
Supporting Collaboration Awareness with
Real-time Visualization of Development Activity

Michele Lanza, Lile Hattori
REVEAL @ Faculty of Informatics
University of Lugano, Switzerland

Anja Guzzi
Delft University of Technology

The Netherlands

Abstract—In the context of multi-developer projects, where
several people are contributing code, developers must deal
with concurrent development. Collaboration among developers
assumes a fundamental role, and failing to address it can
result, for example, in shipping delays. We argue that tool
support for collaborative software development augments the
level of awareness of developers, and consequently, help them
to collaborate and coordinate their activities.

In this context, we present an approach to augment aware-
ness by recovering development information in real time and
broadcasting it to developers in the form of three lightweight
visualizations. Scamp, the Eclipse plug-in supporting this, is
part of our Syde tool to support collaboration. We illustrate the
usage of Scamp in the context of two multi-developer projects.

I. INTRODUCTION

In the development of software systems, teamwork has
become the norm rather than an exception [1]. A team of
developers working on the same project must deal with
parallel development. A number of tools have been helping
developers to coordinate parallel development, with Soft-
ware Configuration Management (SCM) systems occupying
a key position. With the increasing need for more effec-
tive solutions for parallel development, SCM systems have
evolved from preventing concurrent editions on the same file
[2] to allowing concurrent editions and offering support for
merging them later [3].

The growth of global software development, in which
teams of developers do not share the same office, but are
rather spread over different locations, affects collaboration
issues, such as awareness, communication and synchro-
nization [4], [5]. This has a direct impact on parallel
development, since an uncoordinated team – with lack
of communication – tends to lose the notion of who is
changing which parts of the system (awareness). Indeed,
a drawback of the current mainstream SCM systems that
becomes evident when awareness drops is the model of
propagation of changes: only when a developer checks in
his changes, his colleagues will have access to them. As a
consequence, the number of concurrent changes to the same
artifact tends to increase, resulting in merge conflicts and
duplicated work.

Recently, there has been an increased interest in address-
ing such collaboration issues, which resulted in full-fledged
collaborative software development environments, such as

IBM’s jazz.net [6] or Microsoft’s CollabVS [7]. These are
industrial environments, especially suited for distributed and
collaborative software development. The first focuses on
traceability of artifacts, and on clear division of activities
to prevent synchronization problems, whereas the latter
exploits the creation of various communication channels to
promote coordination of activities among teams.

We argue that the key to promote coordination among
de-located teams is increasing the level of awareness. We
consider awareness as an understanding of the activities
of others, providing a context for one’s activities [8]. In
co-located teams awareness is maintained mainly through
interactions among developers, such as informal conver-
sations, pair programming sessions, and expert assistance.
When face-to-face communication is lost, the willingness of
developers to help others and the ability to spot specialists
drops dramatically [5], negatively impacting awareness.

In this context, we promote awareness by visually en-
riching a developer’s Integrated Development Environment
(IDE) with information of who is changing what in the
system in real time (i.e., by instantly propagating change
information as the changes happen, instead of waiting for a
developer to take the action to synchronize his code with
the SCM system to check for changes). Indeed, current
IDEs have surpassed the notion of being convoluted text
editors, and have become environments in which developer
assistance appears in many forms, such as refactorings [9]
and code completion. We argue that an IDE enriched with
visual cues about what is currently happening in the devel-
opment of a system will contribute to increase developer’s
awareness, and help him to coordinate his activities with
his team members. However, this does not come without a
series of technical and conceptual challenges. One problem
that needs to be addressed is how to display analysis results
without competing with the main goal of developers: writing
programs.

In this paper we present one such tool we have been build-
ing, called Syde [10]. Syde is an Eclipse plug-in that records
all code changes performed in multi-developer projects. In
a previous publication, we have shown that the recorded
information is valuable, for example to refine the notion of
code ownership [11]. Syde is a non-intrusive plug-in that
silently records all changes and broadcasts them in real-time

to all developers working on the same system. The advantage
is that changes being performed elsewhere can be directly
inspected and reacted upon. As part of our Syde project,
we have now built a visual awareness system called Scamp
[12]. Scamp processes the information provided by Syde
and, using three custom visualizations made available in the
Eclipse IDE, helps developers to understand and inspect the
changes being performed on the system.

