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Abstract

As software systems evolve, they become more complex
and harder to understand and maintain. Certain reverse en-
gineering techniques attempt to reconstruct software mod-
els from source code with the help of a parser for the source
language. Unfortunately a great deal of effort may be re-
quired to build a specialized parser for a legacy program-
ming language or dialect. On the other hand, (i) we typi-
cally do not need a complete parser that recognizes all lan-
guage constructs, and (ii) we have a rich supply of (legacy)
examples. We present an approach to use these facts to
rapidly and incrementally develop parsers as follows: we
specify mappings from source code examples to model ele-
ments; we use the mappings to generate a parser; we parse
as much code as we can; we use the exceptional cases to de-
velop new example mappings; and we iterate. Experiments
with Java and Ruby, two very different languages, suggest
that our approach can be a very efficient and effective way
to rapidly construct software models from legacy code.
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1 Introduction

As software evolves, it becomes more complex and
harder to maintain [20]. Additional effort is therefore re-
quired to simplify the software. Reverse engineering is the
process of analyzing a software system to build a higher-
level model of that system [5]. Reverse engineering is part
of a broader reengineering lifecycle in which software sys-
tems are analyzed, models are built, problems are detected,

and various measures are taken to rejuvenate and simplify
the software to enable further change [7, 24].

Many different sources of information can be exploited
to reverse engineer a software system, such as stakehold-
ers’ experiences, documentation, bug reports, the running
system and so on, but undoubtedly one of the most reli-
able resources, and sometimes the only one, is the source
code itself. Experience shows that in many legacy projects
high-level design documentation will be out of sync with
the source code, so the high-level models will need to be
reconstructed from the code. Various reverse engineering
tools and approaches do not operate directly on the source
code, but rather parse the code and build an abstract model
of the code conforming to some reverse-engineering meta-
model. This model is then used as the basis for various
analyses, queries and manipulations [25].

A special parser is needed that can construct model el-
ements that are understood by reverse engineering tools.
If one is lucky enough to have available a general pars-
ing framework for the language in question, a specialized
model builder can be built by a talented and experienced de-
veloper with a few days of effort. Unfortunately there exist
thousands of programming languages, and even mainstream
languages exist in many dialects. For many languages, off-
the-shelf parsers that can be adapted to the task of model
reconstruction simply do not exist. This simple fact can
greatly increase the effort required to build the parser from
days to weeks (or worse). As a consequence, a reverse en-
gineering project for a “new” language can be stymied at its
very inception due the lack of a suitable parser.

We envision an approach in which a software reverse en-
gineering expert should be able to spend no more than a few
hours to construct a model-building parser for source code

http://www.iam.unibe.ch/~scg
http://www.inf.unisi.ch/faculty/lanza/
http://www.iam.unibe.ch/~fki


written in an arbitrary programming language. We exploit
two important facts concerning the task at hand:

1. A complete parser is typically not required, as in many
analyses, many programming features can be ignored.
For example, many useful analyses can already be per-
formed with coarse-grained information about classes,
methods, the inheritance relations between classes,
and the lines of code inside each method [16].

2. The code of the legacy system offers a large amount of
code examples that the reverse engineer understands.

Based on these two facts, we propose the following ap-
proach in which:

1. the engineer specifies a set of mappings from source
code examples to model elements of the reverse-
engineering meta-model,

2. the mappings are used to automatically generate a
parser for the examples that will directly produce
model elements,

3. the resulting parser is applied to some portion of the
code base,

4. software artifacts that cannot be parsed are flagged and
are used to construct new mapping examples,

5. a new parser is generated and applied to the remaining
code base,

6. the process is repeated until all (or enough of) the code
is analyzed.

The key benefits of this approach are:

• The engineer specifies mappings, not grammar rules,
so does not need to be an expert in parser technology.

• The model-building parser is developed quickly and
iteratively. One can interrupt the process when
“enough” code has been converted to the the reverse-
engineering meta-model. “Enough” in this case is de-
pendent on the reverse engineering goal.

• A single, consistent grammar is not needed. Multiple
parsers based on different sets of examples can be used
to parse the code base with different strategies.

