
A Flexible Framework to Support Collaborative Software Evolution Analysis

Marco D’Ambros Michele Lanza

REVEAL @ Faculty of Informatics – University of Lugano, Switzerland

Abstract

To understand the evolution of software researchers have
developed a plethora of tools to parse, model, and analyze
the history of systems. Despite their usefulness, a common
downside of such tools is that their use comes with many
strings attached, such as installation, data formats, usability,
etc. The result is that many tools are only used by their cre-
ators, which is detrimental to cross-fertilization of research
ideas and collaborative analysis.

In this paper we present the Churrasco framework, which
supports software evolution modeling, visualization and
analysis through a web interface. The user provides only
the URL of the SubVersion repository to be analyzed and, if
available, of the corresponding bug tracking system. Chur-
rasco processes the given data and automatically creates
and stores an evolutionary model in a centralized database.
This database, called Meta-base is connected to Churrasco
through object-relational persistence. The persistency mech-
anism is meta-described in terms of the EMOF meta-meta-
model and automatically generated based on any given evo-
lutionary meta-model. In case the meta-model changes, the
persistency mechanism is automatically updated.

After providing a detailed description of Churrasco, we
provide evidence, by means of an example scenario, that it
allows for collaborative software evolution analysis, based
on visualizations available on our analysis web portal.

1 Introduction

Software evolution analysis is concerned with the causes
and the effects of software change. There are a large number
of approaches, which all use different types of information
about the history and the (evolving) structure of a system.
The overall goal is on the one hand to perform retrospective
analysis, useful for a number of maintenance activities, and
on the other hand to predict the future evolution of a system.

Such analyses are intrinsically complex, because model-
ing the evolution of complex systems implies (1) the retrieval
of data from software repositories, such as CVS or SVN,
(2) the parsing of the obtained raw data in order to extract

the relevant facts and to minimize the noise that such large
data sets naturally exhibit, and (3) the population of models,
which can come as mere text files, be handled in memory,
or stored in a database. Researchers spend a large amount
of time doing these tasks, while ultimately the goal is to
analyze the populated models. Based on our own and other
researchers’ experiences we observed a number of concerns
which arise when designing, developing and using software
evolution analysis tools:

Modeling. Several, and largely similar, approaches
have been proposed to create and populate a model of an
evolving software system, considering a variety of informa-
tion sources, such as the histories of software artifacts (as
recorded by a versioning system), the problem reports stored
in respositories such as Bugzilla [1, 11], mail archives [13],
user documentation [3], etc. Even if these are comprehen-
sive for modeling the evolution, they are “hard-coded” in the
sense that their creators took deliberate design choices which
were in accordance with their research goals. However, this
has an impact on flexibility (e.g., if the meta-model needs
to be changed, what happens to all the previous work, the
tools, the case studies, etc.?) and extensibility (e.g., if the
analysis is extended to new types of information, how does
an existing meta-model need to be changed?).

Accessibility. Researchers have developed a plethora of
evolution analysis tools and environments. One sad but true
commonality among most of these prototypes is their limited
usability, i.e., often only the developers themselves know
how to use them, which hinders the development and/or
cross-fertilization of analysis techniques. There are some
notable exceptions, such as Kenyon [1] or Moose [8], which
have been used by a larger numbers of researchers over
the years, but they come with many strings attached (e.g.,
cumbersome installation procedures, un-documented data
exchange formats, etc.). Because of this variety of models
and tools, researchers investigated also ways for exchang-
ing information about software systems, such as exchange
languages and models [14, 22] for evolution analysis, ap-
proaches which however are seldom followed up because of
lack of time or manpower.

Collaboration. Results of analyses and findings on soft-
ware systems produced by tools are written into files and/or

Web Portal

Importer Visualizer
Extensible Evolutionary meta-model

Target System

SVN
Repository

Bugzilla
RepositorySource Code

MOOSE
Reengineering
Environment

Bugzilla
Module

SVN Module

Meta-base
Database

Object relational
mapping module

(GLORP)
Visualization

Module

Bugzilla bugs &
activities

SVN System
Complexity

Evolution Radar

Annotation Module

Annotation
meta-model

EMOF description

Versioning system
meta-model

EMOF description EMOF description

EMOF description

Defect meta-model

FAMIX
meta-model

EMOF description

...

