
Leveraging Crowd Knowledge for Software Comprehension and Development

Luca Ponzanelli, Alberto Bacchelli, Michele Lanza
REVEAL @ Faculty of Informatics – University of Lugano, Switzerland

Abstract—Question and Answer (Q&A) services, such as
Stack Overflow, rely on a community of programmers who
post questions, provide and rate answers, to create what is
termed “crowd knowledge”. As a consequence, these services
archive voluminous and potentially useful information to help
developers to solve programming-specific issues. Programmers
tap into this crowd knowledge through web browsers. This
requires them to step out of their integrated development
environments (IDE), formulate a query, inspect the returned
results and manually port the solution back to the IDE.

We present an integrated and largely automated approach to
assist programmers who want to leverage the crowd knowledge
of Q&A services. We give a form to our approach by imple-
menting Seahawk, an Eclipse plugin. Seahawk automatically
formulates queries from the current context in the IDE, and
presents a ranked and interactive list of results. Seahawk lets
users identify individual discussion pieces and import code
samples through simple drag & drop. Users can also link
Stack Overflow discussions and source code persistently. We
performed an evaluation of Seahawk, with promising results.

Keywords-Q&A services, recommendation systems

I. Introduction

Software developers are continuously introduced to new
technologies, components, and ideas [1]. New technologies
are used to develop new components, but can also be used to
provide developers with tools for software maintenance—an
important part of software development [2] [3]. One reason
why maintenance is difficult and time-consuming is that
project documentation is hard to link to actual maintenance
tasks [4]. Thus, developers need to ask questions to other
programmers or teammates [5][6] and spend considerable
time to obtain the desired information [7]. Among the
available online resources, Q&A services provide developers
with the infrastructure to exchange knowledge in form of
questions and answers: Developers pose questions and receive
answers regarding issues from people that are not part of
the same project. Even though researchers pointed out that
Q&A services could not provide high level technical answers
[8] [9] [10], these services are filling “archives with millions
of entries that contribute to the body of knowledge in software
development” and they often become the substitute of the
official product documentation [11].

A prominent example of technical Q&A service is Stack
Overflow1. Mamykina et al. reported that it has gained
popularity among developers and is becoming an important
venue for sharing knowledge on software development.

1http://stackoverflow.com

On Stack Overflow more than 92% of the questions on ex-
pert topics are answered in a median time of 11 minutes [10].
Treude et al. pointed out how “Stack Overflow is particularly
effective for code reviews, for conceptual question and for
novices” [11]. Even tough they also pointed out how Stack
Overflow is aimed at “a general audience that is not part of
the same project”, open source projects, such as Aptana2,
use Stack Overflow as a project documentation means.

Despite the knowledge provided by Q&A services, it
cannot be leveraged from within an integrated development
environment (IDE). Developers spend most of their time in
the IDE to write and understand code [4] and they should
be only focused on the current task without any major
interruption or disturbance [12]. However, developers are
forced to leave the IDE, thus interrupting the programming
flow and lowering their focus on the current task. To reduce
costs of modifying and maintaining large systems, by also
improving the understanding of programs, tool support is
needed [3]. Recommendation systems [13] are one form of
such tools: According to Robillard et al.,“recommendation
systems for software engineering (RSSE) are emerging to
assist developers in various activities, from reusing code
to writing effective bug reports” [1]. RSSEs play the role
of personal assistants that can guide the programmer while
developing or maintaining a software system by providing
additional information. This information can be gathered
from the crowd knowledge provided by Q&A services.

We make the following contributions. We present Sea-
hawk3 [14], a recommendation system in the form of a
plugin for the Eclipse IDE4 to harness the crowd knowledge
of Stack Overflow from within the IDE. Seahawk mines the
Stack Overflow knowledge base, displays the search results
directly in the IDE, allows developer to link discussions to
code entities and to import code snippets, and also offers the
possibility to automatically generate queries by extracting
keywords from the code entities given in the IDE. To evaluate
the approach implemented in Seahawk we present and discuss
a series of experiments.

Structure of the paper. In Section II we present Seahawk.
In Section III we illustrate its usage with a scenario and
present an evaluation in Section IV. In Section V we discuss
related work. In Section VI we draw our conclusions.

2http://www.aptana.com/
3http://seahawk.inf.usi.ch
4http://eclipse.org

http://stackoverflow.com
http://www.aptana.com/
http://seahawk.inf.usi.ch
http://eclipse.org

4

3 1

2

Figure 1: Seahawk User Interface

II. Seahawk

Figure 1 depicts the user interface of Seahawk. Users
are provided with four main components to interact with
Seahawk: (1) Document Navigator View, where the user
can type in a query and navigate the returned documents,
(2) Suggested Document View, where Seahawk suggests
documents that are linked by the annotations in the code, (3)
Document’s Content View, where the content of the current
document is presented to the user, and (4) a notification
system inside the package explorer to notify developers of
new linked documents. We refer to [15] for additional details.

In the following we present the architecture of Seahawk ac-
cording to the structure of a recommendation system defined
by Robillard et al. [1]: A data-collection mechanism, a
recommendation engine and a user interface.

