
Exploring Inter-Module Relationships in Evolving Software Systems

Mircea LunguandMichele Lanza
Faculty of Informatics

University of Lugano, Switzerland

Abstract

Many of the existing approaches to reverse architect-
ing –the reverse engineering of the architecture of software
systems– are based on software exploration tools which pro-
vide interactive ways of exploring the system. These tools
start with high-level views of the system and refine them
with drill-down techniques applied on the high-level enti-
ties such as modules and packages, leaving aside valuable
information contained in the dependencies between them.

In this article we argue that the visualization of
inter-module relations bears great potential for support-
ing the understanding of large evolving software systems.
We present two concrete examples of such visualiza-
tions. The first, The Semantic Dependency Matrix is a
technique for displaying details about a dependency be-
tween two modules which groups together classes with
similar behavior. The second, The Edge Evolution Film-
strip presents the evolution of an inter-module relation
through multiple versions of the system. Based on our ex-
perience with the Edge Evolution Film Strip, we propose
a pattern language for inter-module relationships. We ex-
emplify both the visualizations and the pattern language
with examples from two large open source software sys-
tems.

1. Introduction

The IEEE 1471-2000 standard defines software architec-
ture as “the fundamental organization of a [software] sys-
tem embodied in its components, their relationships to each
other, and to the environment, and the principles guiding its
design and evolution.”

An architecture can be recorded by a written de-
scription that is organized into one or more constituents
called architectural views[18], such as the module view,
the component-and-connector view, and the alloca-
tion view[3]. In the context of this paper we adopt the
module view. However, even when the architecture is doc-
umented at the time of its development, evolutionary pro-

cesses lead to a decay of the initial design and results in a
separation between theas-designedand as-built architec-
tures [6].

Because the architecture of the software systems is an
important asset for many software engineering tasks such
as migrations, impact analysis or feature additions, recov-
ering the architecture is an important reverse engineering
activity[18, 20, 19] which has to rely on the only truthful
source of information: the source code.

Some of the existing approaches to architecture recov-
ery are highly dependent on visualization and interaction
[7, 17, 16, 24]. Out of these, a distinct class is the top-
down exploration tools which use interactive exploration
techniques to navigate hierarchical decompositions of soft-
ware. Many existing exploration approaches put little em-
phasis on the importance of the dependency edges between
the modules. Tools such as Bauhaus[11] and Rigi[15] that
recover dependency graphs from the systems usually focus
on the nodes in the graph and represent inter-module depen-
dencies as mere arrows.

In this paper we argue that dependencies are important
for the understanding of the system and that more elaborate
representations[12] of the dependencies are useful to under-
stand inter-module relationships which ultimately represent
architectural ties. We present a technique for the visualiza-
tion of inter-module dependencies based on multi-version
analysis calledfilm strip. Visualizing the inter-module rela-
tionships by means of the film strip leads to the detection
of evolutionary patterns in the relationships between mod-
ules. We apply the technique in a reverse engineering con-
text by analyzing large open-source systems.

Structure of the paper. In Section 2 we introduce our
model of inter-module relationships and the way that we
use it in the context of software exploration. In Section 3 we
present the Semantic Dependency Matrix and in Section 4
the Edge Evolution Film Strip. Section 5, presents a set of
patterns of evolution for inter-module relations that we have
defined based on our experience of applying the Edge Evo-
lution Filmstrip on several large software systems. In Sec-
tion 6 we discuss our approaches . We end by looking at re-
lated work in Section 7 and conclude by summarizing our
contributions and looking at possible continuations of the



work in Section 8. Appendix A presents details about Ar-
goUML and Azureus, the two systems we analyzed.

2. Software Exploration

Some programming languages feature modules as first-
level entities, while others provide constructs that do notdi-
rectly map to a module in the sense of an architectural com-
ponent. In these cases, the module structure is piggybacked
on other mechanisms such as Java packages or C/C++ di-
rectories. Our only assumption about modules is that they
are containers for other modules1 or software artifacts.

