
The “Extract Refactoring” Refactoring

Romain Robbes and Michele Lanza
Faculty of Informatics, University of Lugano - Switzerland

Abstract

There is a gap between refactoring tools and general-
purpose program transformation tools that has yet to
be filled. Refactoring tools are easy to use and well-
established, but provide only a limited number of options.
On the other hand, program transformation tools are pow-
erful but are viable only for large transformation tasks. We
propose an approach in which a developer specifies trans-
formations to a program by example, using an IDE plu-
gin recording the programmer’s actions as changes. These
changes could be generalized to specify a more abstract
transformation, without the need of a dedicated syntax.
Defining refactorings and transformations from concrete
cases would enable more frequent uses of medium scale
transformations.

1 Introduction

Refactoring [1], [2] has become a well-established pro-
gram restructuring technique. Indeed, several major Inte-
grated Development Environments feature a refactoring en-
gine which automates the most common refactoring opera-
tions [3]. However, the refactorings supported by a refac-
toring engine are often limited in number and extent: only
a fixed number of transformations are implemented. If a
more complex change to a program is needed, it must either
be done manually, or with the help of a generic program
transformation tool.

Such program transformation tools [4], [5] are very pow-
erful and allow large scale transformations to be performed
with a much lower cost than if done manually. However,
these tools still have a rather high barrier to entry, making
them only suitable for large-scale transformations: They re-
quire the user to learn a transformation syntax and to have a
high capacity in abstracting and reasoning at the meta level
in order to define the transformation. [5] describes how a
tool named DMS was used to migrate an application from
one component style to another. They mention that such an
approach is not wortwhile for small applications.

2 Restructuring a Program by Example

To fill the gap between refactorings and program trans-
formations we propose an approach based on change
recording and generalization. In such an approach a pro-
grammer provides concrete instances of a transformation
manually and generalizes them to fully specify a transfor-
mation. This approach relies on a framework which records
a programmer’s actions in an IDE and model them as pro-
gram transformations or changes. Each of these changes
takes as input an abstract syntax tree (AST) of the system
being monitored and returns a modified AST of the pro-
gram.

Transformations recorded this way operate on specific
entities of the AST (e.g. add method setConcreteBar to
class AbstractBar). To define a generic transformation, a
programmer takes this concrete transformation and progres-
sively abstracts it until his goal is reached (e.g. add method
setConcreteX to class abstractX).

These transformations would then be instantiated: The
programmer would fix set the variables of the transforma-
tion (telling which class is X), before executing it. He would
then evaluate the results and modify the transformation be-
fore retrying, should the result be incorrect.

3 Example

A programmer, Bob, discovers that class Bar from the
system he is working on has too many responsibilities. Bar
should be split in two classes: each instance of Bar should
hold an instance of class Baz. The behavior encoded in Baz
could thus vary if a subclass of Baz is given. This change
is not trivial: Several methods in Bar need to move in Baz,
and be replaced by delegation stubs. In addition, some ac-
cesses to instance variables of Bar need to be replaced by
accessors.

To implement this change, Bob performs it first con-
cretely, by delegating method foo from Bar to Baz and
changing a direct access to variable bag to an accessor. Bob
then examines his actions in his change history to generalize
his change. He ends up with a generic change affecting two
classes A and B, a variable v and a set of methods SM. The



transformation moves the implementation of the methods in
SM from A to B, defines delegation stubs in A (forwarding
the call to instance variable v, an instance of Baz), and re-
places accesses of variables belonging to Baz by accessors.

Bob then applies the change to the method foo he first
modified to verify that the results are the same. He then
applies it to all necessary methods in class Bar, and can
store the transformation should he need to move behavior
across classes in the future.

4 Related Work

Apart from program transformation tools, our work is
close to the field of programming by example [6], [7]. Pro-
gramming by example consists in recording user actions
and generalize them in a program. Our approach is based
on the same principle, but is restricted to defining transfor-
mations.

Boshernitsan and Graham defined a visual language
aimed at easing program transformations [8]. The trans-
formation task is simplified, but programmers still have to
specify the transformation: They can not provide a concrete
instance of it.

5 Conclusion

We proposed an approach in which programmers can
specify program transformations by giving concrete exam-
ples of them. Transformations should be expressed more
easily and hence used more often than with current ap-
proaches.

The ideas described in this paper are partially imple-
mented. Recording developer actions and converting them
to change operations is provided by our prototype, Spyware
[9]. Spyware has been previously used for software evolu-
tion analysis. Change generalization and application need
to be implemented, and a suitable user interface should be
built.

References

[1] Opdyke, W.F.: Refactoring Object-Oriented Frame-
works. Ph.D. thesis, University of Illinois (1992)

[2] Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts,
D.: Refactoring: Improving the Design of Existing
Code. Addison Wesley (1999)

[3] Roberts, D., Brant, J., Johnson, R.E., Opdyke, B.: An
automated refactoring tool. In: Proceedings of ICAST
’96, Chicago, IL. (1996)

[4] Roberts, D., Brant, J.: Tools for making impossi-
ble changes - experiences with a tool for transforming
large smalltalk programs. IEE Proceedings - Software
152 (2004) 49–56

[5] Akers, R.L., Baxter, I.D., Mehlich, M., Ellis, B.J.,
Luecke, K.R.: Reengineering c++ component mod-
els via automatic program transformation. In: WCRE,
IEEE Computer Society (2005) 13–22

[6] Halbert, D.C.: Programming by Example. Ph.D.
thesis, Dept. of EE and CS, University of California,
Berkeley CA (1984) Also OSD-T8402, XEROX Of-
fice Systems Division.

[7] Lieberman, H.: Your Wish Is My Command — Pro-
gramming by Example. Morgan Kaufmann (2001)

[8] Boshernitsan, M., Graham, S.L.: Interactive transfor-
mation of java programs in eclipse. In: ICSE. (2006)
791–794

[9] Robbes, R., Lanza, M.: A change-based approach to
software evolution. In: ENTCS volume 166, issue 1.
(2007) 93–109

[10] Rubin, R.: Language constructs for pogramming by
example. 3rd ACM-SIGOIS Conf on Office Informa-
tion Systems, also SIGOIS Bulletin 7 (1986) 92–103