Data-collection Mechanism Eclipse

Seahawk

System model

Annotation
engine

Apache
Solr Search

EngineMbox
files
Mbox
files

XML
data
dump
files

XML dump
importer

DB
PostgreSQL

Annotation
Cache
(SQLite)

Query
engineHTTP

POST

XML

POST

XML

Document
builder

Figure 2: Seahawk’s architecture

A. The Architecture

Figure 2 depicts Seahawk’s architecture. The first compo-
nent in Seahawk is the data collection mechanism, which is
responsible for gathering Q&A data from Stack Overflow. We
import Stack Overflow documents from a public data dump
provided as local XML files. The data is extracted through a
XML dump importer and stored in a relational database for
performance reasons. We built a tool to query the database
and to build a JSON representation of each document (thus
making it available for any language). This representation
is then included in an additional document schema required
by the Apache Solr5 search engine. When documents are
indexed by the search engine, they become available for
query. Apache Solr provides a RESTful interface to perform
searches by means of GET and POST requests and it replies
with XML data with the relevant documents.

According to Robillard et al., interaction with recom-
mendation systems can be both manual (i.e., a query is
inserted by the user) and automatic (i.e., the recommendation
engine generates the query) [1]. Seahawk supports both:
users can manually write queries to retrieve documents, or
Seahawk can extract keywords from code entities, build
a query, and suggest documents. Seahawk also provides
an annotation system that allows developers to link Stack
Overflow documents to the source code.

5http://lucene.apache.org/solr/

http://lucene.apache.org/solr/

B. Data Collection Mechanism

Stack Exchange offers a public RESTful API6 to access the
Stack Overflow content. Since the API is limited in usage and
search capabilities, we decided to use the public data dump7

provided by Stack Exchange, which comprises several XML
files that represent the database of each website. We limit the
files needed to the ones representing the data (i.e., posts.xml,
users.xml, comments.xml), discarding the files regarding the
evolution of the website (e.g., posthistory.xml, badges.xml,
votes.xml), since we are not interested in data regarding the
interactions of the users with the community.

On the left hand side of Figure 2, we depict the process
to import and manipulate the data to reconstruct documents
indexed by the search engine. We consider three XML files:
posts.xml, users.xml, comments.xml. The total amount of
entries in posts.xml sums up to more than 7 millions. To
recreate a document, we need to gather a question and
all the related answers from posts.xml. For the opening
question and all answers, we extract information regarding
users (users.xml), comments (comments.xml) and authors
(users.xml). Since performing these operations by manipulat-
ing data directly from the XML files is resource intensive,
we import everything in a database (thus also easing the
document extraction). We chose to represent documents in
JSON format to make them portable. To build documents,
we implemented an importer that queries the database. Those
documents are then included in an additional document
representation and indexing required by Apache Solr.

The Search Engine

The search engine indexes documents when extracted and
reconstructed from the database, and makes them available
for queries. We take advantage of Apache Solr which stores
and indexes documents in a vector space model, relying on
Apache Lucene8 as core engine. The weighting algorithm
used by Apache Lucene, and thus by Apache Solr, is a
variation of the standard tf-idf [16]. We configured Apache
Solr to remove stop words, filter out possessive words, stem
words, trim white spaces, filter synonyms and lower the case
(see [17]) at both query and indexing time.

Once the indexing phase is complete, the Apache Solr en-
gine can be queried via HTTP in a RESTful fashion.
Seahawk can thus query the search engine to get relevant
documents in XML format that contain the JSON representa-
tion of the original ones. The documents are then deserialized
and shown in the Eclipse IDE.

C. The Recommendation Engine

The recommendation engine of Seahawk provides both
manual and automatic interactions. The core is composed of
a query engine and an annotation engine.

6https://api.stackexchange.com
7http://www.clearbits.net/creators/146-stack-exchange-data-dump
8http://lucene.apache.org/

The Query Engine

Seahawk’s Eclipse plugin makes the Q&A crowd knowl-
edge available in the IDE. Users can interact with this
knowledge in ways that the website normally does not allow,
such as directly manipulating code snippets. The main goal
of the query engine is to communicate with Apache Solr, by
creating a query given an input string. Being Q&A documents
the target of such queries, it is likely to have some information
also in the title, that is, the question itself. We assign more
weight to the document’s title to exploit possible keywords
that can be relevant for the target search. Let us assume
that a developer wants to query the search engine with the
following query: “change label color in Java”. The query
engine tokenizes the string inserted by the developer. The
engine builds the query, according to Apache Solr syntax,
in a way that every token must be present in the document
field or at least one of those is contained in the title field.

In the query, the overall relevance of a document is
determined by the relevance of the body of the document
and its title. Documents whose title is interesting for the
given query (e.g., titles containing words such as label or
color) are retrieved even if the document’s body does not
match any of the tokens.

Automation of Queries

The query engine also provides an automatic keyword
extraction feature to build queries. The first technical issue to
overcome regards the code written by developers. Developers
need to understand their code even though it does not compile.
Dealing with code that does not compile has drawbacks:
Compiling code can provide a full Abstract Syntax Tree
(AST), but with compilation errors the AST can be partial or
even absent. Moreover, the partial AST is the representation
of the code until the compilation failed, thus discarding any
additional information that comes after. This also applies
for Eclipse when it is asked to produce an AST for a Java
program.

To overcome this problem we use island parsing [18]. It
copes with code that does not compile, to identify structural
information of code entities (i.e., class and methods) and
discard the uncompilable parts. The Eclipse IDE provides
a framework to apply similar parsing approaches to Java
code: It identifies classes, methods and fields in a source
file even though the compilation fails. We employed this
framework to parse the code with the single constraint of
being Java-dependent for this feature.