Our work focuses on offering workspace awareness
through lightweight and non-intrusive techniques, not re-
quiring the usage of overly complex environments (e.g.,
jazz.net), but building on Eclipse, a state of the practice
IDE. We implemented Scamp to offer three types of visual
means to support the understanding of the recent changes
being made to the system, superseding and complementing
mainstream software configuration management (SCM) sys-
tems like CVS and SVN.

We tested Scamp in the context of two multi-developer
projects that were developed for several weeks and report on
our findings, which show that such “on-the-fly” aids succeed
in augmenting awareness among developers, leading to a
deeper understanding of the system.

Structure of the paper: In Section II we discuss previ-
ous work that relates to ours from the workspace awareness
point of view. In Section III we detail our tool infrastructure
composed of the Syde and Scamp Eclipse plug-ins. Scamp
offers three custom views to augment awareness, the Word-
Cloud view, the Buckets view, and the Decoration view.
Scamp’s views are then showcased in Section IV, where we
also detail a qualitative evaluation performed in the form of
interviews. We then discuss our findings and conclude in
Section V.

II. RELATED WORK

Recently, there has been a significant effort on crafting
tools and techniques to promote team awareness in a col-
laborative context [13], [14], [15], [7], [16].

ProjectWatcher is an Eclipse plug-in that silently auto-
commits changes to the source code at pre-defined time
intervals [15]. The changes are mined and information is
shown in the form of two visualizations: activity awareness
shows past and current activities on project artifacts; prox-
imity awareness shows the notion of distance among team
members in terms of the systems structure and dependencies.
Although these views are closely related to Scamp, no in-
formation is given on whether they are dynamically updated
as developers work and the system evolves.

Lighthouse is an Eclipse plug-in that aim at avoiding
conflicts by propagating change events from Eclipse and
SCM among workspaces, and showing them on a view
of the emerging design representation of the system [13].
Lighthouse requires a side-by-side presentation of the de-
sign representation and the code, which is only feasible if
developers work with two screens. Since Lighthouse requires

a change in the developer’s ways to program, it is likely to
face adoption resistance by developers.

Palantı́r [14] and CollabVS [7] dynamically track code
changes to give support for workspace awareness, although
they do not focus on visually showing which artifacts are
under edition. Rather, both add support for merge conflict
detection and resolution, while CollabVS also focuses on
communication. Similar to Scamp, Palantı́r adds decorations
on the Eclipse package explorer to show when a java file has
been recently changed. This visual cue is combined with a
textual view that lists all the emerging conflicts with the goal
of warning developers at a stage earlier than when they try
to check in their code. On the other hand, CollabVS focuses
on creating communication channels to help developers to
cooperate, have joint working sessions, and resolve conflicts.
In both cases developers do not have the notion of the
amount of recent changes per artifact, nor on the order in
which they happened.

FASTDash aims at augmenting developers’ awareness
by visually showing the code base. Information visually
presented includes: which team members have source files
checked out, which files are being viewed, and which classes
and methods are currently under change [16]. Analogous to
Scamp, FASTDash shows when two developers are working
concurrently on a file, allowing them to preempt merge
conflicts. However, FASTDash’s visualization front-end is
built separately from the IDE, and occupies the entire screen,
which can also generate adoption resistance by developers.

We believe that, in the context of collaborative develop-
ment, it is important for developers to immediately know
who is working on which artifacts. With this simple in-
formation, developers are able to coordinate their activities
and avoid, among other problems, duplicated work and even
conflicts. The challenge is to show this information using
a representation of the system that is lightweight, non-
intrusive, and easily understandable.

III. TOOL INFRASTRUCTURE: SCAMP & SYDE

Scamp is an Eclipse plug-in to promote workspace aware-
ness that we recently developed in the context of our work
on synchronous development [10]. The idea is to provide
lightweight extensions to Eclipse to assist developers to
collaborate. The main vehicle for our research is Syde, where
Scamp is its first extension.

In Figure 1 we see the Eclipse IDE enriched with both
Syde and Scamp. Syde, described in the next paragraph, is
mostly invisible and non-intrusive, while Scamp manifests
itself both in the Eclipse package explorer and the outline
view (A), and uses the bottom space (B) to display three
different types of visualizations.

Syde: With Syde, we translated Robbes’ change-based
approach [17], supported by the SpyWare platform [18], into
a multi-developer context: Syde automatically records every
change by every developer, where the granularity of changes

A

B

A

Figure 1. Screenshot of the Eclipse IDE featuring the Scamp and the Syde plugins.

captured is the delta between two save actions. The result is
a very detailed project history that can be mined.