Churrasco Components External Components

1

2

3

5
6

4

Figure 1. The architecture of the Churrasco framework.

manually crafted reports. To the knowledge of the authors,
there is no approach in which such results are incremen-
tally and consistently stored back into the analyzed models.
Such incrementally enriched software models would have
several advantages, as they would allow (1) other kinds of
analyses to benefit from the result of a previous analysis
(cross-fertilization of ideas/results), (2) different users to
collaboratively analyze a system, (3) the creation of a bench-
mark for analyses targeting the same problem, and (4) to
combine techniques targeting different problems.

In this paper we present a framework called Churrasco,
which hides all the data retrieval and processing tasks from
the users, to let them focus on the actual analysis. It pro-
vides an easily accessible interface over a web browser to
model the data sources to be analyzed. It copes with the
modeling and populating problems by providing a flexible
and extensible object-relational persistency mechanism. Any
data meta-model can be dynamically changed and extended,
and all the data is stored in a centralized database, thus tack-
ling the data exchange problem. In terms of analyses we
provide an extensible set of collaborative visual analyses
which are accessible over an interactive web interface, thus
tackling the problem of tool installation and configuration.
We support collaborative analysis by providing tools which
permit the annotation of the analyzed data. The user can thus
store the findings into a central DB to create an incrementally
enriched body of knowledge about a subject system, that can
be exploited by the subsequent Churrasco users.

Structure of the paper. In Section 2 we provide a de-
scription of the Churrasco framework, its architecture, and
its main components. We then showcase, by means of an
analysis scenario, collaborative and distributed software evo-
lution analysis using Churrasco (Section 3). We discuss our
approach in Section 4, survey related work in Section 5, and
conclude in Section 6 with a summary of our contributions.

2 The Churrasco Framework

Figure 1 shows Churrasco’s architecture in terms of its
internal components, its relationship to a target system to be
analyzed, and its connection to external components. In the
remainder of this section we discuss each internal component
in detail, namely:

1. The Extensible Evolutionary meta-model describes the
internal representation of software systems evolution,
which can be extended using the facilities provided by
the Meta-base module.

2. The Meta-base, the core component of Churrasco,
supports flexible and dynamic object-relational persis-
tency. The Meta-base uses the external component
GLORP, an object relational mapping module provid-
ing object-relational persistency, to read/write from/to
the database. The meta-base also uses the Moose reengi-
neering environment [8] to create a representation of
the source code based on the FAMIX meta-model.

3. The Bugzilla and SVN modules retrieve and process the
data from SVN and Bugzilla repositories.

4. The Web portal represents the front-end of the frame-
work accessible through a web browser.

5. The Visualization module supports software evolution
analysis by creating and exporting interactive Scalable
Vector Graphics1 (SVG) visualizations.

6. The Annotation module supports collaborative analysis
by enriching any entity in the system with annotations.
It communicates with the web visualizations to depict
the annotations within the visualizations.

1http://www.w3.org/Graphics/SVG/

2.1 The Extensible Evolutionary Meta-Model

Author Commit Version

Project ModuleArtifact

Comment Bug Report

Action

11

1

0..1

1 *

*

*

*

1

1 *

Bug
Attachment

Bug Activity

FAMIX
Meta-model

Versioning
System meta-

model
Defect meta-

model

* *

1
*

1*

1

*1

*

Figure 2. A subset of our extensible evolu-
tionary meta-model.

Using a union of different meta-models (depicted in Fig-
ure 2), we currently represent system evolution in 3 ways:

1. The Versioning System meta-model models the his-
tory of software artifacts, as recorded by a versioning system:
A software project is composed of a collection of software
artifacts and, when the information is available, of a collec-
tion of software modules. Each module in turn is composed
of software artifacts. A software artifact has a collection
of versions, which compose its history. Each version has a
commit performed by an author (who can enter a comment)
and can be affected by defects. Each commit can be tied to a
list of versions by actions such as “add”, “remove”, etc.

2. The Defect meta-model models bug reports as
recorded by bug tracking systems such as Bugzilla. The
core entity is the bug report, which internally models the
problem (description, location in the system), its criticality
(priority to fix and severity), the people involved (developer
in charge to fix, quality assurance), the condition in which
the bug was detected (operating system, platform) and the
state of the bug (status, e.g., new, resolved, closed etc. and
resolution, e.g., fixed, invalid, duplicate etc.). Each bug has
a collection of attachments (e.g., patches), a collection of
comments about the problem and possible solutions, and a
collection of software artifacts affected by it. The defect
meta-model takes time into account. Every field of a bug
can be modified over time thus generating a bug activity.
The activity records which field is changed, when, by whom
and the pair of old and new values. Activities are important
because they allow us to keep track of a bug’s life cycle, i.e.,
the sequence of statuses the bug went through.