Since we do not have complete AST information for the
code entities identified, code entities are treated as text and
analyzed as natural language. The target entity is defined by
the cursor position in the text editor, the nearest entity is
picked as target entity.

When an entity is selected, the query is built by merging
the obtained keywords obtained in two ways:

https://api.stackexchange.com
http://www.clearbits.net/creators/146-stack-exchange-data-dump
http://lucene.apache.org/

1) Processing the entity’s body. We apply basic information
retrieval techniques to extract the ten most frequent
keywords in the body. We tokenize the entity’s body
on white spaces. For every token obtained, we split it
on case change, digits and symbols. We lower the case
and remove stop words. The set of tokens we obtain is
ordered by frequency and the first ten become part of
the query. To this set of keywords we add the entity’s
name. This is done because of Java interfaces. If the
entity is a method, including the name would enhance
the research. Being immutable, the method’s name of a
Java interface in a library, or a framework, is always the
same. A Stack Overflow document would contain this
method’s name if one of the code snippets is tackling
the implementation of a specific interface. For instance,
a developer can invoke Seahawk on the method decorate
implementing the ILightweightDecorator interface in
the Eclipse API, an interface used to perform a custom
decoration of the package explorer. In this situation,
documents containing code snippets that implement the
interface are enhanced because the term “decorate” is
used. Moreover, the same term could be also used in the
title of the document when questions regard the method.

2) Analyzing the import statements. We take all the import
statements in the source file and remove the ones not
used by the target entity. Since we do not have any
information from the AST, we identify the used imports
by applying a naı̈ve matching on the class name: If the
class name is contained in the entity’s body, we consider
this import or we discard it otherwise. This approach
can lead to false positives in case two classes have
the same name, but they reside in different packages,
and are used by the same entity. However, we believe
that such situations rarely happen. Once the imports
are identified, we tokenize each statement on the “.”
character, and by defining a set of unique tokens that
become part of the query. For example, assuming we
have the following import statements used by an entity:

import java.util.List;
import java.util.ArrayList;

The resulting set of tokens would be [java, util, List,
ArrayList].

The Annotation Engine

The recommendation engine allows the creation of links
between source code and documents. To this aim, we imple-
mented an annotation engine to let developers put annotations
in the code. We want to allow developers to collaborate by
means of the crowd knowledge itself. Differently from the
query engine, which provides automated query generation,
the annotation engine implements the second aspect of the
manual interaction in the Seahawk recommendation system.

There are two main purposes in the annotation engine:
creating and parsing annotations. The annotation structure
must be flexible. To be language independent, we wanted to
achieve this flexibility by embedding annotations in multi-line
comments. Doxygen9 follows a similar approach to integrate
documentation in, for example, C++ and Java code and
in Blueprint [19] to link code examples to code. Both of
them enclose meta-information between multi-line comment
delimiters (i.e.,/* and */) and define fields by putting “@”
as prefix character.

Seahawk’s approach gives users more flexibility. Devel-
opers can define custom delimiters (that need to match the
target language’ syntax for comments), and to avoid conflicts
with Doxygen or JavaDoc annotations, we decided to put an
exclamation mark as last character for the opening delimiter
(e.g., in Java the opening delimiter would become /*! instead
of /* while in XML it would become <!–! instead of <!–).
Listing 1 presents an example of Seahawk’s annotation.

Listing 1: Example of Seahawk’s annotation
/*!
* @documentId <Document’s Id>
* @title <Document’s title>
* @comment <Author’s comment>
* @author <Autor’s name>
* @creationTime <creation date>
*/

Whenever an annotation is created, Seahawk reports the
id of the document, its title, a comment put by the developer
(the author of the annotation), and the creation time. The
id of the document identifies the target document to be
suggested. The other fields are used to implement the basis
of the support for collaboration. Seahawk does not explicitly
provide collaborative functionalities, but relies on the fact
that a versioning system (e.g., Git, SVN) is used in the
development phase. Putting annotations in the code is enough
to keep track of the document suggested by developers, thus
linking documents to a specific revision of the source code.

The whole collaborative process is embedded in the normal
development phase: whenever a developer commits, the
annotations are committed too. Whenever a developer updates
the repository, the new annotations are updated together with
the comment explaining the purpose of the linked document.
The role of the comment, author and creationTime fields
guarantees that annotations are unique. The comment field is
mainly used to allow developer to communicate with each
other through the annotation system.

The annotation engine provides also a notification system
to keep track of the annotations already seen by developers.
For that reason we use two different ways of parsing code:

1) We implemented our own parser for annotations.
2) We took advantage of Eclipse’s partitioning system.

9http://www.doxygen.org/

http://www.doxygen.org/

The partitioning system identifies code blocks (parti-
tions) that match specific delimiters in the code editor
(e.g., comment, classes, methods etc.). We ask it to match
the annotation’s delimiter and notify in case of changes.
Whenever a source file is opened or modified in the code
editor, the partitioning system notifies the view showing
the suggested documents and storing the annotations in the
cache, thus tracking the annotations that the developers have
already seen. The latter relies on our implementation of the
parser that works in the background. Whenever a project
is updated, it parses all the updated files of the project and
extracts annotations. If the annotations are not present in the
annotation cache, they are considered as new annotations to
be notified to the developer.

D. The User Interface

In Section II we presented an overview of the user interface
of Seahawk. In this section we present each UI element and
the functionalities provided to developers.

