

Fig. 1. We represent a state of a program as an abstract syntax tree (AST).

Each node contains additional information that is stored in properties associated
with the node. The set of properties (and their values) defined on a node can be seen as
its label or meta-information. Properties depend on the type of nodes they are associated
to.

For instance, class nodes have properties like name, superclass, and comment. An
instance variable has a name property. In a statically typed programming language it



would also have a type property, as well as a visibility modifier in the case of Java.
Methods have a name and could have properties encoding its type signature in a typed
language. The property system is open so that other properties can be added at will.

Extracting the Changes. The type of semantic change information that we model is
not retrievable from existing versioning systems[19]. Such detailed information about a
software system can be retrieved from the IDEs developers are using to build software
systems. IDEs are a good source of information because:

– They feature a complete model of a program to provide advanced functionalities
such as code completion, code highlighting, navigation facilities and refactoring
tools. Such a model goes beyond the representation at the file level to reference
program-level entities such as methods and classes in an object-oriented system.

– They feature an event notification system allowing third-party tools to be notified
when the user issues a change to the program. Mechanisms such as incremental
compilation and smart completion of entity names take advantage of this.

– IDEs allow a user to automatically perform high-level transformations of programs
associated with a semantic meaning, namely refactorings. These operations are easy
to monitor in an IDE, but much harder to detect outside of it, since they are lost
when the changed files are committed to a software repository [12] [13].

Since some IDEs are extensible by third parties with plugin mechanisms, our tools
can use the full program model offered by the IDEs to locate and reason about every
statement in the program, and can be notified of changes without relying on explicit
action by the developers. This mechanisms alleviate the problems exhibited by the use
of versioning systems: It is easier to track changes applied to an entity in isolation rather
than attempting to follow it through several versions of the code base, each comprising
a myriad of changes. Furthermore, after each notification, the IDE can also be queried
for time and author information.

Representing the Changes. We model changes as first-class executable entities. It
is possible to take a sequence of changes and execute it to build the version of the
program represented by them. Changes can also be reversed (or undone) to achieve the
effect of going back in time. Changes feature precise time and authorship information,
allowing the order of the changes to be maintained. In contrast, most other approaches
reduce the time information to the time where the change was checked in, following
the checkin/checkout model supported by the versioning systems, such as CVS and
SubVersion.

There are two distinct kinds of changes, (1) low-level changes operating at the syn-
tactic level, and (2) higher-level changes with a semantic meaning, which are composed
of lower-level changes.

1. Syntactic Changes. They are simple operations on the program AST, defined as
follows:

– A creation creates a node n of type t, without inserting it into the AST.



– An addition adds a node n to the tree, as a child of another specified node m. If
order is important, an index can be provided to insert the node n in a particular
position in the children of m. Otherwise, n is appended as the last child of m.

– A deletion removes the specified node n from its parent m.
– A property change sets the property p of node n to a specific value v.

Using these low-level changes, we view a program as an evolving abstract syn-
tax tree. A program starts as an empty tree and an empty change history. As time
elapses, the program is built and the AST is populated. At the same time, all the
change operations which were performed to build the program up to this point are
stored in the change history.

2. Semantic Changes. To reason about a system, we need to raise the level of abstrac-
tion beyond mere syntactic changes. This is achieved by the composition mecha-
nism. A sequence of lower-level changes can be composed to form a single, higher
level change encapsulating a semantic meaning. Here are a few examples:

– A sequence of consecutive changes involving a single method m can be inter-
preted as a single method implementation, or modification if m already existed.

– Changes to the structure of a class c (attributes, superclass, name) are either a
class definition or a class redefinition, if c existed before the changes. These
kinds of changes form the intermediate changes.

– At a higher level, some sequences of intermediate changes are refactorings[14].
They can be composed further to represent these higher-level changes to the
program. For example, the “extract method” refactoring involves the modifi-
cation of a first method m1 (a sequence of statements in m1 is replaced by a
single call to method m2), and the implementation of m2 (its body comprises
the statements that were removed from m1). In the same way, a “rename class”
refactoring comprises the redefinition of the class (with a name change), and
the modification of all methods because of the changed referenced class name.

– We define a bug fix as the sequence of intermediate changes which were in-
volved in the correction of the faulty behavior.

– In the same way, a feature implementation is comprised of all the changes that
programmers performed to develop the feature. These changes can be interme-
diate changes as well as any refactorings and bug fixes which were necessary
to achieve the goal.