3. The FAMIX meta-model [7] models one or more
versions (usually the last version, being the most relevant
one) of a system in a fine-grained way.

2.2 The Meta-base

The Meta-base [6] is the core module of Churrasco, which
provides flexibility and persistency to any meta-model in
general, and to our evolution meta-model in particular. It
takes as input a meta-model described in EMOF and outputs
a descriptor, which defines the mapping between the object
instances of the meta-model, i.e., the model, and tables in
the database. EMOF (Essential Meta Object Facilities) is a
subset of MOF2, a meta-meta-model used to describe meta-
models. The Meta-base uses an implementation of EMOF
called Meta3. The Meta-base ensures persistency with the
object-relational module GLORP [15] (Generic Lightweight
Object-Relational Persistence). The Meta-base provides
flexibility by dynamically and automatically adapting to
any provided meta-model, by generating descriptors of the
mapping between the database and the meta-model. This
allows the Churrasco users to dynamically both modify and
extend the meta-model of the evolution of the system.

Example. We provide an example meta-model, to show
how it has to be described to be used in the Meta-base.

Passport
number
owner
expireDate

Person
name
age
passport
subscriptions

Subscription
number
name
owner
issuedDate

StudentId
id
student

Student
studentId
school
enrolExams

Exam
name
enroledStudents

0..1 1 1 0..*

11 0..*0..*

Figure 3. Our example meta-model.

Figure 3 shows the UML diagram of the example meta-
model, while the code snippet below shows its EMOF de-
scription (due to lack of space we only show the part for
Person and Passport).

Person>>metamodelAge
ˆ(EMOF.Property name: #age type: Number)

Person>>metamodelName
ˆ(EMOF.Property name: #name type: String)

Person>>metamodelPassport
ˆ(EMOF.Property name: #passport
opposite: #owner type: Passport)

Person>>metamodelSubscription
ˆ(EMOF.Property name: #subscription opposite: #owner

type: Subscription multiplicity: #many)
Passport>>metamodelExpireDate
ˆ(EMOF.Property name: #expireDate type: Date)

Passport>>metamodelNumber
ˆ(EMOF.Property name: #number type: Number)

Passport>>metamodelOwner
ˆ(EMOF.Property name: #owner

opposite: #passport type: Person)

2MOF and EMOF are standards defined by the OMG (Object Manage-
ment Group) for Model Driven Engineering. For more details about MOF
and EMOF consult the specifications at: http://www.omg.org/docs/html/06-
01-01/Output/06-01-01.htm

3http://smallwiki.unibe.ch/moose/tools/meta/

Once the meta-description is defined as shown in the code
snippet, we can automatically generate the object-relational
descriptor, and then read and write objects instances of the
meta-model from and to the database in a transparent way.

Person
dbid school studentid passport age name classtype

1
2
3
4
5
6

UZH
USI
NULL
NULL
NULL
Politecnico

NULL
NULL
NULL

2
3

1

4
5
1
6
2
3

22
20
27
28
31
18

Student
Student
Person
Person
Person
Student

Anna Cazzulani
Giorgio Diegoli
Peppe Castiglia
Michele Vanzo
Jhonny Bravo
Carmelo Varicella

dbid personid examid
1
2
3
4
5
6

2
1
6
2
6
1

4
4
1

2
3

1
7 6 2

PersonExamLink
dbid id student

1
2
3

1
3
2 2

6
1

StudentId
dbid name

Exam

1
2
3

Calcolus
Algebra
Greek

4 Physics

Figure 4. The generated database.

Figure 4 shows the database tables automatically gener-
ated and populated. As shown in this example, the Meta-
base supports one-to-one, one-to-many and many-to-many
relationships among meta-model entities. It also supports
inheritance between meta-model classes by means of filtered
inheritance. All of the classes are represented in a single
table, with a discriminator field for which subclass they are.
The table has the union of all possible fields for all classes.

2.3 The SVN and Bugzilla Modules

The SVN and Bugzilla modules retrieve and process data
from, respectively, Subversion and Bugzilla repositories.
They take as input the URL of the repositories and then
populate the models using the Meta-base. The modules are
initially launched from the web importer (discussed later) to
create the models, and then they automatically update all the
models in the database every night, with the new information
(new commits or bug reports).

The SVN module populates the versioning system model,
by checking out (or updating) the project with the given
repository, creating and parsing SVN log files. The checked
out system is then used to create the FAMIX model of the
system with the external component Moose.