Document Navigator View

The first view of Seahawk is the one implementing the
manual interaction of the recommendation engine. Through
this view, developers can compose a query, send it to the
search engine, and retrieve Stack Overflow’s documents.
Users are provided with a tree navigation system that allow
them to explore single nodes (i.e., questions or answers) of
a single discussion. We reach the granularity of the code
snippets in case they are available. By means of drag and
drop (D&D) interactions, developers can drag a document or
a code snippet into the code editor. Whenever a document
is dropped in the editor, Seahawk shows a dialog (see
Figure 3) where the user can put a comment to explain
the link between the document and the code, and then it
generates the annotation in the code editor.

Figure 3: Seahawk dialog for annotation’s comment

Suggested Documents View

Figure 1 (2) depicts a tree view similar to the one
previously presented (1). which is used by Seahawk to
show document linked to the code. Instead of presenting
documents retrieved from a query, this view tightly works

with the annotation engine. Whenever an editor become
active, the annotation engine parses the file, extracts all
of Seahawk’s annotations, and notifies the view. The set of
documents linked by the annotations is then retrieved from the
search engine and displayed. Differently from the document
navigator view, the user cannot drag documents in the code
editor to create annotations. Allowing this feature would
create redundancies in the annotations for documents that
are already present in the code editor. Through a contextual
menu, users can modify the comment of an annotation or
delete the annotation as well. Annotation data is accessible
by a tool tip that appears on top of the document when the
mouse pointer is over it.

Since there is no mechanism to ensure consistency in the
annotations, a linked document could have been removed in
the search engine. In this situation, the document is shown
anyway but the message “[Not Available]” is put in front
of the document’s title and it becomes not traversable (see
Figure 4).

Figure 4: Document not available in Seahawk’s view

Document’s Contents View

When a document, or a document’s node, is selected in
one of the other views, the content is displayed in this view.
To display the content, we use a custom layout and we take
advantage of a web-browser widget embedded in the view.
The web-browser widget allows the developer to navigate
the links contained in the document and getting additional
information. We use a Javascript library10 to highlight the
syntax of the text contained in the <code> tags, without
having to care about the programming language. Questions
are orange, the accepted answer is green and the other
answers are blue.

Notification System

To rapidly spot new annotations in the project, we
implemented notification system in the package explorer
(Figure 1 (4)). Whenever a project is refreshed, the annotation
engine parses the files and creates a list of annotations.
Subsequently, it counts the number of annotations not seen
and decorates the package explorer with the number of new
annotations between square brackets. Whenever the developer
opens one of the compilation units, the annotation engine
parses the file and puts the annotations in the cache before
the number shown in the package explorer is updated, thus
reducing the count of the annotations.

10http://code.google.com/p/google-code-prettify/

http://code.google.com/p/google-code-prettify/

Figure 5: Alice imports the code snippet in the code editor.

Figure 6: Notification of the linked document in the Suggested Documents View.

III. A Use Case Scenario

By means of a simple scenario, we illustrate how Sea-
hawk can help developers to solve programming problems
by leveraging Stack Overflowfrom within the Eclipse IDE.

Alice is required to build a simple echo server in Java.
The echo server must handle one client at a time and it must
terminate itself whenever a client sends the “quit” string.

Alice opens up the Eclipse IDE, with the Seahawk plugin
installed, and begins creating the class EchoServer. She starts
by creating a socket by using the Socket class:

Listing 2: Initial Implementation of an Echo Server
public class EchoServer{

public static void main(String[] args){
Socket server;
server = new Socket("localhost",8000);

}
}

Alice starts looking at the methods trying to find out a way
to accept incoming connections. Since she does not find any
method to accomplish this task, she invokes Seahawk through
the contextual menu in the code editor.

Seahawk analyzes the existing code, builds a query, and
retrieves a set of documents related to what is written in
the EchoServer class (Figure 5). Among the documents,
Alice finds out a question whose title is “Problems trying
to implement Java Sockets”. She reads the document and
finds an accepted answer that proposes the implementation
of a simple echo server. She realizes that the right class to
be used instead of Socket is ServerSocket. Thanks to the
document navigation system of Seahawk, she locates the
code snippet and drags it into the code editor, importing it
(Figure 5). Subsequently, Alice can start modifying the code
in the editor to achieve the desired outcome. With minor
modifications she adapts the imported snippet and makes the
server able to be terminated when receiving a quit string
from a connected client. In the end, Alice wants to bookmark
the original solution directly in the code. Thus, she drags the
document in the editor. Seahawk creates an annotation to link
this specific Stack Overflow document and asks her to put a
comment by means of a dialog box. Alice types the comment
and confirms the creation of the annotation that becomes
visible in the code editor. By doing so, every other person
opening the file with the Seahawk plugin installed will be
notified about the bookmark in an ad-hoc view (Figure 6).

IV. Evaluation
The previous scenario, while being a real example of

Seahawk in action, does not provide any evidence in
terms of usefulness and usability. To address the question
whether Seahawk can actually help developers in their
tasks, we present an evaluation composed of three different
experiments.

A. Experiment I: Java Programming Exercises

We want to assess to what extent Seahawk can deal
with plain text. We use a set of exercises taken from Java
programming courses11 to evaluate the relevance of the
documents retrieved from Stack Overflow by extracting
keywords from the text of the exercises.