Structure of the paper. In Section 2 we describe
the technical details of our approach. In Section 3 we
present an overview of CODESNOOPER, our experimen-
tal implementation of example-driven model reconstruc-
tion. We use CODESNOOPER to reconstruct software mod-
els that conform to the FAMIX reverse-engineering meta-
model. In Section 4 we discuss two case studies in which
CODESNOOPER is applied to Java and Ruby code. We con-
tinue in Section 5 with a discussion of the achievements and
the current limitations of our approach. We briefly discuss
related work in Section 6, and we conclude with some re-
marks about future and ongoing work in Section 7.

2 Example-Driven Parsing

The initial phases of a reengineering project can be criti-
cal for assessing the state of the software and for establish-
ing confidence with various stakeholders [7]. A large num-
ber of reverse engineering and software analysis tools and
techniques have been developed over the years, but many of
them require the source code to be parsed before the anal-
ysis technique can be applied. This can be a major obsta-
cle for the vast majority of software projects written in pro-
gramming languages for which off-the-shelf parsers ready
to be adapted to new tasks simply do not exist.

We envision a scenario in which a reverse engineer could
quickly develop an ad hoc parser generated from examples
of mappings from code to model elements. For the approach
to be of practical value, the following points should be ad-
dressed:

• There should be few assumptions about the host lan-
guage.

• There should be a simple, high-level interface for spec-
ifying mappings from example code to model ele-
ments.

• The approach should be able to handle any kind of in-
put, i.e., even code containing errors.

• The approach should be incremental and iterative —
specify mappings, generate parser, parse code, identify
any code that cannot be parsed, and so on.

• Whenever the generated parsers cannot parse some
given code, focussed feedback should be generated in-
dicating which examples could not be parsed, to aid the
user in specifying new mappings for those examples.

Figure 1. CodeSnooper overview



Figure 1 presents an overview of a typical usage scenario
of our approach supported by CODESNOOPER, a proof-of-
concept tool to support example-driven model reconstruc-
tion (see Section 3).

1. Legacy source code is imported as source code nodes.

2. The user specifies example mappings from code to
model elements.

3. The mappings are used to generate a BNF grammar.

4. The grammar is used to generate a parser.

5. Source code is parsed by one or more parsers to pro-
duce source code nodes.

6. The parsed nodes are exported as model elements.

2.1 Scanning

Lexical analysis is performed by a simple, generic scan-
ner that breaks source code files into streams of tokens rep-
resenting identifiers, numbers, comments and whitespace.
The parser, rather than the scanner, is given the task of dis-
tinguishing which “identifiers” actually represent keywords
in the language. Similarly, special character sequences can
be recognized directly in the parser as language construct
non-terminals.

The effect of this simple approach is that at most a few
minutes are dedicated to adapting the scanner to a new lan-
guage. The reverse engineer can then focus his or her at-
tention on the modeling task, rather than fiddling with the
scanner definition. In general, we expect that a set of stan-
dard scanner definitions will suffice for most languages, so
even this task could be streamlined.

The example depicted below shows the scanner defini-
tion that we use for parsing source code written in Java.

<DECIMAL INTEGER>: 0
| [1−9][0−9]∗ ;

<HEX INTEGER>: 0 [ xX][0−9a−fA−F]+ ;
<OCTAL INTEGER>: 0[0−7]+ ;
<IDENTIFIER>: [ a−zA−Z $ ] \w∗ ;
<eol >: \ r

| \n
| \ r \n ;

<comment>: \ / \ / [ ˆ \ r \n]∗<eol>
| \ /\∗ [ ˆ∗ ]∗\∗+

( [ ˆ / ∗ ] [ ˆ ∗ ] ∗ \ ∗ + ) ∗ \ / ;
<whitespaces >: [ \ f \ t \v ]+ ;

Figure 2. Java scanner

2.2 Mapping Code to Model Elements

Consider the following snippet of Java code.

c lass AJavaClass {
p u b l i c vo id h e l l o ( ) {

System . out . p r i n t l n ( ” He l lo World ! ” ) ;
}

}

Our simple scanner will convert this to a stream of to-
kens. We must now specify how these tokens map to the tar-
get model elements of the reverse-engineering meta-model
(e.g., class, method — see Section 3). First, we must specify
a signature for a class by reducing the example to:

c lass AJavaClass { <not known> }

The code within the curly brackets (described as
<not known>) does not matter at this stage, since we want
to concentrate on the definition of class entity itself.