The Bugzilla module retrieves and parses all the bug re-
ports (in XML format) from the given repository. Then it
populates the corresponding part of the defect model. It
then retrieves all the bug activities from the given reposi-
tory. Since Bugzilla does not provide this information in
XML format, HTML-pages have to be parsed and the cor-
responding part of the model is populated. Finally, it links
software artifacts with bug reports. To do this it combines
the technique proposed in [11] (matching bug report ids and

keywords in the commit comments) with a timestamp based
approach. The algorithm starts by looking into bug activities
and extracting bug fixing activities, i.e., activities in which
the status changed to resolved, verified or closed. For this
activities the algorithm takes the timestamp and the author
and then it looks for a commit performed by the same author
in a temporally close timestamp. The underlying idea is that
the author fixes the bug, commits the changes and changes
the bug report to a fixed status. For the comparison between
SVN and Bugzilla authors (two different accounts denoting
the same person), we use a set of heuristics.

(a) The importer page.

(b) The projects page.

Figure 5. The Churrasco Web Portal.

2.4 The Web Portal

The web portal is the front end interface provided by
Churrasco. It allows users both to create the models, and to
analyze them by means of two web-based visualizations.

Figure 5(a) shows the importer web page of Churrasco,
ready to import the gcc4 software system. All the infor-

4http://gcc.gnu.org/

Figure 6. The web portal of Churrasco showing an interactive Evolution Radar visualization.

mation needed to create the model is the URL of the SVN
repository and, if available, the URLs of the bugzilla repos-
itory (one for bug reports, one for bug activities). Since,
depending on the size of the software system to be imported,
this can take a long time, the user can also indicate the e-mail
address to be notified when the importing is finished.

Figure 5(b) shows the projects web page of Churrasco,
which contains a list of projects available in the database,
and for a selected project, information such as the number of
files and commits, the time period (time between the first and
last commits), the number of bugs etc. The page provides
actions to the user, i.e., links to the visualizations and to the
database contents.

Figure 6 shows one visualization web page. The page is
composed of three main parts: (1) The actual view, (2) the
application control panel, and (3) the collaboration panel.
The view and application control panel are described in
Section 2.5, the collaboration panel in Section 2.6.

2.5 The Visualization Module

The visualization module is responsible for creating in-
teractive visualizations within the Churrasco web portal, to

support the analysis of the evolution of a software system.
At the moment there are two visualizations available:

The Evolution Radar [4, 5] supports software evolution
analysis by depicting integrated logical coupling information,
both at the file and module level. The left part of Figure 7
shows the principle of the Evolution Radar. The visualization
shows the dependencies between a module, represented as a
circle and placed in the center of a pie chart, and all the other
modules in the system represented as sectors of the pie chart.
In each sector, all the files belonging to the corresponding
module are represented as colored circles and positioned
according to the change coupling they have with the module
in the center (the higher the coupling the closer to the center).
The evolution radar visualization is created from versioning
system models.

The System Complexity [16] supports the understanding of
object oriented system, by enriching a simple 2D depiction of
classes and inheritance relationships with software metrics
(see the right part of Figure 7). The size of the nodes is
proportional to the number of attributes (width) and methods
(height), while the color renders the number of lines of code.
This view is created using a FAMIX model.

Both visualizations are created by the visualization mod-

Module1

Module
in focus

Files

d

Module2

Module3

Class A

Class B

Width metric

Height
metric Color metric

(greyscale)

Evolution Radar System Complexity

Inheritance
relation

Figure 7. The principles of the Evolution
Radar and System Complexity visualizations.

ule in two steps: (1) first the visualizations are generated by
the Evolution Radar tool or by the Mondrian framework [18]
(residing in Moose) and then (2) the web versions of them
are created using the Episode framework [21] residing within
Churrasco’s visualization module. To make the visualiza-
tions interactive within the web portal, Episode attaches
callbacks to the figures. Figure 6 shows an example of an
Evolution Radar visualization rendered in the Churrasco web
portal. The part marked as 1 is the view where all the figures
are rendered as SVG graphics. The figures are interactive:
Clicking on one of them will highlight the figure, generate
a context menu (as the example in Figure 6) and show the
figure details in the application control panel (marked as 2).
This panel, different from visualization to visualization, pro-
vides the control (on top) to apply, modify and interact with
the visualization, and shows the information (at the bottom)
about the selected figure (which entity it represents and the
properties of the metrics used in the view).

2.6 The Annotation Module

The Annotation module of Churrasco supports collabo-
rative analysis: The idea is that each model entity can be
enriched with annotations, and these annotations can be used
(1) to store findings and results incrementally into the model
and (2) to let different users collaborate in the analysis of a
system in parallel.