Seahawk is not designed to directly deal with plain text
taken from exercises. We thus had to recreate the right
conditions to allow Seahawk to extract keywords from the
text of the exercises: Since it needs at least a Java entity, we
manually create a class stub with a name that summarizes
the topic, and put the entire text of the exercise as a comment
before, or inside, the class body, as depicted in Listing 3.

Listing 3: Example of Java exercise prepared for the test
/* Write a class that implements the CharSequence inter-
face found in the java.lang package. Your implementation
should return the string backwards. Select one of the
sentences from this book to use as the data. Write a
small main method to test your class. Make sure to call
all four methods.*/

public class CharSequenceImpl { }

With this approach we tested Seahawk on 35 exercises. For
every exercise, we created a class similar to the one presented
in the previous example, we generated keywords from it, and
we queried the search engine. From the result returned, we
considered the first 15 documents. We decided to use such
a threshold because it is the smallest number of documents
retrieved by Stack Overflow. We manually inspected and
evaluated every document. With the term “relevant”, we
mean that the discussion can lead to a solution of the exercise
either through the discussed topic or the code snippets. For
example, the exercise in Listing 3 could lead to discussions
tackling the implementation of CharSequence interface that
could be partially relevant as well. For this reason, a binary
notion of relevance is not enough. Thus, we defined five
levels of relevance, ranging from 0 to 4. To have a numerical
assessment of this experiment, we refer to the normalized
discounted cumulative gain (NDCG), which is generally used
to evaluate ranked retrieval results from search engines, using
a multi-valued notion of relevance [17]:

NDCG(Q,k) =
1
| Q |

|Q|∑
j=1

Zk j

k∑
m=1

2R(j,m)−1
log2(1 + m)

(1)

11http://www.home.hs-karlsruhe.de/∼pach0003/ informatik 1/aufgaben/
en/ java.html and http://codingbat.com/ java

k is the size of the result set; Q is the set of queries
performed; R(j,d) is the relevance score gave to document
d for query j; and Zk j is the normalization factor calculated
such that NDCG is equal to 1.0 in the ideal scenario (i.e.,
all the documents have the maximum level of relevance). In
our experiment, k = 15, |Q| = 35 and the normalization factor
we calculated is Zk j ∼ 0.011.

Experiment I: Results

The result we obtained from the NDCG index is 9.07%,
thus meaning that one in ten of the documents retrieved was
relevant to the Java exercises we used. In Figure 7 we present
only a subset of the results, the ones we discuss afterwards;
for the results for all the 35 exercises we refer to [15].

3

0

0

0

D
14

D
15

0

0

3

3

0

0

0

3

0

0

0 0

D
13

2

0

0

0

D
8

0

0

0

0

2

3

0

3

3

0

0

0

D
7

0

0

0

4

D
10

0

0

0

0

0

00

D
1

D
3

3

0

000

3

0

4

0

4

0

32

0

3

D
2

0

D
4

0

0

0

0

0

00

0

2

0

0 0

0

0

0

D
5

0 0

0 0

0

0

0

2

3

0

00

0 0

D
11

3

0

D
9

3 3

0

4

3

0

0

0

0

D
6

0

0

1

0

D
12

2

0

Wind
Speed

Sudoku
Solver

Roulette
Strategy

Natural
Merge Sort

Metropolis

Fibonacci

Electrical
Resistance

Exercise

Figure 7: Experiment I Results (0 = Not Relevant, 4 = Highly
Relevant)

Although the NDCG value is low, there are some consider-
ations to make. Our approach fails on very simple exercises:
Exercises like ElectricalResistance or WindSpeed (where the
student is asked to write a simple function to calculate the
value of the resistance and the wind speed value) provide
very little information, thus the documents returned were
unrelated. Sometimes the topic of the exercise was a subset of
a more complex one. For instance, RouletteStrategy requires
to calculate the number of turns required to lose all by betting
only on red or black at roulette. The retrieved documents were
discussing the same topic but at a higher level of difficulty
(e.g., machine learning approach), making them not relevant.

A reason to justify the irrelevance of the documents could
reside in the absence of information in the Stack Overflow’s
crowd knowledge. Even though Stack Overflow archives
many discussions on homework, the requirements of the
exercises were not specific enough. Just in one case the
exercise was in one of the document returned. Moreover,
exercises requiring the implementation of data-classes (e.g.,
Metropolis) returned unrelated documents.

However, when an exercise tackles a well known topic
(i.e., Fibonacci, NaturalMergeSort and SudokuSolver), the
relevance of the documents increases: We were able to find
solutions or even the full implementations in pseudocode,
Java or similar languages that could be easily adapted and
used to solve the exercise.

http://www.home.hs-karlsruhe.de/~pach0003/informatik_1/aufgaben/en/java.html
http://www.home.hs-karlsruhe.de/~pach0003/informatik_1/aufgaben/en/java.html
http://codingbat.com/java

B. Experiment II: Method Stubs

In this experiment we wanted to assess the impact of
Seahawk when dealing with method stubs. The scenario
concerns a developer who starts to implement a method,
does not know how to proceed, and asks Seahawk for help.

We selected eight different methods from student projects,
and two exercises taken from a Java programming course,
reaching a total of ten methods. Half of the methods were
implementing part of a Java interface, the remaining half
were regular methods. In doing so, we want to see if the
behavior, in case of interfaces, changes with respect to regular
methods. We removed the bodies from the methods to obtain
stubs, leaving everything else unchanged.