– At an even higher level, we can picture main program features as being an
aggregation of smaller features, and program milestones (major versions) as a
set of high-level features and important bug fixes.

The composition of changes works at all levels, to allow changes to represent higher-
level concepts. This property is a key point to the scalability of our approach. Without
it, we would have to consider only low-level, syntactic changes, and hence be limited
to trivial programs, because of the sheer quantity of changes to consider. In addition
to composition, it is also possible to analyse the evolution of a system by considering
subsets of changes. Thus a high-level analysis of a system would only take into account
the changes applied to classes and packages, in order to have a bird’s eye view of the
system’s evolution. The lower-level changes are still useful to analyse the evolution:
Once an anomaly has been identified in a high-level strata of the system, lower-level



changes can be looked at to infer the particular causes of a problem. For example, if
a package or a module of the system needs reengineering, then its history in terms of
classes and methods can be summoned. Once the main culprits of the problem have
been identified, these few classes can be viewed in even more detail by looking at the
changes in the implementation of their methods.

To sum up, we consider the program under analysis as an evolving abstract syntax
tree. We store in our model all the change operations necessary to recreate the program
at any point in time. At the lowest level, these operations consist of creation, addi-
tion and removal of nodes in the tree, and of modifications of node properties. These
changes can be composed to represent higher-level changes corresponding to actions at
the semantic level, such as refactorings, bug fixes etc.

3 Case Studies

Since our approach relies on information which was previously discarded, we can not
use existing systems as case studies. We monitored new projects to collect all the infor-
mation. Our case studies are projects done by students over the course of a week. These
projects are small (15 to 40 classes), but are interesting case studies since the code
base is foreign to us. There were 3 possible subjects to choose from: A virtual store
in the vein of Amazon (Store), a simple geometry program (Geom), and a text-based
role-playing game (RPG). Table 1 shows a numerical overview of the projects we have
tracked (each project is named with a letter, from A to I). The frequency of the recorded
changes was very high compared to a that of a classical versioning system: While the
projects lasted one week, their actual coding time was in the range of hours. Consider-
ing this fact and that the students were novice programmers, our approach allows for an
unprecedented precision with respect to the recording of the evolution.

Project A B C D E F G H I
Type Geom Store Store Store Store RPG Geom Store RPG
Class Added 22 14 14 9 12 15 21 12 41
Class Modified 65 17 34 13 6 24 57 15 27
Class Commented 0 12 0 0 1 0 0 0 0
Class Recategorized 0 0 5 0 0 0 0 0 11
Class Renamed 0 0 0 0 1 1 0 0 1
Class Removed 10 1 5 5 0 3 6 2 18
Attributes Added 82 19 29 19 20 61 30 29 137
Attributes Removed 50 7 13 5 2 19 15 5 54
Method Added 366 119 182 164 117 237 219 135 415
Method Modified 234 69 117 140 81 154 143 118 185
Method Removed 190 20 81 32 13 38 117 21 106

Table 1. A numerical overview of the semantic changes we recovered from the projects.

The changes considered here are intermediate-level changes, one per semantic ac-
tion the user did (in that case, mainly class and method modifications: the students were
familiar with refactoring). The table classifies the changes applied to each project. We
can already see some interesting trends: Some projects have a lot more “backtracking”



(removals of entities) than others; usage of actions related to refactoring (commenting,
renaming, repackaging entities) varies widely between projects.

In the remainder of the section, we concentrate on the analysis of one of the projects,
namely the role-playing game project I (the last column of the table). More details on
the other projects are available in the extended version of [11].

3.1 Detailing the Evolution of a Student Project

We chose project I for a detailed study, because it had the most classes in it, and was
the second largest in statements. Project I is a role-playing game in which a player has
to choose a character, explore a dungeon and fight the creatures he finds in it. In this
process, he can find items to improve his capabilities, as well as gaining experience.

We base our analysis on the change matrix Figure 2 inspired by [17]. It is a timeline
view of the changes applied to the entire system, described in terms of classes and
methods (a coarser-grained version, displaying packages and classes is also available,
but not shown in this paper).

The goal of the change evolution matrix is to provide the user with an overview of
the activity in the project at the method level granularity over time. Time is mapped
on the x-axis. Every method is allocated a horizontal band which is gray for the time
period in which the method existed and white otherwise. The method bands are grouped
by classes, and ordered by their creation time. Classes are delimited by black lines and
are also ordered by their creation time, with the oldest classes at the top of the figure.