Based on our assumption, the modules are only contain-
ers, and there are noexplicit dependenciesbetween them,
such as the dependencies between Java packages defined by
the import declaration. On the other hand,explicit depen-
denciesexist between the artifacts contained in the mod-
ules, such as class inheritance, method invocations and vari-
able accesses. Based on these low-level, explicit dependen-
cies, we define high-level,implicit dependenciesbetween
modules as aggregations of the low-level dependencies. In
this work we distinguish between two types of implicit re-
lations between modules:dependenciesandrelations.

Inter-Module Dependencies. We consider a high-level,
implicit dependencyof typeT between a client mod-
ule (Mc) and a provider module (Mp) to be a relation
defined by the set of all the relations of typeT be-
tween all the low-level artefacts contained inMc and
all the low-level artefacts contained inMp. It follows
that there are various types of implicit dependencies
between two modules (e.g.,inheritance dependencies,
invocation dependencies,etc.) and that a dependency
between two modules is directed. From the various
properties that can be defined for an implicit depen-
dency, we use thecardinality of the set of low-level
abstracted dependencies as a measure of the strength
of the dependency between the two modules.

Inter-Module Relations. We define the set of all the im-
plicit dependencies between the two modules as an
inter-module relation. Due to the recursive nature of
our definition of module, implicit relationships exist
between modules residing at any abstraction level in
the module hierarchy. A relation between two modules
exists if there is at least one implicit dependency be-
tween them.

Figure 1 presents two modules between which the low-
level dependencies can be abstracted to three implicit de-
pendenciesID1, ID2 andID3.

1 The contained modules do not need to be necessarily of the same type
as the containers,e.g.,in Java packages are containers for classes and
other packages while classes are containers for methods andattributes.

We argue that detailed visual representations of inter-
module relations and inter-module dependencies are useful
for the understanding of the system and its dynamics.

Module 1 Module 2

C2

C1

B1

B2

relationship

typeA

ID2 = dependency(M1,M2,typeA)

C4

C5

B3

B4

ID1 = dependency (M1,M2,typeB)

relationship

typeB

ID3 = dependency(M2,M1,typeA)

Figure 1. The relationship between Module 1
and Module 2 is the set containing the three
implicit dependencies (ID1, ID2 and ID3).

Exploration perspectives. In this paper we pro-
vide examples from our exploration prototype named
Softwarenaut[13, 22] (see Figure 2), aimed at explor-
ing hierarchical decompositions of software by starting
with a high level view and continuously refining it us-
ing exploratory operations and filtering. The goal of the
exploration process is to obtain views which are rele-
vant for the architecture of the system.

Softwarenaut provides complementary perspectives on
the analyzed system. The main perspective is theExplo-
ration Viewwhere an enhanced graph-based representation
is used to present views of the interactions between the
modules in the system. In Figure 2 the Exploration View
is the left panel in the figure. Each module is represented
by a figure which combines metric and structural informa-
tion by overlapping the representation of the module hier-
archy as a tree on top of a colored square proportional to
the size of the module. This representation allows for ex-
ample us to observe that the biggest module in the analyzed
system isorg.argouml.uml. The module plays a central role
in terms of interaction with other modules because of the
many incoming and outgoing arrows.

The arrows between modules represent the relations be-
tween them. Every arrow between two modules represents
an implicit dependency between the two modules. Differ-
ent types of implicit dependencies are represented with dif-
ferent colors (red for the inheritance dependencies, black
for the invocation dependencies). The width of each arrow
is linearly proportional to the cardinality of the set of low-



Evolution of 

the selected 

relation

Selected 

relation

Figure 2. Softwarenaut exploring ArgoUML v.0.20. The edges are filtered by their age, with only the
ones that exist in both the first (0.10) and the last (0.20) ana lyzed version visible. The red edges
represent inheritance dependencies and the black ones invo cation dependencies. The right panel
presents the evolution through 6 versions of the selected de pendency.

level dependencies abstracted in the corresponding edge.
To support the navigation in the exploration perspective,

Softwarenaut provides the following operations:

• Expand.A node is replaced by the nodes representing
its children and the edges between them.

• Collapse.A module node, together with all the nodes
representing the sibling modules, is removed from the
view and replaced by the parent module node.

