
Softwarenaut: Exploring Hierarchical System Decompositions

Mircea Lungu, Michele Lanza
Faculty of Informatics, University of Lugano, Switzerland

mircea.lungu@lu.unisi.ch, michele.lanza@unisi.ch

1. Introduction

Softwarenaut is a tool aimed at top-down explo-
ration of large software systems. Using it, the reverse
engineer can obtain various architectural views of a sys-
tem by interactively navigating a hierarchical decom-
position of the system. In order to accomodate many
possible decompositions of a system Softwarenaut was
designed as a framework which provides visualization
and exploration services that can be applied on vari-
ous hierarchical decompositions of the system.

2. Exploration mechanisms

There are multiple hierarchical decompositions of a
system and for most of them the exploration mech-
anisms which are needed do not depend on the de-
composition type. From the mechanisms that Software-
naut employs we mention the exploration primitives,
the multiple perspectives and the visual annotations.

Multiple perspectives. Softwarenaut provides
three coupled, complementary perspectives on the an-
alyzed systeem. As Figure 1 shows, the perspectives
are:

• Exploration Perspective. Presents a graph-like rep-
resentation of the visible modules (nodes in the
graph) and their interaction (edges in the graph).

• Detail perspective. Offers detail on demand for the
current selected entity by providing alternative
views on it.

• Map Perspective. presents the positions in the hi-
erarchy of the visible modules in order to offer a
sense of context and orientation.

Navigation Primitives. There are three principal
operations that the framework provides during the nav-
igation.

• Expand. By expanding a node the view is updated
and the node is replaced with nodes representing
its children.

Figure 1. Package structure of Azureus explored
with Softwarenaut

• Collapse. By collapsing a node corresponding to a
package, the node, together with all the nodes rep-
resenting the siblings of the package are removed
from the view and replaced with a node represent-
ing the parent package.

• Filter. Because filtering is an important part
of exploration, Softwarenaut implements multi-
ple types of filters.

Visual Queries for Annotating Navigation.
The framework provides a mechanism for specifying
queries which have visual results used to annotate the
elements in the view. One application of the visual
query system is providing information on the most
interesting exploration operations recommended at a
given point in exploration.

3. Types of Analysis

Depending on the available data, on the desired
depth of the analysis and on the purpose of the re-
verse engineering process, various types of analysis are
posible. In this section we briefly present several types
of analysis that Softwarenaut can perform.



Figure 2. Exploration Perspective in one indus-
trial case study.

Package Dependency. When analyzing a Java
system, the modularization units with the highest gran-
ularity are the packages. Because even for a medium-
sized software project, a package dependency graph is
overloaded with information, Softwarenaut makes use
of the implicit convention used by developers of group-
ing the related packages together in superpackages.
Based on this assumption, the relations between the
lower level packages can be aggregated to higher lev-
els obtaining views which present less information but
can be iteratively refined.

Figure 1 presents Softwarenaut exploring the pack-
age hierarchy of Azureus, an open source file sharing
system of approximately 2500 classes.

Directory Include Relationships. For C/C++
projects an initial overview of the system can be ob-
tained by considering the include relationships between
files aggregated at directory level. This type of analy-
sis is important when in analyzing very large indus-
trial systems because the data can be obtained by a
lightweight parsing of the system.

Figure 2 presents the Exploration View of Software-
naut exploring a large industrial C/C++ system (more
than 2MLOC) . The nodes represent modules (directo-
ries) in the system, and the edges represent include re-
lations aggregated from the contained files. The area
of the nodes is proportional to the corresponding mod-
ule’s size and the width of the edge is proportional to
the number of dependencies abstracted in it.

With these visual conventions in place, the figure
shows that, besides having similar size, the two bot-
tom modules interact in a symmetric way with the
other modules in the system. A reverse engineer might
want to understand the causes of such a similarity1.

1 Starting from this view, the authors discovered that the files
contained in the two modules were duplicated. Note that the
visual conventions were essential in detecting the symmetry

Semantic Cluster Interaction. Latent Semantic
Indexing (LSI) is an information retrieval technique
used primary in web search. By using LSI to compute
the similarity between documents, Kuhn et. al [?] cre-
ate a hierarchical clustering of the classes in the sys-
tem on a semantic base. Their aim is to identify con-
cepts in the system.

Figure 3. Map Perspective representing a hier-
archical clustered decomposition. The more se-
mantically cohesive a cluster, the darker its color

Because the concept detection process can not be au-
tomated the solution is to manually inspect the cluster
hierarchy. In our previous work [?] we how exploration
with Softwarenaut is useful in detecting concepts in a
semiautomatic way in a system.

4. Presentation Description

During the presentation, we will interactively reverse
engineer a software system using Softwarenaut. The
system will be a large (> 1000 classes) software sys-
tem. We believe that doing the analysis in an interac-
tive way and involving the participants will provide us
with important feedback on the strong and weak points
of the tool and the methodology.

Softwarenaut is open source software, written in
Smalltalk. The tool is available for all the major platforms
(Windows, Linux, OS X) and can be freely downloaded from:
http://www.inf.unisi.ch/phd/lungu/softwarenaut —