Experiment II: Results

In Figure 8 we report the results for the stubs we tested.

Method
Type Class(method) D

1
D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

Interface EnumerationImpl
(hasMoreElements) 0 0 3 4 0 0 4 0 0 0 0 0 0 0 0

Interface IntegerList (addAll) 2 2 2 3 1 0 2 0 0 1 0 0 1 2 2

Interface MarkerInitActionDelegate
(selectionChanged) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Interface PreferencePaneMbox
(createFieldEditors) 0 1 0 0 0 2 0 0 0 0 0 0 0 0 0

Interface REmailLightweightDecorator
(decorate) 4 2 4 0 0 0 0 0 0 0 0 0 0 0 0

Regular CopyPaste (copy) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Regular MarkerInitActionDelegate
(prepareSQLite) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Regular Parser (parseFunction) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Regular SpreadsheetReader (loadFile) 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

Regular SpreadsheetReader
(removeDoubleQuotes) 0 2 1 1 0 1 0 0 0 1 0 0 0 0 0

Figure 8: Experiment II Results (0 = Not Relevant, 4 =
Highly Relevant)

When dealing with method stubs, Seahawk performs well
with interface methods, but not with regular methods. Our
conjecture is on the one hand that interface methods are less
volatile than general methods, and on the other hand there is
a higher probability that they have been discussed on Stack
Overflow because interfaces are used by potentially many
clients. For instance, for the REmailLightweightDecorator
(decorate) method, Seahawk retrieves useful documents
with the right code examples to implement a fully working
decorator. Regular methods, on the other hand, have a lower
probability to be discussed on Stack Overflow because they
pertain to the specific domain of a system. The exception
(see the results for the last two stubs) is when the “theme”
of a method signature is of general interest (e.g., loading
a file, removing quotes). In the case of SpreadsheetReader
(removeDoubleQuotes) the retrieved documents lead to a
better solution than the one implemented in the original
method. This is an argument in favor of having appropriate
names for methods (i.e., if removeDoubleQuotes would have
been called rDQ Seahawk would have performed poorly).

C. Experiment III: Method Bodies

In the third experiment we want to assess the behavior
of Seahawk when dealing with fully implemented methods.
The scenario pertains to program comprehension: A devel-
oper invokes Seahawk to understand an existing and fully
implemented method.

We selected seven fully implemented methods, one of
which was implementing an interface. We left all methods
unchanged, including comments. We wanted to see if the
documents retrieved by Seahawk would help a developer
achieving the same goal of the original implementation, thus
helping her in getting a better understanding of the code.

Experiment III: Results

In Figure 9 we report the results for the tested methods.

Method
Type Class(method) D

1
D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

Interface REmailLightweightDecorator
(decorate) 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0

Regular MapEditor(buildMenu) 1 0 4 4 4 4 0 0 0 0 0 0 1 4 1

Regular MapEditor(buildWest) 2 0 2 0 2 2 1 3 3 2 0 0 0 2 0

Regular MarkerInitActionDelegate
(prepareSQLite) 2 3 0 2 0 2 0 0 0 0 0 0 0 0 0

Regular Parser (parseFunction) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Regular SpreadsheetReader (loadFile) 2 1 2 0 0 0 4 4 2 2 0 0 0 4 0

Regular SpreadsheetReader
(removeDoubleQuotes) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 9: Experiment III Results (0 = Not Relevant, 4 =
Highly Relevant)

Seahawk performs well in this scenario. On the one hand
this is influenced by the higher amount of useful information
that can be fed to the query engine. On the other hand the
fact that methods have (or should have) a single responsibility
limits the scope in a positive way, leading to more useful
retrieved documents. Moreover, the library or framework
used in the implementation of a method can refine the
scope of the research. For example, many useful documents
were retrieved for the methods buildMenu and buildWest
of the class MapEditor. In this case, both methods largely
used the Swing framework, restricting the search scope. The
contrary happens when the topic of a method is too general.
Moreover, as in the case of parseFunction of the class
Parser, Seahawk is not able to retrieve relevant documents
when the implementation of a method totally relies on code
belonging to the project (i.e., no particular standard libraries
or well-known frameworks are used). A last scenario in
which Seahawk performs poorly is when it is confronted to
badly implemented methods. Tying this back to the program
comprehension scenario: Sometimes understanding a method
is not easy because the method is badly implemented. This
also applies for cases where the signature of a method does
not correspond to its implementation.

D. Reflections

The goal of our experiments was to assess the potential of
Seahawk. While it may not always provide useful documents,
Seahawk is capable of sometimes coming up with surprising
insights that aid a developer both for program comprehension
and software development. Moreover, time plays in favor of
tools like Seahawk: the knowledge base of sites like Stack
Overflow is constantly increasing. This on the positive side
means that there are more and more relevant documents in
Stack Overflow that can aid developers, on the negative side
it means that dealing with information overload and noise
reduction will become future issues.

V. RelatedWork

Treude et al. [11] investigated the Stack Overflow service
by analyzing randomly sampled data of the November 2010
data dump. They claim that Stack Overflow is particularly
effective for code reviews, for conceptual questions, and for
novices. In their subsequent work, they discussed the impact
of web content curated by the crowd on software developers
and their working practices [20]. They posed questions
regarding the impact of social media on programming
knowledge about software engineering education, and how it
could influence the attitude of programmers. Storey et al. [21]
also discussed how the use of the social media mechanism
influences the software development practices. They posed
and discussed questions with the aim of finding answers for
the innovation of future software engineering tools.