Changes are designed by colors: green for the creation of a method, blue for its
removal and orange for a modification. Selecting a change shows the method’s source
code after the change is applied to the system. A restriction of the figure at this time of
writing is that it does not show when a class is deleted.

Figure 2 is rotated for increased readability. Events are mapped on intervals lasting
35 minutes. Note that to ease comprehension the system size is reported on the left
of the page, and sessions are delimited by rectangles with rounded corners in both the
matrix and the graph size view. Also, the class names are indicated below the figure.
Figure 3 represent the same matrix, but focused on the class Combat. Since its lifespan
is shorter, we can increase the resolution to five minutes per interval.

Considering the classes and their order of creation (Figure 2), we can see that the
first parcels of functionality were, in order: The characters; the weapons; the enemies;
the combat algorithm; the healing items and finally the dungeon itself, defined in terms
of rooms. We can qualify this as a bottom-up development methodology.

After seeing these high-level facts about the quality-wise and methodology-wise
evolution of the system, we can examine it session by session. Each session has been
identified visually and numbered. Refer to Figure 2 to see the sessions.

Session 1, March 27, afternoon: The project starts by laying out the foundations
of the main class of the game, Hero. As we see on the change matrix, it evolves
continually throughout the life of the project, reflecting its central role. At the same
time, a very simple test is created, and the class Spell is defined.

Session 2, March 28, evening: This session sees the definition of the core of the
character functionality: Classes Hero and Spell are changed, and classes Items,



Se
ss

io
n 

128
/0

3
29

/0
3

30
/0

3
31

/0
3

01
/0

4
02

/0
4

03
/0

4

Se
ss

io
n 

2
Se

ss
io

n 
3

Se
ss

io
n 

4

Se
ss

io
n 

5
Se

ss
io

n 
6

Se
ss

io
n 

7
Se

ss
io

n 
9

Se
ss

io
n 

8
Se

ss
io

n 
10

Se
ss

io
n 

11
Se

ss
io

n 
12

Fig. 2. Change matrix of project I.



Mage, Race and Warrior are introduced, in this order. Since Spells are defined, the
students define the Mage class, and after that the Warrior class as another subclass
of Hero. This gives the player a choice of profession. The definitions are still very
shallow at this stage, and the design is unstable: Items and Race will never be
changed again after this session.

Session 3, March 28, night: This session supports the idea that the design is unstable,
as it can be resumed as a failed experiment: A hierarchy of races has been intro-
duced, and several classes have been cloned and modified (Mage2, Hero3 etc.).
Most of these classes were quickly removed.

Session 4, March 29, afternoon: This session is also experimental in nature. Several
classes are modified or introduced, but were never touched again: Hero3, CEC,
RPGCharacter (except two modifications later on, outside real coding sessions).
Mage and Warrior are changed too, indicating that some of the knowledge gained
in that experiment starts to go back to the main branch.

Session 5, March 29, evening and night: This session achieves the knowledge trans-
fer started in session 4. Hero is heavily modified in a short period of time, while
Mage and Warrior are consolidated.

Session 6, March 30, late afternoon: This session sees a resurgence of interest for the
offensive capabilities of the characters. A real Spell hierarchy is defined (Lightning,
Fire, Ice), while the Weapons class is slightly modified as well.

Session 7, March 31, noon: The first full prototype of the game. The main class, RPG
(standing for Role Playing Game) is defined, as well as an utility class called Menu.
Mage, Warrior and their superclass Hero are modified.

Session 8, March 31, evening: This session consolidates the previous one, by adding
some tests and reworking the classes changed in session 7.

Session 9, March 31, night: This session focuses on weapon diversification with
classes Melee and Ranged; these classes have a very close evolution for the rest
of their life, suggesting some data classes. At the same time, a real hierarchy of
hostile creatures appears: Enemies, Lacche, and Soldier. The system is a bit unsta-
ble at that time, since Enemies experiences a lot of method which were added then
removed immediately, suggesting renames.

10 
11

12
Algorithms

Fig. 3. Change matrix zoomed on the class Combat

Session 10, April 1st, noon to night: This intensive session sees the first iteration of
the combat engine. The weapons, spells and characters are first refined. Then a new
enemy, Master, is defined. The implementation of the Combat class shows a lot of
modifications of the Weapon and Hero classes. An Attack class soon appears. Judg-



ing from its (non-)evolution, it seems to be a data class with no logic. After theses
definitions, the implementation of the real algorithm begins. We see on Figure 3
–the detailed view of combat– that one method is heavily modified continuing in
the next session.