• Filter. To tackle information overload, during the ex-
ploration process filters need to be applied such that
only specific types of elements are visible. Filters can
be applied to modules or edges and can be defined
based on metric or structural properties. In the example
from Figure 2 we applied a filter that hides all the de-
pendency edges which are not present in both the first

and the last versions of the system. This allows us to
start the analysis with the relationships which are prob-
ably more important to the architecture of the system.

Complementing the main exploration perspective, the
Detail View (the right panel in Figure 2) provides a wide
range of detail views for the node or edge in focus. In this
way, during the exploration of the system, the user can vi-
sually query various elements for details.

In this paper we argue for the importance of the detail
views on bothrelationsandimplicit dependenciesbetween
the modules. In the following sections we present two such
detail views: the first, theSemantic Dependency Matrixis
aimed at providing a visual summary of an implicit depen-
dency while the second, theEdge Evolution Filmstripis tar-
geted at visualizing the evolution of an inter-module rela-
tion.



3. The Semantic Dependency Matrix

Construction Principles. The Semantic Dependency
Matrix is a visualization technique used for providing a
high-level perspective on an implicit invocation dependency
between two modules, and in the same time, a starting point
for further exploration of the methods and classes involved
in the dependency.

The matrix has two main properties: (1) it emphasizes
the important properties of the classes and methods from
the client and the provider modules that are involved in the
dependency, and (2) it groups the client classes such that
the ones which have similar interaction patterns with the
provider, and therefore are probably semantically similar,
are in spatial proximity.

The matrix is built by rendering the client classes in
columns and the provider methods, grouped by class, in
rows (alternate horizontal bands of gray and white repre-
sent classes). If a client class invokes a provider method at
least once, we put a mark at the intersection of the corre-
sponding column and row. The shape of this mark presents
information about the provider method and its color inten-
sity represents the number of times a given class invokes a
certain method.

This information is useful in understanding the com-
position and the strength of the dependency. However, in
order to understand the reasons behind a dependency we
group the client classes based on their patterns of interac-
tion with the provider. To do this, we define for every client
class a signature which is a column in the matrix. Then,
by hierarchically clustering the classes using as distancethe
hamming distance between signatures, and then arrange the
client classes along the x-axis.

The matrix is interactive so the user can select classes or
methods of interest and jump to the code or spawn new vi-
sualizations of them.

Interpretation. Figure 3 presents the Semantic
Dependency Matrix of the dependency between the
com.elitis.azureusandorg.gudy.azureus2.core3
modules in Azureus. Figure 3 illustrates how the construc-
tion algorithm groups together the client classes with
similar interaction patterns. The group marked (1) con-
sists of classes which only depend on a single method in
the provider (theprintStackTracemethod). Group (2) rep-
resents a cluster of classes which depend mainly on a
group of methods from a memory allocation class. The
group marked as (3) uses a wide range of functions in the
provider package. At closer inspection we found out that
the client classes in this group are at the core of the sys-
tem, such as AzureusCoreImpl (the class which initial-
izes the system), DHTControllerImpl (class implementing
the DHT subsystem), or PiecePickerImpl (class which man-
ages the download of parts of torrents).

1 2 3

Client classes

P
ro
v
id
e
r 
m
e
th
o
d
s
 g
ro
u
p
e
d
 b
y
 c
la
s
s

Figure 3. The Semantic Dependency Ma-
trix for the dependency between com and
org.gudy.azureus.core3 in Azureus

4. The Edge Evolution Film Strip

Construction Principles. The film strip is a com-
posite visualization of the evolution of arelation be-
tween two modules. Figure 4 represents an enlarged
view of the right panel from Figure 2, which presents a
film strip of the relation between the ArgoUML mod-
ulesuml andpersistence2. The figure presents the way
the relationship between the two modules evolves dur-
ing six versions of the system (versions are aligned verti-
cally from top to bottom in chronological order).

In the film strip, the arrows between the modules repre-
sentimplicit dependenciesof different types (the invocation
dependencies are represented in black and the inheritance
dependencies are represented in red). The width of the de-
pendency arrows is proportional to the number of explicit,
low-level dependencies abstracted in the corresponding im-
plicit dependency. The representation of the width of the de-
pendencies provides insight into the quantitative dynamics
of the inter-package relationship.

