
Ronda: A fine grained collaborative
development environment

Fernando Olivero, Michele Lanza, and Marco D’ambros

REVEAL @ Faculty of Informatics - University Of Lugano, Switzerland

Abstract. Programmers seldom work in isolation: Software develop-
ment is a social human activity, which therefore requires collaboration
among the involved programmers. We argue that the main vehicles for
programming—the integrated development environments (IDEs)—were
designed without collaboration in mind. IDEs focus on a single view-
point of the system, hence team members are aware of system changes
only after the code is committed to the versioning system, which delays
discussions that would otherwise prevent conflicts.

We propose a novel IDE, named Ronda, devised from the ground up,
to fully embrace the collaborative nature of programming. Such an IDE
allows a team of developers to take part in development sessions, both
individually and in a group, within the same environment, promoting
awareness and coordination, by tracking, broadcasting and visualizing
fine-grained changes to the system.

1 Introduction

The art of crafting programs to solve problems is rarely accomplished by a single
human working in solitude. Early psychological theories of programming [13]
acknowledged that the software development process is a social human task, and
practitioners have observed that therein lies the main cause of project failures [6].
Nonetheless, the main vehicle for programming—the integrated development
environment (IDE)—remains as it was conceived in the 1970s, focused on a
single point of view of the system.

There have been attempts to provide better collaboration support in existing
IDEs, such as Palantir [8] and Syde [3]. However, in these cases collaboration
support is an afterthought stapled on top of existing environments that struggle
to overcome their single-developer nature.

We present Ronda, an extension to Gaucho (a 2D IDE based on a canvas
metaphor [7]). Ronda offers first-class support for collaborative development
sessions. Ronda is a change-centric environment: It promotes awareness of fine-
grained changes to the system under development. We describe the infrastructure
we built to support team collaboration within the scope of sessions, and we
illustrate the features and usage of Ronda.

2 The Vision: Object-Focused Collaboration

In this section we motivate the need for Ronda, a novel integrated development
environment (IDE), devised from the ground up to support collaborative sessions
within the environment, and built around an alternate user interface metaphor.

2.1 Shared Development Sessions

The interaction amongst people assembled in groups can be categorized into fo-
cused and unfocused gatherings. In the former, several participants get together
for a clearly stated purpose, while in the latter each of them might have different
goals during the rendezvous [2].

Most of the collaborative development environments developed to date, pro-
vide some form of unfocused gathering by means of a shared editable view of
the system, or by visualizing the modifications made by other developers. For
example, in the 1990s researchers at Sun Microsystems devised Kansas, a 2D
space for real-time collaboration, including a shared large flat space which hosted
directly-manipulable representations of the objects [11], see Figure 1. In Kansas,
any change to the system is immediately displayed to every developer, but the
system lacks the concept of a session to guide developers into which modifications
must be performed.

KansasSelf

Fig. 1. Self and Kansas, collaboration within an object-focused IDE

More recent examples are Syde and Jazz. Syde is a set of plugins that augment
the Eclipse IDE with awareness of fine-grained changes to the system [3], see
Figure 2. Jazz 1, is a collaboration platform that can integrate with the IDE to
enable task tracking capabilities and source control.

We argue that such environments are missing a fundamental piece of the
puzzle: A first-class presence of shared development sessions, with clearly defined
boundaries, objectives, and outcome. In Ronda, development sessions are first
class objects, which provide a context for accomplishing tasks using the IDE.

1 https://jazz.net/

https://jazz.net/

Eclipse & Syde

Fig. 2. Syde: collaboration support within the Eclipse IDE

2.2 The Object-focused metaphor

We designed Ronda around the object-focused metaphor, a term coined by the
creators of the Self programming language [10], depicted in Figure 1. The inter-
faces built around this metaphor minimize the presence of tools to give promi-
nence to high-level views of objects, that provide means to fully manipulate them
via direct manipulation.

We make use of an alternate user interface metaphor, to avoid the many
problems that traditional IDEs struggle to overcome, mostly related to the al-
location of real estate resources [1]. To escape from the bento box philosophy
that confines the IDE within a single window with sub-panes [1]. The bento-box
model forces Syde’s plugins to compete for a portion of real estate with the tradi-
tional tools of Eclipse, see Figure 2. A 2D open-space IDE in the vein of Self, on
the other hand, easily accommodates collaborative aspects due to its libertarian
usage of screen space, and a more concrete representation of the objects in the
interface.

The use of direct manipulation enables a more focused display of visual cues
to denote changes to the system, given the continuous representation of the ob-
jects of interest characteristically of such interfaces [4]. For instance, in Syde,
which is built on top of a traditional IDE, the notification of changes is detached
from the actual portion of the source code describing the changed entities, re-
sulting in a so called “ping pong” interface [5].