Session 11, April 2, noon to night: Development is still heavily focused on the Com-
bat algorithm. Classes of Potion and Healing are also defined, allowing the heroes
to play the game for a longer time. This session also modifies the main combat
algorithm, and at the same time, two methods in the Hero class, showing a slight
degree of coupling. A second method featuring a lot of logic is implemented, as
shown in Figure 3: several methods are often modified.

Session 12: April 3, afternoon to night: This last session finishes the implementation
of Combat –changing the enemy hierarchy in the process–, and resumes the work
on the entry point of the game, the RPG class. Only now is a Room class introduced,
providing locality. These classes are tied to Combat to conclude the main game
logic. To finish, several types of potions –simple data classes– are defined, and a
final monster, a Dragon, is added at the very last minute.

4 Discussion

Compared to traditional approaches, extracting information from source control repos-
itories, our change-based approach has a number of advantages (accurate information,
scalable representation, and version generation), but also some limitations (portability,
availability of case studies, and performance).

– Accurate information. The information we gather is more accurate in several
ways. It consists of program-level entities, not mere text files which incurs extra
treatment to raise the level of abstraction. Since we are notified of changes in an
automatic, rather than explicit way, we can extract finer change information: Each
change can be processed in context. The time information we gather is accurate up
to the second, whereas a versioning system reduces it to the checkin time. Process-
ing changes in context and in a timely manner allows us to track entities through
their life time while being less affected by system-wide changes such as refactor-
ings.

– Scalable representation. We represent every statement of a system as separate
entities, and every operation on those statements as a first-class change operation.
Such a precise representation enables us to reflect on very focused changes, during
defined time period and on a distinct set of low-level entities. At the other end
of the spectrum, changes can be composed into semantic level changes such as
method modifications, class additions, or even entire sessions, while the entities we
reflect on can be no longer statements, but methods, classes or packages. Thus our
approach can both give a “big picture” view to a manager, as well as a detailled
summary of the changes submitted by a developer during his or her last coding
session.

– Version generation. Since changes are executable, we can also reproduce versions
of the program. We can thus revert to version analysis and more traditional ap-
proaches when we need to.



– Portability. Our approach is currently both language-specific and environment-
specific. This allows us to leverage to the maximum the properties of the target lan-
guage and the possibilities offered by the IDE (in our case, Smalltalk and Squeak).
However, it implies a substantial porting effort to use our approach in another con-
text. Consequently, one of our goal is to extract the language and environment-
independent concepts to ease this effort. Thus we will port our prototype to the
Java/Eclipse platform. The differences in behavior between the two versions will
help us isolate the common concepts.

– Availability of case studies. As mentioned above, we can not use pre-existing
projects as case studies since we require information which was discarded previ-
ously. Solving this problem is one of our priorities. Beyond using student projects
as case studies, we are monitoring our prototype itself for later study. This would
be a medium-sized case study: At the time of writing, it comprised 203 classes and
2249 methods over 11681 intermediate changes. We also plan to release and pro-
mote our tools to the Smalltalk community (the language our tools are implemented
in) soon. In the longer term, porting our tools to the Eclipse platform will enable us
to reach a much wider audience of developers.

– Performance. Our approach stores operations rather than states of programs. The
large number of changes and entities could raise performance concerns. It takes
around one minute to generate all the possible versions of our prototype itself from
the stored changes. The machine used was a 1.5 GHz portable computer, our pro-
totype having around 11’000 intermediate changes.

5 Related Work

Several researchers have analysed the evolution of large software systems, basing their
work on system versions typically extracted from software repositories such as CVS
and SubVersion [20] [21] [22] [23] [24]. In most cases these approaches have specific
analysis goals, such as detecting logical couplings [25] or extracting evolutionary pat-
terns [4].

Several researchers raised the abstraction level beyond files to consider design evo-
lution. In [22], Xing and Stroulia focus on detecting evolutionary phases of classes, such
as rapidly developing, intense evolution, slowly developing, steady-state, and restruc-
turing. They had to sample their data for their case study and used only the 31 minor
versions of the project. Parsing and analysing the 31 versions took around 370 minutes
on a standard computer, which rules out an immediate use by a developer. [26] presents
a methodology to connect high-level models to source code, but has only been applied
to a single version of a system so far. [23] describes how hierarchies of classes evolve,
but still depends on sampling and the checkin/checkout model. [20] applies origin anal-
ysis to determine if files moved between versions. In [18], Jackson and Ladd present
an approach to differencing C programs at the semantic level. They define semantic
changes as dependency changes between inputs and outputs, while we are primarily
interested in design-level changes.