Using this type of visualization one can understand the
dynamics of a relation but if he wants to understand in de-

2 See the Appendix for details about the sizes and the choice of versions
for the two discussed systems



uml persistence

Figure 4. The film strip of the re-
lation between org.argouml.uml and
org.argouml.persistence.

tail the reasons for the existence of a specific implicit de-
pendency (i.e., a single arrow in the figure) he would have
to use a more detailed visual representation, such as the Se-
mantic Dependency Matrix presented in Section 3.

The need to switch between representations makes the
interaction an important part of the Edge Evolution Film
Strip. The user can select any of the edges and query it for
its contents or spawn new exploration sessions on its con-
tents.

Interpretation. Figure 4 represents a detail view
of the dependency edge betweenorg.argouml.uml
and org.argouml.persistence, two of the pack-
ages in the ArgoUML case study.

The uml module is on the left side of the image and

the persistence module is on the right. The difference
in size between the two modules is due to the fact that the
uml module is much larger (52KLOC in the last version)
than thepersistence module (3KLOC in the last ver-
sion). We can see that while theuml structure and size de-
veloped slowly over time, thepersistence module dis-
appeared between versions 0-14 and 0-16. We can see how
during the lifetime of the system, the relation between the
two modules was continuously changing: if at the begin-
ning there were weak invocation dependencies in both di-
rections, later the dependencies disappeared and in the last
two versions appeared again but stronger.

The film strip tells the story of the evolution of certain re-
lationship between two modules. When the reverse engineer
needs to understand a particular implicit dependency, he
needs another visualization technique which will be specific
to that type of dependency. In this case, by inspecting the
dependency between the two packages in version 0.12 we
found out that theuml package depends onpersistence
package mainly because of the functionality provided by
theDBLoadandDBStoreclasses, which handle saving and
loading a model from a database. By inspecting the depen-
dency in version 0.18 when it appears again stronger, we
found that this time one of the main actor classes in the
provider (i.e.,persistence) is thePersistenceManagerclass,
a singleton that handles saving and loading the models in
various formats like XMI, UML,etc.The functionality re-
mained the same, the implementation changed.

5. Inter-Module Relation Evolution Patterns

Using the film strip, we distilled a set of patterns with re-
spect to the way that inter-module relations evolve. The pat-
terns are not mutually exclusive, but they can be divided in
two categories and inside the categories they are mutually
exclusive. The two categories are:

1. Age-related patterns, based on the historical presence
of an inter-module relation. We distinguish between
(1) persistent, (2) recent, and (3) fossil.

2. Dynamics-related patterns, based on the semantics of
the relations,i.e., the contained dependencies and the
way they evolve. We distinguish between (1) stable,
(2) instable, and (3) intermittent.

Lifetime Relation. A lifetime relation exists both in the
first and in the last analyzed versions of the system. Such re-
lations are relevant for reverse engineering because they are
very probably part of the original architecture of the sys-
tem. This may be especially true for systems developed us-
ing agile methodologies which encourage the implementa-
tion of core functionality at the beginning of the systems life
[4]. Both relations a) and c) from Figure 5 are lifetime rela-
tions while b) is not because there was no relation between



b)a) c)

uml kernel uml applicationuml i18n

Figure 5. The evolution of the relations between org.argouml.uml and three other packages show-
cases three types of relationships: a relationship which is intermittent (a), a relationship which ap-
pears later in the project (b) and a relationship which is ver y instable (c)

the modules in the first analyzed version of the system. This
pattern does not say anything about the evolution of the in-
dividual dependencies composing the relation; it only cap-
tures the fact that a relation has existed between the two
modules throughout the entire system’s lifetime.

Recent Relation. Recent relations, as their name sug-
gests, are relations which appeared sometime after the
first version of the system and remained in the sys-
tem until the last version. In our cases studies we have
observed that the percentage of recent relations is usu-
ally greater than of lifetime relations. A special category
of recent relations are thenewborn relations, which ap-
peared in the last version of the system. In a system in

which the architects monitor the progress of the sys-
tem such as the one presented by Rötsche and Krikhaar
[21], special attention must be dedicated to newborn rela-
tions, as they are candidates of enforcing the architecture
guidelines. Of similar interest are also the newborn depen-
dencies (for which the definition parallels the one for new-
born relations). Figure 5 c) shows how an inter-module in-
heritance dependency betweenorg.argouml.uml and
org.argouml.application, which in version 16 was a
newborn dependency, is refactored in the subsequent ver-
sion.