We must also specify that class, { and } are “key-
words” and that AJavaClass is the name of the entity.
We can similarly specify that a method has the following
signature:

p u b l i c vo id h e l l o ( ) { <not known> }

In this case public, void, {, }, ( and ) are the key-
words and hello is the name.

Figure 3 shows how the entire example is represented as
a tree of nodes. Each nodes knows which target element of
the model it represents, if any. For example, the first node
is a Class and has as name AJavaClass.

2.3 Grammar generation

Based on the signatures we have specified we can gener-
ate a grammar. We traverse the example tree and generate
a grammar production for each node that maps to a target
element of the meta-model, in our case FAMIX[8]. From
the above example we obtain the following grammar rules:

Class : : = ” c lass ” <IDENTIFIER>
” { ” Method∗ ” } ” ;

Method : : = ” p u b l i c ” ” vo id ” <IDENTIFIER>
” ( ” ” ) ” ” { ” not known∗ ” } ” ;

The non-terminal of the rule is named after the target
element of the node. The production is generated from the
signature. Keywords become literals. Subnodes translate
to non-terminals unless they do not have a target, in which
case they translate to the catch-all target not_known.

Suppose we start with a different example in which we
are only interested in public methods:



Figure 3. Example nodes

c lass AJavaClass {
p r i v a t e S t r i n g h e l l o = ” He l lo World ! ” ;
p u b l i c vo id h e l l o ( ) {

System . out . p r i n t l n ( t h i s . h e l l o ) ;
}

}

In this case the nodes representing the private attribute
and the body of the public method will have no target, as
shown in Figure 4.

This example generates a different grammar than the pre-
vious one:

Class : : = ” c lass ” <IDENTIFIER>
” { ” ( not known | Method )∗ ” } ” ;

Method : : = ” p u b l i c ” ” vo id ” <IDENTIFIER>
” ( ” ” ) ” ” { ” not known∗ ” } ” ;

The grammars we built are based on multiple examples.
This will result in multiple production rules for the same
non-terminals, which we have to merge. For example, these
rules:

Class : : = ” c lass ” <IDENTIFIER>
” { ” Method∗ ” } ” ;

Method : : = ” p u b l i c ” ” vo id ” <IDENTIFIER>
” ( ” ” ) ” ” { ” not known∗ ” } ” ;

Class : : = ” c lass ” <IDENTIFIER>
” { ” Method∗ ” } ” ;

Method : : = ” p r i v a t e ” ” vo id ” <IDENTIFIER>
” ( ” ” ) ” ” { ” not known∗ ” } ” ;

Figure 4. Nodes without a target

will be merged into the following grammar:

Class : : = ” c lass ” <IDENTIFIER>
” { ” Method∗ ” } ” ;

Method : : = ” p u b l i c ” ” vo id ” <IDENTIFIER>
” ( ” ” ) ” ” { ” not known∗ ” } ”

| ” p r i v a t e ” ” vo id ” <IDENTIFIER>
” ( ” ” ) ” ” { ” not known∗ ” } ” ;

In most cases merging is the right thing to do, but in
certain obscure situations this may result in a grammar that
accepts invalid code [12]. Since we assume that the legacy
code we are parsing is syntactically correct, this is not an
issue in practice.

2.4 The generated parser

From the generated grammar we can now generate a
parser which will build model elements from the parsed
code. If the parser generation fails, we may have to review
the examples, regenerate the grammar and attempt to build
the parser afresh. The most common difficulty is that the
generated grammars may be ambiguous. We will revisit this
issue in Section 5, from the point of view of the experiments
we conducted on Java and Ruby case studies.

The generated parser builds a parse tree of nodes repre-
senting entities of the meta-model. The parse tree can then
be processed in a variety of ways, for instance the tree can
be traversed by a fixed tool that generates a model descrip-



tion in some interchange format such as XMI1 or GXL2.
Note than we can generate more than one parser, and that

the multiple parsers can work in parallel. For example, we
may specify example mappings for both Java classes and
Java interfaces. Instead of being required to generate a sin-
gle, consistent grammar that will handle both classes and
interfaces, we can generate two grammars and two parsers.
When one parser fails to recognize a model element, we can
simply try another. This leads to a larger number of simpler
parsers and somewhat alleviates the problem of dealing with
ambiguous grammars.