Annotations can be attached to any model entity, by
means of the proxy pattern [12], and each entity can have
several annotations. The annotation is composed of: The
author who wrote it, the creation timestamp and the text.
The part marked as 3 in Figure 6, called collaboration panel,
shows how the annotations are used in the Churrasco web
portal. The collaboration panel, which has the same structure
in all the visualizations, is composed of three parts: The first
one, on top, lists all the people who annotated the visualiza-
tions, i.e., people collaborating in the analysis. When one
of these names is clicked, all the figures annotated by the

corresponding person are highlighted in the view, to see on
which part of the system that person is working on. The
second part of the collaboration panel, in the middle, lists
all the annotations of the selected figure, showing the author,
the date and time and the text. The last part of the panel, at
the very bottom, is used to create a new annotation to attach
to the selected figure. Since the database behind Churrasco
is centralized, when a new annotation is added it is imme-
diately visible to all the people using the web visualization.
This allows different users to simultaneously work on the
same system and to collaborate in the analysis.

3 Collaborative Software Evolution Analysis

In this section we illustrate how Churrasco supports col-
laborative software evolution analysis. For space reasons
we do not describe an entire collaborative session, but just
anecdotal evidence that different, geographically distributed
users collaborate, using dedicated visualization, in the anal-
ysis of a system. Our goal is not to prove the usefulness of
the visualizations themselves, but to demonstrate that they
can be used to do collaborative software evolution analysis.

Scenario. Two Churrasco users, i.e., the authors of this
article, work on different machines in different locations to
study the evolution of ArgoUML (http://argouml.tigris.org/),
a UML modeling tool, composed of ca. 1800 Java classes,
developed over the course of ca. 7 years.

Churrasco in Action. The users first create the evolu-
tionary model by indicating the URL of the ArgoUML SVN
repository in the importer page of Churrasco5. Once the
model is created and stored in the centralized database, they
start the analysis with a system complexity view of the sys-
tem. Each user renders the visualization in his web browser,
and attaches annotations to interesting figures in the visual-
ization. The annotations are immediately visible to the other
user on the left side of the browser window.

While Michele is analyzing the entire system, Marco fo-
cuses (creating an ad-hoc view) on the Model namespace,
which contains several classes characterized by large number
of methods and many lines of code. The entities annotated by
Marco in the fine-grained view are then visible to Michele in
the coarse grained system complexity. Marco has the advan-
tage of a more focused view, while Michele can see the entire
context. Figure 8 shows a screenshot of Marco’s web view
on the left, while Michele’s view is depicted on the right
(only the view, without the entire web page for space rea-
sons). Marco selected the FacadeMDRImpl class (marked
as 1), and is reading Michele’s comments about that class
(marked as 2 in Michele’s view). In the meantime, Michele
highlighted all the figures annotated by Marco (marked as 2,
3, 4). We have two examples of collaboration:

5Bug information is not needed in this example scenario.

Model namespace
(Marco's View)

Entire system
(Michele's View)

1
Annotations

2

4

3

5

6

7

8

Figure 8. The web portal of Churrasco visualizing two system complexities of ArgoUML: For the
entire system (right) and for the Model namespace (left).

1. Marco, focusing on the Model namespace, annotates
that the class FacadeMDRImpl (marked as 1) shows
symptoms of bad design: it has 350 methods, 3400 lines
of code, only 3 attributes, and it is the only implemen-
tor of the Facade interface (marked as 5). Michele
adds a second annotation that Marco’s observation
holds also with respect to the entire system, and that
FacadeMDRImpl (marked as 4) is the class with the
highest number of methods in the entire system.

2. Marco sees that several classes in the
Factory hierarchy (mark as 6) implement
the Factory interface and also inherit from
the AbstractUmlModelFactoryMDR class
(marked as 7) belonging to another hierarchy.
This is not visible in Michele’s large scale
view (where Factory is marked as 2 and
AbstractUmlModelFactoryMDR as 3). Michele
discovers that fact by highlighting the entities annotated
by Marco and then reading the annotations.