Fossil Relation. The fossil relations are relations which
are not present anymore in the system’s last version. As



a result, it is likely that they are of little interest for the
reverse engineer. However, they can provide information
about the history of the system to the system architect be-
cause they are a sign of architecture restructuring. In the
two case studies we studied, we encountered large differ-
ences in the percentage of fossil relations out of all the ex-
isting inter-package relations (see Table 1). It would be in-
teresting to study wether the percentage of the fossil rela-
tions from all the relations in the system can be useful in
characterizing the system’s evolution.

Stable Relation A stable relation is one relation for
which although there are newexplicit dependencies of var-
ious types appearing and disappearing during the evolution
of the relationship, there are no newimplicit dependencies.

The stable relations are important because, if a stable re-
lation is also a lifetime relation, it is very likely that it repre-
sents an architectural foundation of the system, although we
can not rule out completely the possibility that the relation
represents dead code that was not detected and removed. In-
formation about the development process of the system can
bring more light on the importance of the relation: in a sys-
tem developed using agile methods it is less probable that
a relevant dependency remains stable compared to a sys-
tem developed using a more conservative model the depen-
dency.

Figure 5.a) is an example of a stable relation. From
the first analyzed version to the last, the configuration of
invocations and inheritances stays the same. However, it
changes quantitatively: the reliance ofuml on kernel be-
comes stronger. From the names of the modules we can in-
fer that they are important for the architecture of the sys-
tem. Indeed, in our case the stable lifetime relation is im-
portant from the architectural point of view.

Instable Relation. It changes both quantitatively and
qualitatively during the system’s evolution. A qualita-
tive change involves the appearance of new types of
inter-module dependencies: during the evolution of the in-
stable relation newexplicit dependenciesare introduced
which trigger the apparition of newimplicit dependen-
ciesbetween the modules. The existence of instable rela-
tions in a software system might be a sign of a continuous
struggle to find the right design, and are a good start-
ing point to investigate what are the system’s problems.
Figure 5.c) shows the history of an instable relation. The re-
lation between the modulesorg.argouml.uml and
the org.argouml.application was initially a mu-
tual dependency. The main reason for the relation-
ship was the reliance ofuml on the functionality pro-
vided by notation to generate UML notation. Be-
ginning with version 12, there is a strong surge in the
number of invocations toapplication. By inspect-
ing the contents of the strong invocation dependency be-
tweenuml andapplication we learn that the main rea-

son for the surge is the increase in the number of calls to
internationalization services which are localized at thismo-
ment in theapplication package. Another change in the
relationship happens in version 18 when the earlier depen-
dency weakens again: the internationalization functionality
was moved to the i18n package3. This can be corrobo-
rated with Figure 5.b) where the dependency between
uml and i18n also experiences a surge. After closer in-
spection we discovered that a similar surge appeared
also betweenui and i18n as a result of adopting sys-
tem wide internationalization support.

Intermittent Relation.A particular case of instable re-
lation is an intermittent relationfor which there are ver-
sions in which the relation disappears completely as there
are no more dependencies between the two modules. Fig-
ure 4 shows an intermittent relation which is the result of the
complete removal from the system of the persistence pack-
age during versions 0-14 and 0-16 of ArgoUML.

5.1. Quantitative Evaluation

One of the problems of many approaches based on vi-
sualization is that they are difficult to evaluate in an auto-
mated way. In our case, we wanted to find out how relevant
are the patterns presented in this section for real-world sys-
tems. To do this, we first formally defined the patterns so we
were able to encode them to be used by a query engine. Us-
ing the query engine, we extracted statistics about the fre-
quency of occurrence of patterns in various software sys-
tems.

System Azureus ArgoUML

Versions 5 6
Dependencies 4060 760

Lifetime 1543 (38%) 207 (28%)
Fossil 198 (4%) 257 (33%)

Recent 2319 (58%) 296 (39%)

Stable 1444 (36%) 157 (20%)
Instable 2616 (64%) 603 (80%)

Intermittent 12 (<1%) 28(<1%)

Table 1. Pattern frequency in Azuerus and Ar-
goUML.