Syde is a client-server application, where the client part
is installed as part of the Eclipse workbench, while the
server part resides on a central server. Syde collects data
in a transparent and non-intrusive way: At every save action
the server is notified, and notifications about each change
that compiles successfully are immediately broadcasted to
all clients. The notifications contain information about who
changed what and when. We successfully used Syde to
improve the notion of code ownership [11] thanks to the
higher quality of the change information, compared to stan-
dard SCM systems. Syde does not replace, but complements
standard SCM systems like CVS and SVN.

Implementation: Syde is implemented in Java. It is
composed of a server and a client side (see Figure 2). The
client (an Eclipse plug-in) collects information through the
use of listeners. The information is then sent to the server’s
collector, and then broadcasted back to all clients through
the notifier. The client’s viewer (currently the Scamp plug-
in) then allows developers to obtain real-time information
about who changed what and when. A developer can obtain a
more recent version of a file than the one present in the SCM
by using the requestor. This component asks the distributor
to send the most recent version to the client.

Eclipse
Syde (Client)

Inspector

Viewer
(Scamp)

Requestor
(& Conflict Manager)

Syde (Server)

Collector

Notifier

Distributor

Change
Repository

Figure 2. Architecture of Syde.

To display the change information on the client side,
Scamp uses three different visual means, described next.

A. WordCloud View

A word cloud is a list of words, which are weighted,
colored, and sorted according to specific metrics (not neces-
sarily the same). This visual technique was first introduced
by the popular photo sharing web site flickr1, where words
are used to tag pictures.

In Figure 3 we see the word cloud of the vocabulary of
Scamp itself, where the size and the color of the words

1See http://www.flickr.com

http://www.flickr.com

Figure 3. WordCloud of Scamp’s vocabulary.

are mapped on the frequency of words in the Scamp source
code. The number in parentheses near each word is the actual
number of occurrences of the word.

In Scamp we display the names of the classes present in a
project. The number of changes that have been performed on
each class is used as size metric, while the order indicates the
recency of the changes, with most recently changed classes
at the top. Each word in the cloud is colored according to
the developer who made the most recent change to the class
in question. Clicking on a word will take the user to the
source code.

Figure 4. WordCloud of Scamp’s changes.

It is possible to choose the time window of past change
events. For example, a developer might be interested in
seeing which classes changed for the past week, or month.
In such case, classes that underwent heavy work will stand
out from the others, helping developers to spot where the
major changes happened. Choosing a smaller time window
– one day, for example – allows developers to focus on what
is happening in the present.

In this case, the constant reordering of the words to
maintain them ordered chronologically, and changing of
color based on the last developer to change a class, allows
developers to quickly spot when concurrent work is taking

place: If a developer is changing a class, but its word is
painted with someone else’s color, he immediately knows
that someone else is also changing it.

In Figure 4 we see an example of this modified word
cloud. All class names have the same color, as Scamp
was mostly developed by one person only. This view
depicts the development process at a certain moment in
time, in this case the developer was focused on chang-
ing the classes BucketsViewManager, Constants,
ScampLightweightDecorator, and SydeServer.
The most labor-intensive classes, in terms of number
of changes, are ScampLightweightDecorator and
ScampController, as is denoted by their large size.

Although this view is a good means to depict which are
the entities of recent interest, it does not display to what
extent the various developers contribute to it. The buckets
view is devised to display this information.

B. Buckets View

The Buckets View’s name comes from the fact that source
entities, in our case classes, are displayed as “buckets”,
which are progressively filled with single changes depicted
as small squares. The color of each change denotes the
developer responsible for it. Changes follow a chronological
order, thus older changes are at the bottom of the bucket,
while newer changes appear at the top. Each bucket has the
corresponding class name colored according to the developer
who owns the code. Ownership in this case is defined
as the developer who has performed the greatest number
of changes [11]. The time window can also be adjusted
according to the developer’s will, and the filling patterns
of each bucket reflects the effort that each developer spent
on it.

Figure 5. Example patterns of buckets.

In Figure 5 we see four patterns that the buckets view
can reveal. In case A this class was repeatedly changed
by two developers (denoted by the two colors). However,
in the middle of the recent lifetime the red developer was
most active. In the case of B the situation is the same,
but by looking at the height of the bucket, we noted that,
considering this time span, file B was modified much less
than A. In the case of C the blue developer was the
responsible one, with some changes being performed by
red, while in the case of D the red developer is the sole
responsible for the file.