Both now want to find out whether these design prob-
lems have always been present in the system. They analyze

the system history in terms of its logical coupling using the
Evolution Radar. This visualization is time-dependent, i.e.,
different radar views are used to represent different time
intervals. Figure 9 shows two evolution radar visualizations:
The large one on the left corresponds to the time interval Oc-
tober 2004 – October 2005, while the small one on the right
(without the left panels for space reasons) corresponds to Oc-
tober 2006 – October 2007. They both represent the depen-
dencies of the Diagram module (in the center) with all the
other modules in ArgoUML, by rendering individual classes.
Marco is looking at the time interval 2004/05 (left part of Fig-
ure 9). He selects the class UMLFactoryImpl (marked as
1), belonging to the Model module, because it is close to the
center (high coupling with the Diagram module in the cen-
ter) and because it is large (the size maps the number of com-
mits in the corresponding time interval). Marco attaches to
the class the annotation that it is potentially harmful6, given
the high coupling with a different module. In the meantime
Michele is looking at the time interval 2006/07 (right part of
Figure 9). He highlights the classes annotated by Marco and
sees the UMLFactoryImpl class. In Michele’s radar the

6See [4] for a detailed description of the Evolution Radar.

2004 - 2005

Annotations

1

Diagram module

2006 - 2007

2

Figure 9. The web portal of Churrasco visualizing two Evolution Radars of ArgoUML: 2004-2005 (left)
and 2006-2007 (right).

class is not coupled at all with the Diagram module, i.e.,
it is at the boundary of the view (marked as 2). Therefore,
Michele adds an annotation to the class saying that it is prob-
ably not harmful, since the coupling decreased over time.
After reading this comment, Marco goes back to the system
complexity view, to see the structural property of the class in
the system. The UMLFactoryImpl class (marked as 8 in
Figure 8) has 22 methods, 9 attributes and 600 LOC. It imple-
ments the interfaces AbstractUmlModelFactoryMDR
and UMLFactory. After seeing the class in the system
complexity, Marco adds another annotation in the radar say-
ing that the class is not harmful after all. This information
can then be used by other users in the future. Suppose that
Romain wants to join the analysis with Marco and Michele,
or to start from their results. He can first see on which entities
the previous users worked, by highlighting them, and then
reading the corresponding annotations to get the previously
acquired knowledge about the system.

This simple scenario shows: (1) how the knowledge about
a system, gained in software evolution analysis activities, can

be incrementally built, (2) how different users from different
locations can collaborate, and (3) how different visualization
techniques can be combined to improve the analysis.

4 Discussion

The main benefits of Churrasco consist in its accessibility
and flexibility. All the features of the framework can be
accessed by a web browser: (1) The importers to create and
populate evolutionary models of software systems, (2) the
system complexity visualization, to support the understand-
ing of the structure of the system and (3) the evolution radar
view to study the evolution of the system modules in terms
of logical coupling. The visualizations are interactive, and
they allow the user to inspect the entities represented by the
figures, to apply new visualizations on-the-fly from the con-
text menus and to navigate back and forth among different
views. The framework can be extended with respect to the
meta-model and with respect to the visualizations. Using the
facilities provided by the meta-base, the underlying evolu-

tionary meta-model of Churrasco can be enriched with new
types of information. Besides the system complexity and
the evolution radar, other visualizations, based on versioning
systems, bug tracking systems or FAMIX data, can be ported
to the web and included in the framework.

The importer part of Churrasco has been validated with
both medium (e.g., ArgoUML with 300 KLOC) and large
scale (e.g., gcc with 3.4 MLOC) systems, while the two visu-
alizations have been validated only on medium size systems,
i.e., their scalability is not proven yet. The collaboration part
also needs to be tested with larger numbers of participants.

Concerning interoperability Churrasco can export models
of software systems in different formats (e.g., XML, database
dump). However, interoperability can be improved by (1)
exporting the models in standard interchange formats such
as TA-RE [14] and (2) exporting the annotations so that they
can be imported and used by other software evolution tools.

5 Related Work

Two approaches similar to Churrasco are Kenyon [1] by
Bevan et al. and the Release History Database (RHDB) [11],
by Fischer et al. The Kenyon framework provides an ex-
tensible infrastructure to retrieve the history of a software
project from a SCM repository or a set of releases, and to
process the retrieved information. It also provides a common
interface based on Object-Relational persistency to access
the processed data stored in a database to perform software
evolution analysis. Kenyon retrieves information from a
number of SCM systems, such as CVS, SVN, ClearCase,
etc., but without considering other sources, such as bug
tracking systems or mail archives. The RHDB was the first
approach to link software artifacts with bug reports. The
data is retrieved from versioning systems and bug track-
ing systems, processed and stored in a database for later
analysis. A number of techniques were proposed on top
of the RHDB: In [9] Fischer et al. used multidimensional
scaling to visualize the evolution of features, with the aim
of uncover hidden dependencies between software features.
Pinzger et al. in [20] proposed a visualization technique,
based on Kiviat diagrams, to provide integrated views on
source code metrics across different releases together with
logical coupling information computed from CVS log files.
The EvoGraph visualization approach [10] combines release
history data and source code changes to assess structural
stability and recurring modifications.