Table 1 displays a quantitative overview of the frequency
of occurrence of inter-module relation evolution patternsin
two open-source case-studies. The table shows that Azureus

3 Internationalization is often abbreviated as i18n where 18 refers to the
number of letters omitted (nternationalizatio)



Figure 6. The Edge Evolution Pattern Browser during an ArgoU ML analysis session

has undergone a less dramatic evolution as only 4% of the
dependencies have disappeared, compared to ArgoUML in
which more than 30% have disappeared. Another observa-
tion regarding the age-related patterns is that in both sys-
tems there are lesslifetimerelations thanrecent—relations,
property which makes the multi-version information a crite-
ria for filtering less relevant information during system un-
derstanding.

The table also shows that the majority of the relations
in a software systems are instable. We can observe that Ar-
goUML has many more instable relations, denoting a heav-
ily evolving architecture.

6. Discussion

Relationship Visualization. We have shown how the
Edge Evolution Filmstrip and the Semantic Dependency
Matrix are useful in understanding the relations and de-
pendencies between modules. However, the techniques also
have limitations, and one of them is scalability. For depen-
dencies with many clients and providers the matrix can be
too big; for analysis which involves many versions, the film-
strip would need scrolling, which would affect its capacity
of characterizing a relationship at a glance. However, dur-
ing our analysis scalability was not a problem.

The Edge Evolution Filmstrip presents another limita-
tion: the module detection is done completely based on the

module name, meaning that if a module was renamed in one
version we will not detect it in subsequent versions.

Evolution Patterns. The presented relationship evolu-
tion patterns can be useful both during the analysis and de-
velopment of a software system. Several applications are:

Reducing information overload.The edge evolution pat-
terns are integrated in Softwarenaut’s filtering mechanism.
This means that the user can reduce the number of visible
relations depending on the type of activity he is doing. For
example, for a first encounter with a system, it is reason-
able to limit the display to the lifetime relationships. Table
1 shows that in some cases this can significantly reduce the
displayed information.

The Edge Evolution Pattern Browser.We have seen how
visualizing the evolution of a relation is useful in under-
standing the relation. A totally different usage scenario is
the one in which the user wants to browse the relationships
in the system for special cases, such as problematic rela-
tions or relations which conform to specific patterns. Fig-
ure 6 presents the Edge Evolution Pattern Browser, a tool
that provides the possibility of querying the system for rela-
tion patterns. For example, detecting instable dependencies
can be a starting point for problem detection.

Automatic Problem Detection.A possible extension of
the previous idea is a system which monitors the evolution
of a project and automatically detects when dependencies
which correspond to certain patterns appear.



Case Studies. The systems that we have analyzed are
high-quality open-source systems and it is probable that
the results would be slightly different for industrial systems
where we expect to encounter more problematic cases.

7. Related Work

There is a number of software exploration tools, such as
Bauhaus[11], SHriMP[14] and the seminal Rigi[16]. Rigi
features a sophisticated scripting engine which gives it a
great deal of flexibility. One impressive experiment with it
was performed by Riva[19] who used Rigi to reverse archi-
tect an industrial system. Still, Rigi emphasizes the (aggre-
gation of) nodes. SHriMP provides more focus on the de-
pendencies than the usual dependency graphs. It can dis-
play only some of the various types of dependencies and
offers the possibility of visually aggregating the dependen-
cies between low-level entities to higher-level dependen-
cies. Sotograph[23], a commercial software analysis work-
bench, which also includes inter-module dependency visu-
alization.

A contribution of our work that distinguishes it from the
afore mentioned tools, is the possibility of selecting an in-
dividual edge and providing detailed visualizations for it.
Another distinct feature is the fact that, based on the depen-
dency patterns, we can define filters which take into account
evolutionary information.

An interesting case of applying architecture evolution
analysis tools in the reengineering of an large industrial sys-
tem was presented by Rötschke and Krikhaar [21] who ap-
plied trend metrics. The toolset presented by Rötschke and
Krikhaar can present details about a dependency between
two module in html format.