We want to provide a framework that enables the creation, announcement,
development, and tracking of sessions, enabling team members to engage in
focused gatherings within an object-focused IDE. This is the main principle of
Ronda, presented next.

3 Ronda: An Object-Focused Collaborative Environment

Ronda is an object-oriented development environment that enables a group of
developers to remotely collaborate to accomplish tasks within the scope of ses-
sions. Ronda is built on top of an object-focused IDE named Gaucho [7]. Gaucho
minimizes the presence of tools in favor of shapes, directly manipulable views
of objects, that populate a 2D surface named the Pampas. Figure 3 portrays a
Pampas including shapes that represent classes, tests, methods and changes.

Test case shape

Developers shape

Changes shape

Notes shape

Change Shape

Class Shape

Pampas

Method Shape

Number Of
Changes

Fig. 3. A Ronda session: the Pampas including several Shapes

Awareness of Fine-Grained Changes. Ronda is a change-centric devel-
opment environment which includes several shapes which provide the means to
fully manipulate the represented objects. For example, developers can create,
rename, remove, and add methods and variables to classes by solely interacting
with a Class Shape. We track fine-grained changes within the IDE, to provide
real-time awareness support, hence every (minor) change to the system is im-
mediately broadcasted to the other participants to attain a level of awareness,
which is simply not possible in single-person mainstream IDEs, where—as previ-
ous research pointed out [12]—often developers engage in a blind race to commit
first and avoid the merge of conflicting changes. However, we believe the use of
the object-focused metaphor, as opposed traditional bento-box interfaces, pro-
vides better support for visualizing those changes and revealing conflicts, mostly

because of the stronger presence of objects within the interface (i.e., high-level
views of objects vs enriched source code editors). For instance, Figure 3 depicts a
class shape that was renamed by another participant. The shape presents visual
cues for quickly understanding the nature of the change and who produced it.

Avoiding Conflicts. Even though developers in the same team seldom work
on the same objects at the same time, conflicts may occur because they are
working to solve the same task. In Ronda, we avoid conflicts by broadcasting
any shape edition which might lead to a system change, thus developers have
a consistent view of the shapes—the objects—currently under manipulation: A
session tracks both changes and editions. Editions are any manipulation which
might result in a system change. For instance, opening a class rename shape or
a method add shape, and receiving input from the developer.

Communication. Developers can attach notes to ask, inform or hint about
the system. These notes enable both in-place documentation and conversations
within the IDE.

Change Authoring and Trust Levels. In Ronda, we distinguish between
trusted and untrusted developers. The former produce trusted changes, whereas
modifications of the latter result in untrusted changes, which are visualized dif-
ferently, and might be discarded by more knowledgeable trusted developers. The
trust levels are granted by the owner when creating the session, by enumerating
the trusted developers and specifying wether untrusted developers can join.

Figure 4 portrays two pampas, from different developers, with several past
changes and ongoing editions.

Fig. 4. Generation and awareness of changes in the interface

Locked: only for
trusted developers

Offline
Online

Fig. 5. Ronda: The Initial Display

Shared Development Sessions. Figure 5 depicts two different initial dis-
plays presented when Ronda developers open the environment, and are presented
with the available sessions they can join. The sessions have a named task that
describes the purpose of the gathering, an owner who is responsible for closing
and committing its outcome, a list of developers who can participate, and a list
of those who are logged in. When a developer joins a session, Ronda synchronizes
to an updated state of the ongoing session, by downloading and installing a snap-
shot containing the system under development and all the changes performed so
far, and then opens the session in the interface.

4 The Infrastructure

In Ronda, we make use of a simplified version of TeaTime [9], a decentralized
distributed framework that relies on replication of computation instead of data.
TeaTime revolves around the concept of an Island, which is a secure container
of objects. An Island is an abstract concept, with no inherent location. Islands
are projected onto numerous concrete replicas, located in hosts of the network.

Consistency amongst replicas is maintained by broadcasting any message
that alters the state of the Island, via controllers connected to the same router,
following a two-phase commit protocol. TeaTime messages originate in a host,
then travel from the controller to the router, and finally get dispatched to all
the connected controllers, including the original one.

The state-changing messages are generated in response to events performed
by the developer, when manipulating the objects of the Island via their graph-
ical counterpart within the user interface. The messages sent by the router are
ordered by a sequence number and a timestamp, to preserve the order of execu-
tion of all received messages in each replica. Thus, the replicas deterministically
evolve over time, because each replica is an exact copy of the Island i.e., they
hold the same objects, and send the same ordered stream of messages.