Other two approaches which combine and link informa-
tion from versioning systems and bug tracking systems, but
which also use other sources of information are Hipikat [23]
by C̆ubranić et al. and softChange [13] by German. Both
techniques use information from mail archives and, in addi-
tion, Hipikat also considers data from documentation. The
information stored by Hipikat forms an “implicit group mem-

ory” (group of developers) which is then used to facilitate
the insertion of newcomers in the group, by recommending
relevant artifacts for specific tasks. The data retrieved and
processed by softChange is used for two types of software
evolution analysis: (1) Statistics of the overall evolution of
the project, and (2) analysis of the relationships among files
and authors. These approaches rely on dedicated tools for
both the data retrieval and processing tasks and for the sub-
sequent visualization and analysis. In Churrasco all these
activities can be done with just a web browser. Moreover,
these approaches are based on “hard coded” meta-models,
while Churrasco provides flexibility and extensibility to the
evolutionary meta-model, by means of the meta-base.

A number of approaches support web-based software
evolution analysis and visualizations. Beyer and Hassan pro-
posed Evolution Storyboards [2], a visualization technique
that offers dynamic views. The storyboards, rendered as
SVG files (visible in a web browser), emphasizes the history
of a project using a sequence of panels, each representing
a particular time period in the life of a software project.
These visualizations are not, or only partially, interactive,
i.e., they only show the names of the entities represented by
the SVG or VRML figures. In contrast the views offered
in the Churrasco web portal are fully interactive, providing
context menus for the figures and navigation capabilities.
In [17] the authors presented REportal, a web-based portal
site for the reverse engineering of software systems. RE-
portal allows users to upload their code (Java or C++) and
then to browse, analyze and query it. These services are
implemented by reverse engineering tools developed by the
authors over the years. Reportal supports software analysis
through browsing and querying, whereas Churrasco supports
the analysis by means of interactive visualizations. In [19]
Nentwich et al. introduced BOX, a portable, distributed and
interoperable approach to browse UML models. BOX trans-
lates a UML model that is represented in XMI into VML
(Vector Markup Language), which can be directly displayed
in a web browser. BOX enables software engineers to ac-
cess and review UML models without the need to purchase
licenses of tools that produced the models. While BOX is
focused on design documents, such as UML diagrams, in
Churrasco we focus on the history of software systems.

A major difference between all the mentioned approaches
and Churrasco is that these techniques support single user
software evolution analysis, while Churrasco supports col-
laborative analysis.

6 Conclusions

In this paper we presented Churrasco, a novel framework
to support collaborative software evolution analysis and vi-
sualization. The main features of the framework, and their
relevance for software evolution analysis, are:

Flexible and extensible meta-model support. The meta-
model used in Churrasco to describe the evolution of a soft-
ware system can be dynamically changed and/or extended,
by means of the meta-base component.

Accessibility. The framework is fully web-based, i.e., the
entire analysis of a software system, from the initial model
creation to the final study, can be performed from a web
browser, without having to install or configure any tool.

Collaboration. Churrasco relies on a centralized database
and supports annotations. Thus, the knowledge of the
system, gained during the analysis, can be incrementally
stored on the model of the system itself. We have shown,
through a simple, but real, scenario, how Churrasco supports
collaborative software evolution analysis.

Acknowledgments. We gratefully acknowledge the financial support of the
Swiss National Science foundation for the project “DiCoSA - Distributed
Collaborative Software Analysis” (SNF Project No. 118063) and the Eu-
ropean Smalltalk User Group (http://www.esug.org). We thank
Damien Pollet for his feedback on drafts of this paper.

References

[1] J. Bevan, J. E. James Whitehead, S. Kim, and M. Godfrey.
Facilitating software evolution research with kenyon. In
Proceedings of ESEC/FSE 2005, pages 177–186, New York,
NY, USA, 2005. ACM.

[2] D. Beyer and A. E. Hassan. Animated visualization of soft-
ware history using evolution storyboards. In Proceedings
of the 13th Working Conference on Reverse Engineering
(WCRE 2006), pages 199–210, Washington, DC, USA, 2006.
IEEE Computer Society.

[3] D. Cubranic and G. Murphy. Hipikat: Recommending per-
tinent software development artifacts. In Proceedings 25th
International Conference on Software Engineering (ICSE
2003), pages 408–418, New York NY, 2003. ACM Press.