3 CodeSnooper

CODESNOOPER is a proof-of-concept prototype (see
Figure 5) that uses example-driven model reconstruc-
tion [12]. CODESNOOPER is implemented in VISUAL-
WORKSSMALLTALK3 using the SMACC4 compiler com-
piler.

3.1 Reverse engineering context

In our specific implementation, we use MOOSE as the
target reverse engineering platform [25, 9]. MOOSE is a
language-independent reengineering environment that pro-
vides a variety of common services for reengineering tools
including metrics evaluation and visualization, a model
repository, and generic GUI support for querying, brows-
ing and grouping. A key bottleneck in applying MOOSE to
different legacy projects is generating software models from
source code of new languages.

In MOOSE meta-models are implemented as instances
of the MOF5 meta-meta-model, OMG’s meta-object fa-
cility. In particular, MOOSE implements the FAMIX re-
verse and re-engineering meta-model [29, 28] and, as such,
FAMIX is an instance of MOF. This allowed for a generic
implementation of CODESNOOPER: we did not hardcode
CODESNOOPER to work directly with FAMIX, but we ac-
tually used the MOF descriptions to generate the mappings
from the code to the meta-model elements.

FAMIX is a language-independent meta-model to support
reverse engineering and reengineering operations. In Fig-
ure 6 we see the core of the FAMIX meta-model. FAMIX is
an extensible meta-model which can be adapted to different
programming languages and to the needs of different kinds
of reverse and reengineering tools. For the purpose of this
paper we only focus on the FAMIX core model elements.

1http://www.omg.org/technology/documents/formal/xmi.htm
2http://www.gupro.de/GXL/
3http://smalltalk.cincom.com
4http://www.refactory.com/Software/SmaCC
5http://www.omg.org/mof/

Figure 6. Famix

We have used example-driven model reconstruction as a
front-end to build FAMIX source models for MOOSE.

3.2 Generating the model

A scanner definition must be provided for each language,
but this is usually a straightforward task. CODESNOOPER
focuses instead on the interface needed for dynamically
specifying the mapping from code examples to model el-
ements.

In Figure 5 we see a portion of CODESNOOPER’s
user interface which allows one to select syntactic ele-
ments and flag them as representing either certain language
constructs (i.e., “keywords”) or FAMIX model elements.
CODESNOOPER also provides means to manage keywords,
generate a grammar, modify the grammar or the scanner,
and to parse the set of input files with one or more generated
parsers. The file list (Figure 5, left-hand pane) is updated to
indicate which source files have been successfully parsed or
not.

4 Case studies

We have applied CODESNOOPER to two very differ-
ent case studies to assess the feasibility of example-driven
model reconstruction. The Java case study allows us to as-
sess the recall achieved with CODESNOOPER by compari-
son with results obtained with a robust Java parser that is
available to us for loading software models into MOOSE
from Java source code. The Ruby case study allows us to
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Figure 5. CodeSnooper: Main View while specifying an example

assess the approach when applied to a language with a syn-
tax that is very different from Java.

4.1 JBoss

As first case study we worked with JBoss, an open source
implementation of the J2EE application server specifica-
tions. We analyzed the jboss-j2ee package of JBoss, con-
sisting of 363 Java files.

We proceeded iteratively, starting with just three exam-
ples:

1. The first example is a normal Java class that we
map to a FAMIX Class without any attributes set.
javax/ejb/AccessLocalException.java

2. The second example is an abstract Java class
that we map to a FAMIX Class. For that en-
tity we also set the “isAbstract” attribute to true.
javax/xml/soap/SOAPPart.java

3. As third example we take a Java interface that
we map also to a FAMIX Class. We also set

the ‘isAbstract’ attribute for that entity to true.
javax/ejb/EJBObject.java

This yields the following grammar (reduce actions not
shown):

Class : : = ” c lass ” <IDENTIFIER> ’name ’
not known∗ ” { ” Class not known∗ ” } ”

| ” i n t e r f a c e ” <IDENTIFIER> ’name ’
not known∗ ” { ” Class not known∗ ” } ”

| ” abs t r ac t ” ” c lass ” <IDENTIFIER>
not known∗ ” { ” Class not known∗ ” } ” ;

The resulting parser can parse 355 of the 363 Java files.
Of the eight files that cannot be parsed, two contain unbal-
anced brackets or comment characters within a string and
the other six use the keyword class in an unexpected con-
text (i.e. to denote an inner class). To solve the first problem
we would just need a slightly more sophisticated scanner to
remove the problematic strings.