All these and other known approaches cannot perform a fine-grained analysis be-
cause the underlying data is restricted by the data that can be extracted from versioning



system, tying them to the checkin/checkout model. In [11], we outlined the limitations
of this model to retrieve accurate evolutionary information. Versioning systems restrain
their interactions with developers to explicit retrieval of the source (check out), and
submission of the modified sources once the developer finishes his task (check in or
commit). All the changes to the code base are merged together at commit time, and be-
come hard to distinguish from each other. The time stamp of each modification is lost,
and changes such as refactorings become very hard, if not impossible to detect. Even
keeping track of the identity of a program element can be troublesome if it has been
renamed.

Moreover, most versioning systems version text files. This guarantees language-
independence but limits the quality of the information stored to the lowest common
denominator: An analysis of the system’s evolution going deeper than the file level re-
quires the parsing of (selected) versions of the system and the linking of the successive
versions. Such a procedure is costly [19]. Thus it is a common practice to first sample
the data, by only retaining a fraction of the available versions. The differences between
two versions retained for analysis becomes even larger, so the quality of the data de-
grades further.

Mens [27] presents a thorough survey of merging algorithms in versioning systems,
of which [28] is the closest to our approach: operations performed on the data are used
as the basis of the merging algorithm, not the data itself. However, the operations are
not precised in the paper and are used only in the merge process. The change mecha-
nism used by Smalltalk systems uses the same idea, but the changes are not abstracted.
Smalltalkers usually don’t rely on them and use more classic, state-based versioning
systems. In addition, most of the versioning systems covered by Mens are not used
widely in practice: most evolution analysis tools are based on the two most used ver-
sioning systems, CVS and SubVersion.

6 Tool Implementation

Our ideas are implemented for the Smalltalk language and the Squeak IDE in SpyWare,
shown in Figure 4. From top to bottom, we see: the main window; a code browser on
a version of project I; the change matrix of project I; and a graph showing the growth
rate of the system.

7 Conclusion and Future Work

We presented a fine grained, change-based approach to software evolution analysis and
applied it to nine student projects, one of which was analyzed in detail. Our approach
considers a system to be the sequence of changes that built it, and extract this infor-
mation from the IDE used during development. We implemented this scheme and per-
formed an evolution analysis case study based on a software visualization tool –the
change matrix– we built on top of this platform.

Although our results are still in their infancy, they are encouraging as they allow us
to focus on particular entities in a precise period of time once a general knowledge of
the system has been gained. In our larger vision, we want a more thorough interaction of



Fig. 4. Screen capture of SpyWare, our prototype

forward and reverse engineering to support rapidly changing systems. In this scenario,
developers need this detailed analysis of part of the system as much as they need a
global view of the systems’ evolution.

We have only scratched the surface of the information available in these systems.
We plan to use more advanced tools, visualizations, and methods (such as complexity
metrics) to meaningfully display and interact with this new type of information, and
envision other uses beyond evolution analysis.

References

1. Lehman, M., Belady, L.: Program Evolution: Processes of Software Change. London Aca-
demic Press, London (1985)

2. Gall, H., Jazayeri, M., Klösch, R., Trausmuth, G.: Software evolution observations based on
product release history. In: Proceedings International Conference on Software Maintenance
(ICSM’97), Los Alamitos CA, IEEE Computer Society Press (1997) 160–166

3. Mens, T., Demeyer, S.: Future trends in software evolution metrics. In: Proceedings IW-
PSE2001 (4th International Workshop on Principles of Software Evolution). (2001) 83–86

4. Van Rysselberghe, F., Demeyer, S.: Studying software evolution information by visualiz-
ing the change history. In: Proceedings 20th IEEE International Conference on Software
Maintenance (ICSM ’04), Los Alamitos CA, IEEE Computer Society Press (2004) 328–337

5. Gı̂rba, T., Ducasse, S., Lanza, M.: Yesterday’s Weather: Guiding early reverse engineering
efforts by summarizing the evolution of changes. In: Proceedings 20th IEEE International
Conference on Software Maintenance (ICSM 2004), Los Alamitos CA, IEEE Computer So-
ciety Press (2004) 40–49