[4] M. D’Ambros and M. Lanza. Reverse engineering with logi-
cal coupling. In Proceedings of WCRE 2006 (13th Working
Conference on Reverse Engineering), pages 189–198. IEEE
CS Press, 2006.

[5] M. D’Ambros, M. Lanza, and M. Lungu. The evolution
radar: Visualizing integrated logical coupling information.
In Proceedings of MSR 2006 (3rd International Workshop on
Mining Software Repositories), pages 26–32, 2006.

[6] M. D’Ambros, M. Lanza, and M. Pinzger. The metabase:
Generating object persistency using meta descriptions. In
Proceedings of FAMOOSR 2007 (1st Workshop on FAMIX
and Moose in Reengineering), 2007.

[7] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 — The
FAMOOS Information Exchange Model. Technical report,
University of Bern, 2001.

[8] S. Ducasse, T. Gı̂rba, and O. Nierstrasz. Moose: an agile
reengineering environment. In Proceedings of ESEC/FSE
2005, pages 99–102, Sept. 2005. Tool demo.

[9] M. Fischer and H. Gall. Visualizing feature evolution of large-
scale software based on problem and modification report data.

Journal of Software Maintenance and Evolution: Research
and Practice, 16(6):385–403, 2004.

[10] M. Fischer and H. C. Gall. Evograph: A lightweight approach
to evolutionary and structural analysis of large software sys-
tems. In Proceedings of the 13th Working Conference on
Reverse Engineering (WCRE), pages 179–188, Benevento,
Italy, October 2006. IEEE Computer Society.

[11] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking sys-
tems. In Proceedings International Conference on Software
Maintenance (ICSM 2003), pages 23–32, Los Alamitos CA,
Sept. 2003. IEEE Computer Society Press.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Reading, Mass., 1995.

[13] D. M. German, A. Hindle, and N. Jordan. Visualizing the
evolution of software using softchange. In Proceedings of the
16th International Conference on Software Engineering &
Knowledge Engineering (SEKE 2004), pages 336–341, New
York NY, 2004. ACM Press.

[14] S. Kim, T. Zimmermann, M. Kim, A. Hassan, A. Mockus,
T. Gı̂rba, M. Pinzger, J. Whitehead, and A. Zeller. TA-RE: An
exchange language for mining software repositories. In Pro-
ceedings Workshop on Mining Software Repositories (MSR
2006), pages 22–25, 2006.

[15] A. Knight. Glorp: generic lightweight object-relational per-
sistence. In OOPSLA ’00: Addendum to the 2000 proceed-
ings of the conference on Object-oriented programming, sys-
tems, languages, and applications (Addendum), pages 173–
174, New York, NY, USA, 2000. ACM Press.

[16] M. Lanza and S. Ducasse. Polymetric views — a lightweight
visual approach to reverse engineering. Transactions on
Software Engineering (TSE), 29(9):782–795, Sept. 2003.

[17] S. Mancoridis, T. S. Souder, Y.-F. Chen, E. R. Gansner, and
J. L. Korn. Reportal: A web-based portal site for reverse engi-
neering. In Proceedings of the Eighth Working Conference on
Reverse Engineering (WCRE 2001), page 221, Washington,
DC, USA, 2001. IEEE Computer Society.

[18] M. Meyer, T. Gı̂rba, and M. Lungu. Mondrian: An agile
visualization framework. In ACM Symposium on Software
Visualization (SoftVis 2006), pages 135–144, New York, NY,
USA, 2006. ACM Press.

[19] C. Nentwich, W. Emmerich, A. Finkelstein, and A. Zisman.
BOX: Browsing objects in XML. Software Practice and
Experience, 30(15):1661–1676, 2000.

[20] M. Pinzger, H. Gall, M. Fischer, and M. Lanza. Visualizing
multiple evolution metrics. In Proceedings of SoftVis 2005
(2nd ACM Symposium on Software Visualization), pages 67–
75, 2005.

[21] M. Primi. The episode framework - exporting visualization
tools to the web. Bachelor’s thesis, University of Lugano,
June 2007.

[22] S. Tichelaar, S. Ducasse, and S. Demeyer. FAMIX: Exchange
experiences with CDIF and XMI. In Proceedings of the
ICSE 2000 Workshop on Standard Exchange Format (WoSEF
2000), June 2000.

[23] D. C̆ubranić, G. C. Murphy, J. Singer, and K. S. Booth.
Hipikat: A project memory for software development. IEEE
Transactions on Software Engineering, 31(6):446–465, 2005.