Both the Word cloud view and the Buckets view occupy
the bottom space of the Eclipse user interface. However,
sometimes developers prefer to maximize the text editor.
To take this into account we also added decorations on the
package explorer.

C. Package Explorer Decoration

Scamp provides a decoration in the form of small anno-
tations within the Eclipse package explorer, where the files
of the project are displayed. If a developer using Syde and
Scamp is changing a file, its representation in the package
explorer is annotated in three different ways to express that
“something is going on” with that file. Scamp’s decorations
are (1) an overlay icon, (2) an arrow, and (3) a textual
annotation, respectively marked as A, B, and C in Figure 6.

The overlay icon (A) denotes the files that have been
changed by anyone using Syde and Scamp since the de-
veloper has started his working session.

The arrow (B) is placed between the file icon and the file
name. The arrow goes up (∧) if the file has been changed
by the user himself, and goes down (∨) if the last person
changing the file is someone else.

A

B

C

Figure 6. Package explorer decorations.

If someone else is the last person having changed a file,
an annotation (C) is displayed after the file name, showing
who made the change (username) and the timestamp.

IV. CASE STUDY

We present 2 multi-developer projects that have been
developed with the assistance of Scamp. Both projects are
group projects developed in the context of the “Programming
Fundamentals 2” course given at our faculty. The projects
lasted approximately 5 weeks.

A. The jArk Project

This project counted at the end 12 packages, 83 classes,
315 methods, for a total of 7,200 lines of Java code. The
number of SVN commits in this case was 300, while the
number of changes recorded by Syde was 60,166.

In Figure 7 we see the WordCloud view of this project
taken during April 2009. This view tells us which classes
have changed the most, i.e.,Game and GamePanel, and
the most recent changes, i.e.,RifleBullet, Vaus, and
LaserVaus. There is a distinct pattern visible here: all the
most recent changes were performed by the same developer
(orange), who is currently the owner of many of those
classes, while the red developer worked on many classes,
but not so recently.

Figure 8 displays the Buckets view of the last weeks
of development before the project ended. The class Game
is still the main focus of the developers, but development
now is equally divided between two developers (red and or-
ange). The classes Ball and Level are experiencing many
changes. We also see a pattern of many identical buckets.
These are all sibling classes with a common superclass. The
pattern shows a current shortcoming of Syde: if a superclass
is changed and compiled, Eclipse automatically recompiles
all subclasses, even if they did not change.

Figure 7. WordCloud view of the jArk project.

Figure 8. Buckets view of the jArk project.

B. The PacMan Project
This project counted at the end 5 packages, 59 classes,

382 methods, for a total of 3,978 lines of Java code. The
number of SVN commits in this case was 170, while the
number of changes recorded by Syde was 35,066.

Figure 9. WordCloud view of the PacMan project.

In Figure 9 we see the WordCloud view depicting the
changed entities during the last month of the project. The
developers confirmed that the most visible classes, such
as Board, Level, Ghost, etc. were indeed the central
domain classes in the system. The view reveals also that this
project is, at this stage, undergoing many changes on entities

that have seldom changed, denoted by their small size (= few
changes), while being at the top of the cloud (= changes
are recent). The developers also mentioned that some of the
classes, such as GameFrame had been moved from one
package to another. The class name is visible in more than
one place of the cloud, with the top word corresponding to
the newest path of this class.

As the development evolves, the old words will go to the
bottom of the cloud until they disappear from the view. One
possibility here is to grey out the name to imply that the old
words do not have a link to the class anymore.

Figure 10. Buckets view of the PacMan project.

In Figure 10 we see a Buckets view of the last month
of development of the PacMan project. Some patterns are
visible, such as collaboratively edited files (exhibiting a blue-
red pattern), heavily edited files (the tallest buckets), or files
edited by one developer only (on the right side).

C. Qualitative Evaluation
The low number of projects and people participating

in those projects (a maximum of 2 people changed these
systems) does not permit us to perform any statistical
evaluation, which is however part of our future work. We
present here a qualitative evaluation, performed in the form
of interviews, using the questionnaire listed in Table I.

No. Question
1 How often did you use Syde and Scamp?
2 Were the Scamp views always visible?
3 Did you usually work physically close to your team mate(s)?
4 Were you aware of what the other(s) were doing by looking

at the information shown through the views?
5 Was the constant refreshing of the views disturbing?
6 When you noticed that the other(s) were working on the same

class did you (a) talk to each other, (b) wait and stop editing,
(c) ignore and continue editing, (d) rush to commit changes?