We can solve the second problem by ignoring class in
the context of a class. In this way we can parse more files,
but we fail then to detect inner classes. Comparing this first



result to that obtained with a robust parser we find that we
only miss five classes:

Precise Model Our Model
Number of Model Classes 366 361
Number of Abstract Classes 233 233

In a second iteration we give examples of methods in ab-
stract and concrete classes as well as interfaces. This leads
to three separate grammars which cannot easily be merged
since this would lead to an ambiguous grammar [12]. In-
stead we generate three parsers and apply them in parallel
to the source files. We now obtain the following results:

Precise Model Our Model
Number of Model Classes 366 316
Number of Abstract Classes 233 233
Total Number Of Methods 1887 1648

In addition to the two files we could not parse earlier,
we now have some problems due to (i) attributes being con-
fused with methods, (ii) language constructs (like static)
occurring in unexpected contexts, (iii) different kinds of
definitions of methods. Additional examples would help to
solve these problems.

In a third iteration we add examples to recognize at-
tributes. Once again we obtain three parsers based on three
sets of examples for abstract classes, concrete classes and
interfaces. We obtain the following results:

Precise Model Our Model
Number of Model Classes 366 346
Number of Abstract Classes 233 230
Total Number Of Methods 1887 1780
Total Number of Attributes 395 304

This process can be repeated to cover more and more of
the subject language. The question on when to stop can be
answered with “When the results are good enough”. Good
enough in this context means when we have enough infor-
mation for a specific reverse engineering task. For example,
a “System Complexity View” [18] is a visualization used to
obtain an initial impression of a legacy software system. To
generate such a view we need to parse a significant number
of the classes, identify subclass relations, and establish the
numbers of methods and attributes of each class. Even if we
parse only 80% of the code, we can still get an initial im-
pression of the state of the system. If on the other we would
want to display a “Class Blueprint” [17], a semantically en-
riched visualization of the internal structure of classes we
would need a refined grammar to extract more information.
The “good enough” is thus given by the reverse engineering
goals, which vary from case to case.

4.2 Ruby

As second case study we chose the language Ruby, be-
cause it is quite different from Java and it has a non-trivial
grammar. We took the unit testing library distributed with
Ruby version 1.8.2 released at the end of 2004. This part of
the library contains 22 files written in Ruby. We do not have
a precise parser for Ruby that can generate a FAMIX model
(actually, to our knowledge, for Ruby there is only one pre-
cise parser, namely the Ruby interpreter itself). Instead we
retrieve the reference model by inspecting the source code
manually.

In Ruby there are Classes and Modules. Modules are
collections of Methods and Constants. They cannot gen-
erate instances. However they can be mixed into Classes
and other Modules. A Module cannot inherit from anything.
Modules also have the function of Namespaces. Ruby does
not support Abstract Classes [22].

For the definition of the scanner tokens for identifiers and
comments we use the following regular expressions:

<IDENTIFIER>: [ a−zA−Z $ ] \w∗ ( \? | \ ! ) ? ;
<comment>: \# [ ˆ \ r \n ]∗ <eol> ;

Using just 2 examples each of namespaces, classes,
methods and attributes, we are able to parse 7 of the 22 files.

Precise Model 7 files Our Model
Number of
Namespaces 8 6 6
Number of
Model Classes 25 4 4
Total Number of
Methods 247 26 26
Total Number of
Attributes 136 9 9

Amongst the files we could not parse, there are 4 large files
containing GUI code. If we ignore these files, we are able
to detect about 25% of the target elements.

There are two main reasons that so few files can be suc-
cessfully parsed:

1. The comment character # occurs frequently in strings
and regular expressions, causing our simple-minded
scanner to fail. A better scanner would fix this prob-
lem. With some simple preprocessing (removing any
hash character that occurs inside a string and removing
all comments) we can improve recall to 65-85%.

2. Ruby offers a very rich syntax for control constructs,
allowing the same keywords to occur in many different
positions and contexts. One would need many more
examples to recognize these constructs.