Holt and Pak [10] were among the first to attempt to vi-
sualize the evolution of software systems at the architectural
level. They implemented GASE, a tool which highlights the
differences between two versions of a system by simple vi-
sual means (e.g.,color coding the differences between two
versions). Their approach was focused towards visualizing
the evolution of the dependencies between two versions.

An approach which treats histories of entities as a whole
is taken by Gı̂rbaet al. [8] who characterize the evolution
of whole class hierarchies by combining metrics and visu-
alization. Their work focuses only on the evolution of in-
heritance relations and proposes a visual representation for
summarizing the evolution of the class hierarchies.

Hassanet al.[9] annotate dependency graphs with infor-
mation retrieved from version control repositories.

The idea of representing software relations using inci-
dence matrices was used also by Pauwet al.[5] to represent
the relations between classes in a software system. Their
visualization is similar to ours, but, in their case, the ma-
trix has the same elements on the rows and columns which

makes it useful for understanding the relationships between
the classes. In our case the elements on the columns rep-
resent the client and the ones on the rows represent the
provider, so the matrix speaks about the relation between
the two.

With respect to the recovering of the architecture of soft-
ware systems (also known as reverse architecting) the two
PhD theses by Pinzger [18] and Riva [20] both addressed
the problem in their own way, without however taking into
account the semantics of the relationships between the ar-
chitectural components.

8. Conclusions and Future Work

We started this paper by introducing a distinction be-
tween inter-moduledependenciesand inter-modulerela-
tions. Then, we argued for the importance of enriching
software exploration tools with the capacity of visual-
izing and analyzing both the relations and the implicit
dependencies between the modules in a software sys-
tem. As concrete examples of such visualization and
analysis techniques we presented the Edge Evolution Film-
strip and the Semantic Dependency Matrix. TheSemantic
Dependency Matrixis a technique for displaying the de-
tails about the interaction between two modules by
grouping the classes which interact in similar ways to-
gether in order to encourage the emergence of interac-
tion patterns. TheEdge Evolution Filmstripvisualization
that we propose presents the evolution of a relation-
ship between two modules through multiple versions.
Based on the experience of using the film strip we ex-
tracted a set of inter-module dependencies evolution
patterns. We showed how our exploration tool, Software-
naut, makes use of the patterns to recover architectural
information useful both for software architects and re-
verse engineers.

Future Work. We plan to continue our work on the re-
lationship and dependency visualization as we think
there are still better techniques to be discovered that
would help in system understanding and quality assess-
ment. One such technique could be visualizing the inter-
action between the natural language terms present in the
two analyzed modules. Regarding the dependency evo-
lution patterns, we plan to both look for more systems
to analyze and other criteria for relationship classifica-
tion.

Acknowledgements. We would like to thank Marco
D’Ambros and Romain Robbes for comments and sugges-
tions on previous drafts of this paper as well as the anony-
mous reviewers for their observations.



References

[1] Argouml, UML Modeling Tool. http://argouml.tigris.org/.
[2] Azureus, BitTorrent Client. http://azureus.sourceforge.net/.
[3] L. Bass, P. Clements, and R. Kazman.Software Architecture

in Practice. Addison-Wesley, 2nd edition, 2003.
[4] A. Cockburn. Agile Software Development. Addison Wes-

ley, 2002.
[5] W. De Pauw, R. Helm, D. Kimelman, and J. Vlissides. Visu-

alizing the behavior of object-oriented systems. InProceed-
ings OOPSLA ’93, pages 326–337, Oct. 1993.

[6] S. Eick, T. Graves, A. Karr, J. Marron, and A. Mockus. Does
code decay? assessing the evidence from change manage-
ment data. IEEE Transactions on Software Engineering,
27(1):1–12, 2001.

[7] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis,
H. Mueller, J. Mylopoulos, S. Perelgut, M. Stanley, and
K. Wong. The software bookshelf.IBM Systems Journal,
36(4):564–593, Nov. 1997.

[8] T. Gı̂rba, M. Lanza, and S. Ducasse. Characterizing the
evolution of class hierarchies. InProceedings IEEE Eu-
ropean Conference on Software Maintenance and Reengi-
neering (CSMR 2005), pages 2–11, Los Alamitos CA, 2005.
IEEE Computer Society.