7 How often did you commit your code?
8 How often did you have to merge code that was already

committed?
9 How were you aware that certain file commits would generate

merge conflicts?
10 When you were not physically close, was Scamp more useful

than when you were working nearby and if yes, why?
11 What is the most useful feature of Syde/Scamp and why?
12 Which improvements can you suggest?
13 Classify the following statements on a scale from 1 (=

strongly disagree) to 7 (= strongly agree)
a. It was easy for me to see what my co-worker was doing
b. it was not useful to see what my team mate(s) were doing
c. I liked seeing my team mate(s) presence even when I did
not have any direct benefit such as conflict detection
d. I was not comfortable with others seeing information about
my activity

14 Classify the following improvements in terms of usefulness
on a scale from 1 (= completely useless) to 7 (= very useful)
a. Create a filter to allow developers to choose which file
types and which folders they are interested in
b. Allow a developer to compare the most up-to-date version
of a file with his version
c. Add an option to automatically login to Syde and load the
Scamp views (a.k.a. auto-connect)
d. Show the status (online/offline) of each developer
e. Provide a mechanism to resolve merge conflicts automati-
cally
f. Show who is responsible for each method inside a class
that is being edited

Table I
QUESTIONNAIRE USED FOR THE INTERVIEWS WITH THE DEVELOPERS.

The interviews were conducted individually, and on a
face-to-face basis and lasted each approximately 30 minutes.

Q1: How often did you use Syde and Scamp? Three
developers reported that they used it most of the time, with
some exceptions when they occasionally forgot to activate
Scamp, especially when they were doing small changes.
One developer reported that he underwent an initial phase
of acceptance, during which he more or less consciously
forgot to use the tools. With time, he got used to the new
tool and incorporated it on his “development process”.

Q2: Were the Scamp views always visible? Most
developers answered positively; only in some cases they
minimized the views at the bottom of the IDE to obtain a
larger text area. We guess this is the case when they were
inspecting some large piece of code.

Q3: Did you usually work physically close to your
team mate(s)? One pair of developers worked in pair
programming the first couple of weeks, after that they
worked mostly from home, coordinating their activities
mostly through the Scamp views, instant messaging, and as
a last resort through the use of SVN. The other pair worked
mostly side-by-side, in a setup where one could actually
see the other’s screen.

Q4: Were you aware of what the other(s) were doing
by looking at the information shown through the views?
The answers in this case were mostly a clear “yes”. In
some borderline cases where too much happened at once,
the developers talked to each other to clarify.

Q5: Was the constant refreshing of the views
disturbing? The answers were a clear “no” in three
cases. One of the developers reported that he felt a little
bit disturbed, but this feeling disappeared as soon as he
concentrated on programming.

Q6: When you noticed that the other(s) were working
on the same class did you (a) talk to each other, (b) wait
and stop editing, (c) ignore and continue editing, (d)
rush to commit changes? The reactions were unanimously
that the developers talked to each other. Any other answer
would have implied a delay.

Q7: How often did you commit your code? The
answers varied from one a day to several times a day. This
is fairly in line with common practice.

Q8: How often did you have to merge code that was
already committed? This seems to have happened more
in the beginning of the project. Later on the developers,
also through the use of the Scamp views, started to have a
smoother integration of the individual efforts.

Q9: How were you aware that certain file commits
would generate merge conflicts? The developers who
worked separately mostly used the Scamp views to preempt
conflicts, which then also would spawn forth discussions
through instant messaging. Even for the pair working
together, Scamp was useful to avoid emerging conflicts
in some situations. However, for them it was easier
to coordinate their activities by talking to each other
constantly.

Q10: When you were not physically close, was Scamp
more useful than when you were working nearby and
if yes, why? The pair that worked separately answered yes,
and explained that the Scamp views were very helpful to
have clarification discussions.

Q11: What is the most useful feature of Syde/Scamp
and why? Two developers said that it was useful to see
which files the other person was editing, and also to work
on something else in case he saw that a certain file was
being worked on. The other developer said that it was
useful to have the possibility to see “live” who was doing
what, thus also minimizing redundancies and helping to
have focused discussions about the imminent things to be
done. One developer really appreciated the WordCloud
view, because he could quickly spot which were the
most important classes (those that they have put most of
their effort on) of the system within a certain period of time.