6. D’Ambros, M., Lanza, M.: Software bugs and evolution: A visual approach to uncover their
relationship. In: Proceedings of CSMR 2006 (10th IEEE European Conference on Software
Maintenance and Reengineering), IEEE Computer Society Press (2006) 227 – 236

7. Tichy, W.: Tools for software configuration management. In: Proceedings of the International
Workshop on Software Version and Configuration Control. (1988) 1–20

8. Feiler, P.H.: Configuration management models in commercial environments. Technical
report cmu/sei-91-tr-7, Carnegie-Mellon University (1991)



9. Conradi, R., Westfechtel, B.: Version models for software configuration management. ACM
Computing Surveys 30(2) (1998) 232–282

10. Estublier, J., Leblang, D., van der Hoek, A., Conradi, R., Clemm, G., Tichy, W., Wiborg-
Weber, D.: Impact of software engineering research on the practice of software configuration
management. ACM Transactions on Software Engineering and Methodology 14(4) (2005)
383–430

11. Robbes, R., Lanza, M.: A change-based approach to software evolution. In: ENTCS volume
166. (2007) to appear

12. Görg, C., Weissgerber, P.: Detecting and visualizing refactorings from software archives. In:
Proceedings of IWPC (13th International Workshop on Program Comprehension, IEEE CS
Press (2005) 205–214

13. Filip Van Rysselberghe, M.R., Demeyer, S.: Detecting move operations in versioning infor-
mation. In: Proceedings of the 10th Conference on Software Maintenance and Reengineering
(CSMR’06), IEEE Computer Society (2006) 271–278

14. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the Design
of Existing Code. Addison Wesley (1999)

15. Beck, K.: Extreme Programming Explained: Embrace Change. Addison Wesley (2000)
16. Gı̂rba, T., Lanza, M., Ducasse, S.: Characterizing the evolution of class hierarchies. In: Pro-

ceedings IEEE European Conference on Software Maintenance and Reengineering (CSMR
2005), Los Alamitos CA, IEEE Computer Society (2005) 2–11

17. Lanza, M.: The evolution matrix: Recovering software evolution using software visualiza-
tion techniques. In: Proceedings of IWPSE 2001 (International Workshop on Principles of
Software Evolution). (2001) 37–42

18. Jackson, D., Ladd, D.A.: Semantic diff: A tool for summarizing the effects of modifications.
In Müller, H.A., Georges, M., eds.: ICSM, IEEE Computer Society (1994) 243–252

19. Robbes, R., Lanza, M.: Versioning systems for evolution research. In: Proceedings of IWPSE
2005 (8th International Workshop on Principles of Software Evolution), IEEE Computer
Society (2005) 155–164

20. Tu, Q., Godfrey, M.W.: An integrated approach for studying architectural evolution. In: 10th
International Workshop on Program Comprehension (IWPC’02), IEEE Computer Society
Press (2002) 127–136

21. Jazayeri, M., Gall, H., Riva, C.: Visualizing Software Release Histories: The Use of Color
and Third Dimension. In: Proceedings of ICSM ’99 (International Conference on Software
Maintenance), IEEE Computer Society Press (1999) 99–108

22. Xing, Z., Stroulia, E.: Analyzing the evolutionary history of the logical design of object-
oriented software. IEEE Trans. Software Eng. 31(10) (2005) 850–868

23. Gı̂rba, T., Lanza, M.: Visualizing and characterizing the evolution of class hierarchies (2004)
24. Eick, S., Graves, T., Karr, A., Marron, J., Mockus, A.: Does code decay? assessing the

evidence from change management data. IEEE Transactions on Software Engineering 27(1)
(2001) 1–12

25. Gall, H., Hajek, K., Jazayeri, M.: Detection of logical coupling based on product release
history. In: Proceedings International Conference on Software Maintenance (ICSM ’98),
Los Alamitos CA, IEEE Computer Society Press (1998) 190–198

26. Murphy, G.C., Notkin, D., Sullivan, K.J.: Software reflexion models: Bridging the gap be-
tween design and implementation. IEEE Trans. Software Eng. 27(4) (2001) 364–380

27. Mens, T.: A state-of-the-art survey on software merging. IEEE Transactions on Software
Engineering 28(5) (2002) 449–462

28. Lippe, E., van Oosterom, N.: Operation-based merging. In: SDE 5: Proceedings of the fifth
ACM SIGSOFT symposium on Software development environments, New York, NY, USA,
ACM Press (1992) 78–87