Our work also lies in the field of search engines and code
sample retrieval from the Web. Umarji et al. [22] investigated
developers’ habits in searching code on the internet. Sim et al.
[23] investigated how sites for general purpose information
retrieval (e.g., Google) outperform custom sites for code
search (e.g., Krugle) and component reuse (e.g., SourceForge)
in retrieving code samples from the internet. In our approach
we perform code retrieval on Stack Overflow. When samples
are retrieved from search engines, the developer has to assess
their validity. Since we rely on Stack Overflow, the code
samples are already assessed by the community.

Laugher and Rodden [24] integrated in-project knowledge
with an annotation system to link documentation and discus-
sions regarding design decisions at source code level. Our
approach follows a similar idea but does not force the user
to look first at the code. Seahawk provides, through the
suggested documents view, all the documents linked to the
current editor even if annotations are not in focus.

Sawadsky et al. presented FishTail [25], an Eclipse plugin
built on top of Mylyn12 [26]). FishTail automatically suggests
code examples from the web according to the most changed
program element’s name. In our approach, we do not only
focus on the entity’s name but we also use keywords to
restrict the scope of the research.

12http://www.eclipse.org/mylyn/

Holmes et al. presented DeepIntellisence [27], a plugin for
the Visual Studio IDE13 that links bug reports, emails, events
history and people to source code entities. Similarly, Čubraniç
et al. created Hipikat [28], a recommender system to assist
newcomers by recommending items from problem reports,
newsgroup, and articles. Instead of providing resources from
in-project knowledge, we focus on documents and discussions
that are not related to the project.

Brandt et al. presented Blueprint [19], a plugin built on
top of Adobe Flex Builder that allows developers to search
and import code examples in the IDE. Similarly, Zagalsky
et al. presented Example Overflow [29] a web-based tool to
search and recommend Javascript code samples. In Seahawk,
we give the freedom of importing code samples of any kind
and to link documents to any language. Developers can define
their own annotations style to fit the desired target language.

Goldman et al. presented Codetrail [30] a plugin that
connects source code to web resources by synchronizing
Firefox14 activities with Eclipse activities. In Seahawk we
embed the web resources in the IDE to give more freedom
to the user interactions (e.g., code import).

Cordeiro et al. [31] presented an Eclipse plugin to help
developers in problem solving tasks. Based on an exception’s
stack trace gathered from the IDE’s console, they suggest
related document from Stack Overflow. Instead of focusing
on stack traces, we focus on the code written by the developer
to suggest documents and we provide keywords as a query
to retrieve documents.

Takuya et al. presented Selene [32], an Eclipse plugin to
spontaneously suggest code snippets to the developer. In our
approach, importing code snippets is a side effect. We suggest
entire discussions taken form Stack Overflow to enrich the
information provided by code snippets.

VI. Conclusions
We presented a novel approach to leverage the Q&A crowd

knowledge. We presented the implementation of our approach,
Seahawk. Seahawk lets users interact with Stack Over-
flow documents in a novel way to import code snippets and
create links between documents and source code by means of
language-independent annotations, and how developers can
use annotations to take advantage of the versioning system
to collaborate and suggest documents to teammates. We also
presented an approach to automatically generate queries from
code entities, and we discussed how Seahawk deals with
import statements and uncompilable code to extract keywords
from Java code entities. Finally, we presented an evaluation
of Seahawk and a discussion of the promising results we
obtained.

Acknowledgements. We thank the Swiss National Science
foundation for the financial support through SNF Project
“SOSYA”, No. 132175.

13http://www.microsoft.com/visualstudio/en-us
14http://www.mozilla.org/

http://www.eclipse.org/mylyn/
http://www.microsoft.com/visualstudio/en-us
http://www.mozilla.org/

References

[1] M. Robillard, R. Walker, and T. Zimmermann, “Recommen-
dation systems for software engineering,” IEEE Software, pp.
80–86, 2010.

[2] B. Lientz and B. Swanson, “Problems in application software
maintenance.” Communications of ACM, no. 11, pp. 763–769,
1981.

[3] T. Corbi, “Program understanding: Challenge for the 1990s,”
IBM Systems Journal (), pp. 294–306, 1989.

[4] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental
models: a study of developer work habits,” in Proceedings of
ICSE 2006 (28th ACM International Conference on Software
Engineering). ACM, 2006, pp. 492–501.

[5] A. J. Ko, R. DeLine, and G. Venolia, “Information needs
in collocated software development teams,” in Proceedings
of ICSE 2007 (29th ACM/IEEE International Conference on
Software Engineering). IEEE CS Press, 2007, pp. 344–353.

[6] M. Hertzum and A. M. Pejtersen, “The information-seeking
practices of engineers: searching for documents as well as
for people,” Information Processing and Management: an
International Journal, 2000.

[7] J. Brandt, P. Guo, J. Lewenstein, M. Dontcheva, and S. Klem-
mer, “Two studies of opportunistic programming: interleaving
web foraging, learning, and writing code,” in Proceedings of
CHI 2009 (27th international conference on Human factors
in computing systems). ACM, 2009, pp. 1589–1598.

[8] L. A. Adamic, J. Zhang, E. Bakshy, and M. S. Ackerman,
“Knowledge sharing and yahoo answers: everyone knows some-
thing,” in In Proceedings of WWW 2008 (17th international
conference on World Wide Web). ACM, 2008.