Q12: Which improvements can you suggest? One
developer mentioned “auto-connect”, i.e., Syde and Scamp
should automatically start instead of needing to be switched
on. This is a good sign, the two tools had become
part the working environment, and having to repeatedly
explicitly switch them on was even seen as a nuisance. Two
developers mentioned that it would be good to see even
finer-grained real-time change information at the level of
single lines of source code. We are currently working on
this. The developer who really appreciated the WordCloud
view suggested to add a scroll bar, and to limit the growth
of words to a maximum threshold. This reinforces the
assumption that this view was heavily used throughout the
project development.

Q13: Classify the following statements according to
the scale: 1 = strongly disagree, 2 = disagree, 3 =
partially agree, 4 = neutral, 5 = partially agree, 6 = agree,
7 = strongly agree. This question is extracted from the
questionnaire of a previous study conducted in the context
of CollabVS [7].

In their survey, these questions were classified as “pres-
ence (awareness) stream related questions”. They applied
this survey after conducting a user study with 16 participants
grouped into pairs, were each pair had 60 minutes to
implement a given task, and could freely use CollabVS to
accomplish it.

We summarized the answers indicated by the developers
in our case study, and the mean value of the answers given
by the CollabVS users in Table II.

From the answers to the first question, there is a large
gap between the opinions of the two pairs. This is due to
the fact that developers 3 and 4 worked all the time side-by-
side, a situation in which Syde and Scamp have little added

Answers Dev1 Dev2 Dev3 Dev4 CollabVS
It was easy to see what my
team-mate(s) were doing.

7 6 2 3 5.88

It was not useful to see
what my team mate(s)
were doing.

2 3 2 2 2.22

I liked seeing my team
mate(s) presence even
when I did not have any
direct benefit such as
conflict detection.

5 4 6 7 5.56

I was not comfortable
with others seeing infor-
mation about my activity.

2 3 1 2 2.00

Table II
PRESENCE (AWARENESS) RELATED QUESTIONS EXTRACTED FROM [7].

value, whereas developers 1 and 2, who worked remotely,
had the opportunity to benefit from information broadcast
by our plug-ins to increase their awareness on the other’s
activities.

The results obtained from the first pair of developers are
similar to the results in CollabVS study, which emphasizes
the need for awareness support in cases where developers
lose face-to-face communication.

For question 2, even though the second pair was not sure
whether the plug-ins helped them to maintain a high level of
awareness, they still found the available information useful,
which complies both with the first pair and the CollabVS
results.

As far as the aspect of privacy is concerned, the answers
are indicating that the developers were not bothered by the
fact that someone else could see what they were doing,
also meeting the CollabVS results. In fact, one can argue
that any instant messaging application like Skype or iChat
is displaying the same amount of privacy information, and
people have gotten used to them.

Q14: Please classify the following improvements in
terms of usefulness according to the scale: 1 = completely
useless, 2 = useless, 3 = probably useless, 4 = neutral,
5 probably useful, 6 = useful, 7 = very useful. We
summarized the answers indicated by the developers in
Table III.

The answers indicated by all developers show that there
is a wish for having more functionality available, which is
a strong argument in favor of tools like Syde and Scamp.

Observations: Overall, it seems that the developers
greatly appreciated the additional information that the Scamp
views provided them, without being bothered by their pres-
ence.

A fact that struck us when analyzing the data and con-
ducting the interviews was that the developers changed
their behavior after using Scamp for some time. While at
the beginning Scamp’s views were ignored, with time the

Answers Dev1 Dev2 Dev3 Dev4
Create a filter to allow developers to
choose which file types and which fold-
ers they are interested in.

6 7 7 7

Allow a developer to compare the most
up-to-date version of a file with his
version.

6 6 7 7

Add an option to automatically login to
Syde and load the Scamp views (a.k.a.
auto-connect).

7 7 7 7

Show the status (online/offline) of each
developer.

6 6 5 5

Provide a mechanism to resolve merge
conflicts automatically.

6 7 3 7

Show who is responsible for each
method inside a class that is being
edited.

5 6 6 6

Table III
ANSWERS GIVEN TO QUESTION 14

developers started not only to look at them to understand
what was going in on, especially when they were physically
distant, but also started to react on the events happening in
the views. The reactions usually came in the form of instant
messages going back and forth, asking for explanations. This
is much in line with our intentions about Syde and Scamp,
which is not only to augment awareness, but also to modify
the behavior of programmers to increase efficiency and
minimize conflicts. This indeed happened in both projects,
where both Syde and Scamp became second nature.

D. Reflections

While monitoring the two projects, a number of patterns
emerged from the views offered by Scamp.