5 Discussion

Our experience with these preliminary case studies
demonstrates that the idea of example-driven model recon-
struction is feasible: using only a naive scanner and a few
examples that map source code to model elements we can
generate parsers that build models of a significant portion
of the total source code to models. In the ideal case, the
user must only invest a modest amount of time (i.e., hours
rather than days) to reconstruct a usable software model.
Our observation is that the 80/20 rule applies in this case: it
is straight forward to parse a relevant amount of code (say
80%), but very time-consuming to generate a full parser,
which is however not needed in most cases. The end of
the reconstruction process is thus given by the reverse engi-
neering context, i.e. as soon as we can parse enough code
to allow us to perform a specific type of analysis, we stop
the reconstruction process and concentrate on the analysis.

To make the approach really practical for a realistic range
of languages, and robust enough for users not expert in
parser technology, however, a number of issues need to be
resolved, and more extensive case studies need to be car-
ried out. Although there are numerous shortcomings and
obstacles, the path towards a practical and usable approach
is relatively clear.

The first problem is that of ambiguous grammars. Al-
though the parser generator we used (SmaCC) can deal
with ambiguous grammars, the results are often not usable
since conflicts may not be resolved. As a consequence
CODESNOOPER rejects examples that lead to ambiguous
grammars. When this occurs, the user could either try to
specify different examples, or use multiple sets of examples
to generate multiple, unambiguous grammars, for multiple
parallel parsers.

Another possibility to cope with ambiguity is probabilis-
tic grammars [32]. Here a probability is assigned to each
grammar production. Consequently the probability of a
parse tree (or, equivalently, an input string) can be computed
and in case a code fragment has several possible derivations,
a decision can be made for the one that has the highest prob-
ability.

The next difficulty concerns false positives (code frag-
ments classified as the wrong kind of model element) and
false negatives (missed model elements). As long as no
parse errors occur and no robust parser is available, false
positives or negatives can only be detected manually. More
examples are needed to generate more precise parsers. It is
possible that a more sophisticated user interface could help
by allowing the user to mark which source code has been
correctly parsed. Code already correctly classified could
then be used as a benchmark to test the quality of parsers
generated from newer examples, thus compensating par-
tially for the lack of a robust parser.

Incorrectly identified tokens are a major source of prob-
lems. Since we are using very simple-minded scanners, to-
kens like classmay be recognized as keywords when they
should not be. There are essentially two solutions: either we
can ignore more things — i.e., we ignore certain keywords
like class within a given context, thus possibly losing in-
formation — or we can detect more things — i.e., we can
work with richer scanners. It is easy to imagine that a small
library of moderately rich scanners could be used to cover
a wide range of programming languages. However a key
assumption of the entire approach is that the reverse engi-
neer should not be required to directly edit either the scan-
ner or the parser specifications. An open research question
is whether the approach could be generalized to “example
driven scanning”.

Complex control structures in languages like Ruby are
another thorny issue. Keywords like end are used both to
delimit the model elements we are looking for as well as
within expressions that occur inside those elements. To cor-
rectly recognize methods and classes, we must also recog-
nize constructs that we may not necessarily be interested in.
Once again additional examples may be needed to correctly
identify the boundaries of model elements.

6 Related work

Many reengineering frameworks use a form of fuzzy
parsing in order to support more programming languages or
more dialects of the same programming language. A fuzzy
parser extracts a partial source code model by skipping all
input until an anchor terminal is found. Then usual context-
free analysis is attempted using a production starting with
the found anchor terminal [13].

With island grammars [23] we get robust parsers. An is-
land grammar is a grammar that consists of detailed pro-
ductions describing certain constructs of interest (the is-
lands) and liberal productions that catch the remainder (the
water). Our approach exploits this idea since our mappings
may specify that certain constructs correspond to “water”
(i.e., the not_known parts). By varying the amount and
details in productions for the constructs of interest, we can
trade off accuracy, completeness and development speed.
Useful variants of island grammars include lake grammars
(a grammar extended with productions for water), island
with lakes and even lakes with islands [23].

In contrast to island grammars, a tolerant grammar [11]
uses an already available single base-line grammar as a
point-of-reference to reduce both false positives and false
negatives.