[9] K. K. Nam, M. Ackerman, and L. Adamic, “Questions in,
knowledge in?: a study of naver’s question answering com-
munity,” in In Proceedings of CHI 2009 (27th international
conference on Human factors in computing systems). ACM,
2009, pp. 779–788.

[10] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and
B. Hartmann, “Design lessons from the fastest q&a site in the
west,” pp. 2857–2866, 2011.

[11] C. Treude, O. Barzilay, and M.-A. Storey, “How do program-
mers ask and answer questions on the web? (nier track),” in
Proceedings of ICSE 2011 (33rd International Conference on
Software Engineering). ACM, 2011, pp. 804–807.

[12] J. Raskin, The Humane Interface - New Directions for
Designing Interactive Systems. Addison-Wesley, 2000.

[13] B. Dagenais and M. Robillard, “Recommending adaptive
changes for framework evolution,” in In proceedings of ICSE
2008 (30th international conference on Software engineering).
ACM, 2008, pp. 481–490.

[14] A. Bacchelli, L. Ponzanelli, and M. Lanza, “Harnessing
stack overflow for the ide,” in In Proceedings of RSSE 2012
(3rd International Workshop on Recommendation Systems for
Software Engineering), 2012, pp. 26–30.

[15] L. Ponzanelli, “Exploiting crowd knowledge in the ide,”
Master’s thesis, University of Lugano, 2012.

[16] M. McCandless, E. Hatcher, and O. Gospodnetic, Lucene in
Action, Second Edition: Covers Apache Lucene 3.0. Manning
Publications Co., 2010.

[17] C. Manning, P. Raghavan, and H. Schütze, Introduction to
Information Retrieval. Cambridge University Press, 2008.

[18] L. Moonen, “Generating robust parsers using island grammars,”
in Proceedings of WCRE 2001 (8th Working Conference on
Reverse Engineering). IEEE CS, 2001, pp. 13–22.

[19] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer,
“Example-centric programming: integrating web search into
the development environment,” in In Proceedings of CHI 2010
(28th international conference on Human factors in computing
systems). ACM, 2010, pp. 513–522.

[20] C. Treude, “Programming in a socially networked world: the
evolution of the social programmer,” pp. 1–3, 2012.

[21] M.-A. Storey, C. Treude, A. van Deursen, and L.-T. Cheng,
“The impact of social media on software engineering practices
and tools,” in In Proceedings of FoSER 2010 (FSE/SDP
workshop on Future of software engineering research). ACM,
2010, pp. 359–364.

[22] M. Umarji, S. Sim, and C. Lopes, “Archetypal internet-scale
source code searching,” in In Proceedings of OSS 2008 (4th
International Conference on Open Source Systems), 2008, pp.
257–263.

[23] S. Sim, M. Umarji, S. Ratanotayanon, and C. Lopes, “How
well do search engines support code retrieval on the web?”
ACM Trans. Software Engineering Methodologies, pp. 1–25,
2011.

[24] R. Lougher and T. Rodden, “Supporting long-term collabora-
tion in software maintenance,” in In Proceedings COCS 1993
(Proceedings of the conference on Organizational computing
systems). ACM Press, 1993, pp. 228–238.

[25] N. Sawadsky and G. Murphy, “Fishtail: from task context to
source code examples,” in Proceedings of TOPI 2011 (1st
Workshop on Developing Tools as Plug-ins). ACM, 2011,
pp. 48–51.

[26] M. Kersten and G. Murphy, “Using task context to im-
prove programmer productivity,” in Proceedings of SIGSOFT
2006/FSE-14 (14th ACM SIGSOFT international symposium
on Foundations of software engineering). ACM Press, 2006,
pp. 1–11.

[27] R. Holmes and A. Begel, “Deep intellisense: a tool for
rehydrating evaporated information,” in In Proceedings of
MSR 2008 (5th international working conference on Mining
software repositories). ACM, 2008, pp. 23–26.

[28] D. ČubraniĆ, G. MurphyC, J. Singer, and K. Booth, “Learning
from project history: a case study for software development,” in
In Proceedings of CSCW 2004 (ACM conference on Computer
supported cooperative work). ACM, 2004, pp. 82–91.

[29] A. Zagalsky, O. Barzilay, and A. Yehudai, “Example overflow:
Using social media for code recommendation,” 2012.

[30] M. Goldman and R. Miller, “Codetrail: Connecting source
code and web resources,” Journal of Visual Languages &
Computing, pp. 223–235, 2009.

[31] J. Cordeiro, B. Antunes, and P. Gomes, “Context-based
recommendation to support problem solving in software
development,” in In Proceedings of RSSE 2012 (3rd Interna-
tional Workshop on Recommendation Systems for Software
Engineering), 2012.

[32] W. Takuya and H. Masuhara, “A spontaneous code recom-
mendation tool based on associative search,” in Proceedings
of SUITE 2011(3rd International Workshop on Search-Driven
Development: Users, Infrastructure, Tools, and Evaluation).
ACM, 2011, pp. 17–20.

	Introduction
	Seahawk
	The Architecture
	Data Collection Mechanism
	The Recommendation Engine
	The User Interface

	A Use Case Scenario
	Evaluation
	Experiment I: Java Programming Exercises
	Experiment II: Method Stubs
	Experiment III: Method Bodies
	Reflections

	Related Work
	Conclusions
	References