The WordCloud view highlights, at every moment during
development, which classes are of interest. At first sight,
one may think that for a developer this view may be less
interesting, as opposed to the Buckets view, because usually
a developer knows on which part of the system people
are working. However, this is not true, and without the
help of Scamp, developers only know that something has
changed only after it has been committed to the repository.
According to the feedback given by the developers of our
case study, the information on WordCloud was fundamental
to spot when a source code started to be edited concurrently,
which immediately drove them to coordinate their work by
contacting each other through instant messaging.

The developers also saw great benefits in the Buckets
view and the decorations. The Buckets view is a good
means at supporting the notion of “real time”: at each and
every change by anyone working on the project, the buckets
are updated. This helps to instantaneously preempt conflicts
that would emerge at the level of an SCM commit: if a
bucket quickly receives many, differently colored items it
is obvious that a problem is in the making. The drawback
of the Buckets view is that its visual language needs to be

internalized, while the understanding of the other two views
is more immediate and intuitive.

The decoration is certainly the least intrusive view, and
the developers appreciated that it smoothly merged into
the development environment without occupying any extra
screen space. Of all views, this is probably the one that
would have the least acceptance problems, even by non-
visual individuals.

E. Threats to Validity

Although this initial case study shows that Scamp’s
lightweight and non-intrusive views were able to increase
the level of workspace awareness, the limited size of the
projects and number of developers involved prevent us from
drawing strong conclusions.

A number of other characteristics about the developers
might have influenced the results. First of all, working in
pairs, they only have one communication path to keep track
of. In addition, one of the groups reported that they worked
physically together most of the time, sometimes even doing
pair programming. In the latter case, Scamp’s views are not
useful, and indeed they deactivated them.

Another noteworthy aspect is that the developers in ques-
tion were fairly new to the Eclipse IDE, i.e., they had not
settled yet on a specific way to use the IDE, and accepting
an addition like the two plug-ins was not problematic. It is
probable that more expert programmers will oppose more
resistance to changing their ways of working, but this is a
reality that any recommender system must face.

Lastly, the qualitative evaluation could have been biased
by the fact that the authors of these tools are the same
persons who evaluate their course work. However, it is
important to point out that the professor responsible for
the course “Programming Fundamentals 2” is not involved
in this work, and that the students volunteered themselves
to use the tool knowing that this would not influence
whatsoever their grades on the course.

V. CONCLUSIONS AND FUTURE WORK

Collaborative and distributed software development is a
growing phenomenon. This is pushed on the one hand by
the surge of outsourcing and offshoring of projects, where
development teams distributed across the globe develop the
same system. On the other hand, this is nothing new and is
a standard practice in open-source development since years.

Such phenomenon is expected to have a number of
benefits compared to in-site software development: increased
productivity, cost reduction, sharing of knowledge, etc. How-
ever, a number of collaboration issues that are trivial to
solve when teams are co-located, become problematic when
distance separates teams.

In this paper, we presented a lightweight and non-intrusive
approach to augment team awareness, i.e., to increase the
level of developers knowledge about what is happening in

the project in terms of implementation changes. We aimed
at overcoming some of the drawbacks caused by the lack
of face-to-face communication, such as the loss of who is
knowledgeable about a class. The case study indicates that
developers benefited from the increased level of awareness.
They were able to avoid duplicated work, and to reduce the
number of merge conflicts.

As future work, we plan to enrich the capabilities of our
Syde and Scamp plug-ins in different dimensions. First of
all, we will apply real time reverse engineering on the code
to show to developers the emerging design of the system.
The great challenge of this approach is how to visually
represent the system in limited screen space remaining non-
intrusive. We also plan to enrich the event notifications by
directly alerting developers when conflicts might be emerg-
ing. Finally, Syde and Scamp will become more interactive,
helping developers to discover who they should look for
to ask about the functionalities of a class, or helping them
to resolve merge conflicts. In the long term, Syde and
Scamp should silently collect change information to not only
increase developers awareness, but also to assist them to
coordinate their work, and thus, proactively collaborate.

ACKNOWLEDGMENT

We gratefully acknowledge the financial support of the
Swiss National Science foundation for the project “RE-
BASE” (SNF Project No. 115990). We thank the students
participating in the projects and their willingness to partici-
pate to the interviews. We thank Romain Robbes and Alberto
Bacchelli for providing helpful comments.