The problem we address in this paper is related to gram-
matical inference [6]. Given a set S of sentences, the task
of grammatical inference is to derive a grammar that gener-
ates S. This task, however, is more general than the problem



considered in this paper as we assume that a mapping from
the examples to the target model elements is known.

RegReg is a generator of robust parsers for irregular lan-
guages [19]. The generated parsers are based on a cascade
of lexers. Each lexer acts at a certain level and uses as in-
put the stream of tokens produced by the lexer one level
above: Level 1 deals only with characters, level 2 is based
on tokens produced by level 1 and level 3 is based on tokens
from level 2. There is no limit set on the number of levels
although at least one level is required. RegReg can be used
to implement both island and fuzzy parsing.

A generalized LR parser (GLR) uses parallel parsers to
explore different ways to proceed when shift/reduce or re-
duce/reduce conflicts arise. If the conflict is due to the need
for a lookahead, the forked parsers die. Parsers proceed in
parallel and synchronize on shift actions: Parsers that are in
the same LR state are merged together. The results are parse
bushes or forests opposed to plain parse trees. The num-
ber of trees is reduced by applying syntactic disambiguation
rules. If there is more than one tree left over at the end, the
user must make a selection. This approach is based on the
optimistic assumption that large parts of the input can be
analyzed with a plain LR parser without the requirement to
clone LR stacks [31].

DURA is a parser generator that uses backtracking to re-
solve conflicts. Compared with a plain LR parser, DURA-
generated parsers provide an “undo” operation in addition
to “shift” and “reduce”. DURA takes a more optimistic
view than GLR parsing: Not only can a plain LR parser
handle most of the input, but in case of conflicts, it does not
need to go very far to backtrack if it selects the wrong path
[4].

Earley parsing [10, 3] is a technique that can parse any
context-free grammars. It can cope in particular with am-
biguous grammars. There has been renewed interest in
Earley parsing for implementing little languages [2] and
domain-specific languages [30]. A powerful extension of
Earley parsing is minimum distance error-correcting pars-
ing [1, 21]. This technique is based on error productions
that can be automatically generated and are added to a
grammar. A minimum distance error-correcting parser is
able to handle any arbitrary syntactically ill-formed input
string, x, by providing the most similar element, y, from
the underlying language, together with the parse trees of x
and y.

Revealer [26, 27] is a reverse engineering tool that uses
a pattern language to recognize architectural elements in
source code. Patterns are specified as XML documents con-
forming to the Revealer DTD. Revealer combines lexical
and syntactic analysis by allowing the user to specify just
the code fragments of interest.

Lämmel and Verhoef have developed an approach to
semi-automatically recover grammars of legacy languages

from numerous resources, including language references,
compilers and other artifacts [15, 14]. They have been able,
for example, to construct a running parser for VS COBOL
II in a few weeks for use in a variety of tools, considerably
less than the 2-3 man-years estimated. They use a series of
techniques to automatically extract grammars from various
sources, automate testing of parsers, and transform gram-
mars specified with diverse formalisms.

The key idea behind this paper is to to use mappings
from example source code fragments to model elements to
automatically generate parsers that will recognize model el-
ements.

7 Conclusions

Example-driven model reconstruction offers a
lightweight means to quickly construct software mod-
els for legacy software in the absence of a specialized
robust parser for the programming language in question.
In principle, a reverse engineer could spend a few hours
developing examples to load the software model, and spend
more productive time analyzing the model.

CODESNOOPER, our proof-of-concept prototype
demonstrates that the process of specifying mapping
examples and generating parsers can be driven by a simple
graphical user interface. Case studies have shown that by
specifying only a few examples, one can automatically
generate software models that cover a large portion of Java
code.

More difficulties were encountered with Ruby code, for
technical reasons that can surely be surmounted. The
parsers generated from the example mappings are often am-
biguous. This problem is alleviated by the fact that we can
generate multiple unambiguous parsers instead, and apply
them in parallel to the source code. Another possibility
to deal with ambiguous grammars is to generate an Earley
parser instead of an LALR parser.

The experiments only made use of minimal scanners. It
is likely that more sophisticated scanners would improve
the quality of the resulting parsers. This however would
place more of a burden on the end user. It is possible that
libraries of relatively standard scanners for comments,
strings and other most common constructs would reduce
this burden.
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