4.1 Customizing Tea Time for Ronda

In Ronda, a TeaTime Island includes the shared development sessions, replicated
in the IDE of all collaborating developers. A development session includes the
system under construction, a list of trusted developers, and all the past changes.

Figure 6 depicts the core architecture in Ronda, consisting of one or more
developers running a Ronda IDE (Alan, Ted, Dan and Adele), composed by a
controller connected to the Island’s router via a TCP Socket, a replica of the
ongoing Session, and an augmented Gaucho IDE.

RondaIDE

Controller

GauchoIDE

Session

Router

2

3

5
6

7

4

Command (Message)

Change

Session (Island)

Host

Alan

Ted

Dan

Step

GauchoIDE

Controller

Socket

Adele

1

Fig. 6. The infrastructure for collaboration in Ronda

When developers manipulate shapes in the Gaucho IDE À, a Tea Time mes-
sage in the form of a UI command is generated Á, that either represents a fine
grained system change or a UI element edition, like a class rename or a class
shape name edition. The command is sent to the controller and forwarded to
the island’s router Â. The router broadcasts the command to all the connected
controllers Ã. Afterwards, upon reception, the command is executed producing
the same result in every replica Ä, which results in a change Å that alters the
ongoing session, and is presented in the user interface of the IDE Æ.

4.2 Implementation Details

Ronda is written in Smalltalk, a highly dynamic and fully reflective language.
It is implemented on top of Pharo2, a modern open source IDE for Smalltalk.

2 http://pharo-project.org

http://pharo-project.org

Ronda augments the Gaucho IDE, to implement the infrastructure described
throughout this section. Ronda is free, open source, and released under the MIT
license. It can be downloaded from the Gaucho web site located at gaucho.inf.
usi.ch. A screencast, demonstrating the main features of Ronda, is available at
http://vimeo.com/17443946.

5 Conclusions

We have presented Ronda, a novel IDE designed to support collaboration by
means of shared development sessions, and a change-centric environment which
tracks and visualizes fine-grained changes to the system under construction.

Acknowledgements. Olivero is supported by the Swiss Science foundation
through the project “GSync” (SNF Project No. 129496).

References

1. DeLine, R., Rowan, K.: Code canvas: zooming towards better development environ-
ments. In: Proceedings of ICSE 2010 (32nd ACM/IEEE International Conference
on Software Engineering) - Volume 2. pp. 207–210. ACM (2010)

2. Goffman, E., Wootton, A.J.: Exploring the interaction order. Polity Press (1988)
3. Hattori, L., Lanza, M.: Syde: A tool for collaborative software development. In:

Proceedings of ICSE 2010 (32nd ACM/IEEE International Conference on Software
Engineering). pp. 235–238 (2010)

4. Hutchins, E., Hollan, J., Norman, D.: Direct manipulation interfaces. Human-
Computer Interaction 1, 311–338 (1985)

5. Lieberman, H., Fry, C.: Bridging the gulf between code and behavior in program-
ming. In: CHI. pp. 480–486. ACM/Addison-Wesley (1995)

6. Marco, T.D.: Peopleware - Productive Projects and Teams. Dorset House (1999)
7. Olivero, F., Lanza, M., D’Ambros, M., Robbes, R.: Enabling program comprehen-

sion through a visual object-focused development environment. In: Proceedings of
VL/HCC ’11 (IEEE Symposium on Visual Languages and Human-Centric Com-
puting). pp. 127–134 (2011)

8. Sarma, A.: Palantir: enhancing configuration management systems with workspace
awareness to detect and resolve emerging conflicts. Ph.D. thesis, CalState Univer-
sity (2008)

9. Smith, D.A., Kay, A., Raab, A., Reed, D.P.: Croquet - a collaboration system
architecture. IEEE Computer Society (2003)

10. Smith, R.B., Maloney, J., Ungar., D.: The self-4.0 user interface: Manifesting a
system-wide vision of concreteness, uniformity, and flexibility. In: OOPSLA ’95
Conference Proceedings. pp. 47–60 (1995)

11. Smith, R.B., Wolczko, M., Ungar, D.: From kansas to oz: collaborative debugging
when a shared world breaks. Commun. ACM 40 (1997)

12. de Souza, C.R.B., Redmiles, D., Dourish, P.: Breaking the code, moving between
private and public work in collaborative software development. In: Proceedings of
GROUP 2003 (International ACM SIGGROUP Conference on Supporting Group
Work). pp. 105–114. ACM Press (2003)

13. Weinberg, G.: The Psychology of Computer Programming. Dorset House, silver
anniversary edn. (1998)

gaucho.inf.usi.ch
gaucho.inf.usi.ch
http://vimeo.com/17443946

	Ronda: A fine grained collaborative development environment