REFERENCES

[1] A. Sarma, G. Bortis, and A. van der Hoek, “Towards support-
ing awareness of indirect conflicts across software configura-
tion management workspaces,” in Proceedings of ASE 2007
(22nd IEEE/ACM International Conference on Automated
Software Engineering. IEEE CS Press, 2007, pp. 94–103.

[2] W. F. Tichy, “Rcs – a system for version control,” Software
Practice and Experiece, vol. 15, no. 7, pp. 637–654, 1985.

[3] J. Estublier, D. Leblang, A. van der Hoek, R. Conradi,
G. Clemm, W. Ticky, and D. Wiborg-Weber, “Impact of
software engineering research on the practice of software
configuration management,” ACM Transactions on Software
Engineering and Methodology, vol. 14, no. 4, pp. 383–430,
2005.

[4] R. Sangwan, M. Bass, N. Mullick, D. Paulish, and
J. Kazmeier, Global Software Development Handbook. Auer-
bach Publications, 2006.

[5] J. Herbsleb, A. Mockus, T. Finholt, and R. Grinter, “Dis-
tance, dependencies, and delay in a global collaboration,” in
Proceedings of CSCW 2000 (ACM Conference on Computer
Supported Cooperative Work. ACM Press, 2000, pp. 319–
328.

[6] R. Frost, “Jazz and the eclipse way of collaboration,” IEEE
Software, vol. 24, no. 6, pp. 114–117, 2007.

[7] R. Hegde and P. Dewan, “Connecting programming envi-
ronments to support ad-hoc collaboration,” in Proceedings
of ASE 2008 (23rd IEEE/ACM International Conference on
Automated Software Engineering. IEEE CS Press, 2008, pp.
178–187.

[8] P. Dourish and V. Bellotti, “Awareness and coordination
in shared workspaces,” in Proceedings of CSCW 1992
(ACM conference on Computer-supported Cooperative Work).
ACM Press, 1992, pp. 107–114.

[9] M. Fowler, Refactoring - Improving the Design of Existing
Code. Addison-Wesley, 1999.

[10] L. Hattori and M. Lanza, “An environment for synchronous
software development,” in Proceedings of ICSE 2009 (31st
ACM/IEEE International Conference on Software Engineer-
ing - New Ideas and Emerging Results Track). IEEE CS
Press, 2009, pp. 223–226.

[11] ——, “Mining the history of synchronous changes to refine
code ownership,” in Proceedings of MSR 2009 (6th IEEE
Working Conference on Mining Software Repositories). IEEE
CS Press, 2009, pp. 141–150.

[12] A. Guzzi, “Supporting collaboration awareness in multi-
developer projects,” Master’s thesis, University of Lugano,
Jun. 2009.

[13] I. da Silva, P. Chen, C. V. der Westhuizen, R. Ripley,
and A. van der Hoek, “Lighthouse: Coordination through
emerging design,” in Proceedings of ETX 2006 (OOPSLA
Workshop on Eclipse Technology eXchange. ACM Press,
2006, pp. 11–15.

[14] A. Sarma, D. Redmiles, and A. van der Hoek, “Empirical
evidence of the benefits of workspace awareness in software
configuration management,” in Proceedings of FSE 2008
(16th ACM SIGSOFT International Symposium on Founda-
tions of software engineering. New York, NY, USA: ACM
Press, 2008, pp. 113–123.

[15] K. A. Schneider, C. Gutwin, R. Penner, and D. Paquette,
“Mining a software developers local interaction history,” in
Proceedings of MSR 2004 (1st International Workshop on
Mining Software Repositories, 2004, pp. 106–110.

[16] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson,
“FASTDash: a visual dashboard for fostering awareness in
software teams,” in Proceedings of CHI 2007 (25th SIGCHI
Conference on Human Factors in Computing Systems. New
York, NY, USA: ACM, 2007, pp. 1313–1322.

[17] R. Robbes, “Of change and software,” Ph.D. dissertation,
University of Lugano, Switzerland, Dec. 2008.

[18] R. Robbes and M. Lanza, “Spyware: A change-aware de-
velopment toolset,” in Proceedings of ICSE 2008 (30th
ACM/IEEE International Conference in Software Engineer-
ing). ACM Press, 2008, pp. 847–850.

	Introduction
	Related Work
	Tool Infrastructure: Scamp & Syde
	WordCloud View
	Buckets View
	Package Explorer Decoration

	Case Study
	The jArk Project
	The PacMan Project
	Qualitative Evaluation
	Reflections
	Threats to Validity

	Conclusions and Future Work
	References