[9] A. Hassan and R. Holt. ADG: Annotated Dependency
Graphs for Software Understanding. InInternational Work-
shop on Visualizing Software for Understanding and Analy-
sis (VISSOFT). IEEE CS, 2003.

[10] R. Holt and J. Pak. GASE: Visualizing software evolution-in-
the-large. InProceedings of Working Conference on Reverse
Engineering (WCRE 1996), pages 163–167, Los Alamitos
CA, 1996. IEEE Computer Society Press.

[11] R. Koschke.Atomic Architectural Component Recovery for
Program Understanding and Evolution. PhD thesis, Univer-
sität Stuttgart, 2000.

[12] M. Lungu and M. Lanza. Softwarenaut: Cutting edge visu-
alization. InProceedings of Softvis 2006 (3rd International
ACM Symposium on Software Visualization), pages 179–180.
ACM Press, 2006.

[13] M. Lungu and M. Lanza. Softwarenaut: Exploring hierarchi-
cal system decompositions. InProceedings of CSMR 2006,
pages 349–350, Los Alamitos CA, 2006. IEEE Press.

[14] C. B. M.-A. D. Storey and J. Michaud. Shrimp views: An in-
teractive and customizable environment for software explo-
ration. In Proceedings of International Workshop on Pro-
gram Comprehension (IWPC ’2001), 2001.

[15] H. A. Müller. Rigi — A Model for Software System Construc-
tion, Integration, and Evaluation based on Module Interface
Specifications. PhD thesis, Rice University, 1986.

[16] H. A. Müller and K. Klashinsky. Rigi – a system for
programming-in-the-large. InICSE ’88: Proceedings of
the 10th international conference on Software engineering,
pages 80–86. IEEE Computer Society Press, 1988.

[17] G. Murphy, D. Notkin, and K. Sullivan. Software reflex-
ion models: Bridging the gap between source and high-level
models. InProceedings of SIGSOFT ’95, Third ACM SIG-
SOFT Symposium on the Foundations of Software Engineer-
ing, pages 18–28. ACM Press, 1995.

[18] M. Pinzger. ArchView – Analyzing Evolutionary Aspects of
Complex Software Systems. PhD thesis, Vienna University
of Technology, 2005.

[19] C. Riva. Reverse architecting: an industrial experience re-
port. InProceedings WCRE 2000, pages 42–50. IEEE Com-
puter Society, 2000.

[20] C. Riva. View-based Software Architecture Reconstruction.
PhD thesis, Technical University of Vienna, 2004.

[21] T. Rötschke and R. Krikhaar. Architecture Analysis Tools
to Support Evolution of Large Industrial Systems. InProc.
IEEE International Conference on Software Maintenance
(ICSM 2002), pages 182–193, 10 2002.

[22] Softwarenaut, A Software Exploration Prototype.
http://www.inf.unisi.ch/phd/lungu/softwarenautl.

[23] Sotograph, a commercial software visualization tool.
http://www.software-tomography.com/html/sotograph.html.

[24] M.-A. D. Storey, K. Wong, and H. A. Müller. How do pro-
gram understanding tools affect how programmers under-
stand programs? In I. Baxter, A. Quilici, and C. Verhoef,
editors,Proceedings Fourth Working Conference on Reverse
Engineering, pages 12–21. IEEE Computer Society, 1997.

A. Case Studies

The two case-studies in this paper are ArgoUML[1], a
UML modeling environment, and Azureus[2], a BitTorrent
client. In our analysis we considered only major versions of
the systems. Because ArgoUML uses an odd/even release
schedule with 0.even releases as stable releases and 0.odd
releases as developer releases, we have chosen all the even
releases between versions 0.10 and 0.20. For Azureus we
considered the major releases between 2.1.0 and 2.5.0. Fig-
ure 7 shows the evolution of the number of classes in the
two analyzed systems.

Azureus

ArgoUML

Number of 

Classes

Year
20062002 2004 20052003

0-20
0-18

0-16

0-10

2.5.0

2.4.0

2.3.0

2.2.0

2.1.0

0-12

0-14

Figure 7. Size Evolution in the Case Studies


